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Helicobacter pylori is a globally important and genetically diverse gastric pathogen that infects most people in developing coun-
tries. Eradication efforts are complicated by antibiotic resistance, which varies in frequency geographically. There are very few
data on resistance in African strains. Sixty-four Gambian H. pylori strains were tested for antibiotic susceptibility. The role of
rdxA in metronidazole (Mtz) susceptibility was tested by DNA transformation and sequencing; RdxA protein variants were in-
terpreted in terms of RdxA structure. Forty-four strains (69%) were resistant to at least 8 �g of Mtz/ml. All six strains from in-
fants, but only 24% of strains from adults, were sensitive (P � 0.0031). Representative Mtz-resistant (Mtzr) strains were ren-
dered Mtz susceptible (Mtzs) by transformation with a functional rdxA gene; conversely, Mtzs strains were rendered Mtzr by
rdxA inactivation. Many mutations were found by Gambian H. pylori rdxA sequencing; mutations that probably inactivated
rdxA in Mtzr strains were identified and explained using RdxA protein’s structure. All of the strains were sensitive to clarithro-
mycin and erythromycin. Amoxicillin and tetracycline resistance was rare. Sequence analysis indicated that most tetracycline
resistance, when found, was not due to 16S rRNA gene mutations. These data suggest caution in the use of Mtz-based therapies
in The Gambia. The increasing use of macrolides against respiratory infections in The Gambia calls for continued antibiotic sus-
ceptibility monitoring. The rich variety of rdxA mutations that we found will be useful in further structure-function studies of
RdxA, the enzyme responsible for Mtz susceptibility in this important pathogen.

Helicobacter pylori chronically infects most people in develop-
ing countries (1, 2), typically starting in infancy (2–4) and

lasting for life. It also remains a significant pathogen in industri-
alized countries, infecting some 10 to 40% of adults in many so-
cieties. Chronic H. pylori infection is a major cause of gastric
(stomach) and duodenal ulcers and gastric cancer (5–7). It also
increases the risk of infection by other gastrointestinal pathogens,
iron deficiency anemia, and infant malnutrition and growth fal-
tering, especially among the very poor (8, 9). These latter condi-
tions are of particular concern in The Gambia, a small developing
country on the West Coast of Africa. Fortunately, many H. pylori-
associated illnesses can be prevented or cured by the timely erad-
ication of the bacterium, which typically entails a 1 to 2 weeks
of treatment variously with metronidazole (Mtz), amoxicillin
(Amo), and clarithromycin (Cla), when affordable, and/or tetra-
cycline (Tet), in combination with a proton pump inhibitor such
as omeprazole, and/or bismuth, where allowed by local regula-
tions (10). H. pylori transmission tends to be highly localized and
preferentially intrafamilial (11, 12) in industrialized societies and
often also between households in the local community in devel-
oping country settings (13). Given the relatively localized trans-
mission, successful eradication from many members of a house-
hold or community might markedly diminish the risk of new
infections, especially of newborns, and thereby contribute impor-
tantly to public health.

Resistance to useful antimicrobials, especially Mtz and Cla, has
been a major problem in some societies, even among people not
previously treated for their H. pylori infections. Such resistance is
generally attributable to inadvertent H. pylori exposure during
treatment for other conditions (14). Mtz itself is an innocuous
prodrug that is activated by chemical reduction to hydroxylamine

type compounds, which are bactericidal to H. pylori (15). In the
strains studied to date, mostly from industrialized societies, a
modest level of Mtz resistance (e.g., to 8 or 16 �g of Mtz/ml) was
usually associated with inactivation of the gene rdxA, which en-
codes a nonessential oxygen-insensitive NAPDH nitroreductase
that chemically reduces Mtz in vitro (16). Higher-level resistance
in rdxA mutant strains, e.g., to 32 �g of Mtz/ml, resulted from the
inactivation of frxA, a related but generally less strongly tran-
scribed nitroreductase gene; however, higher-level resistance can
result from mutations in any of several additional genes that likely
also affect intracellular redox potential (16–18). The hydroxyl-
amine-type derivatives of Mtz that RdxA protein generates are
mutagenic, such that exposure to sublethal Mtz concentrations
(15) induces as well as selects for mutations to Mtz resistance.

No commonly used anti-H. pylori drugs other than Mtz are
known to require activation to render them bactericidal, nor to be
so highly mutagenic. In addition, the several resistances to these
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other drugs identified to date involve specific mutational changes
that alter the target’s function. In particular, resistance to the re-
lated macrolides erythromycin (Ery) and clarithromycin (Cla),
which are used in anti-H. pylori therapy, is usually achieved by
point mutations at either of two adjacent sites in 23S rRNA (19,
20) that diminish macrolide binding to the ribosome. Cla resis-
tance seems to be rare in many societies but common (more than
one-fourth of strains) in others (21, 22). The observed prevalence
probably reflects a combination of the very few rRNA sites in
which sequence changes can confer resistance and are not too
deleterious for the bacterium, a need to incorporate any resistance
mutation in both 23S rRNA genes to achieve a resistance pheno-
type, and the intensity of macrolide use for other infections and
thereby inadvertent exposure of resident H. pylori strains.

Tet resistance is much rarer than Mtz or Cla resistance (23, 24),
although several bona fide resistant strains have been identified
and analyzed. In the best-described case, modest resistance re-
sulted from three contiguous changes in the Tet binding pocket in
16S rRNA (positions 965 to 967) (23, 25). Lower-level resistance
was achieved by mutation at one or two of these positions and/or
by mutations in genes in other chromosomal locations that have
not yet been identified but are suspected to affect bacterial perme-
ability or efflux (23). Amo resistance is also very rare, but where it
is found it has been ascribed to mutation in a penicillin-binding
protein involved in cell wall metabolism (26–30).

The present study of drug susceptibility and resistance in Gam-
bian H. pylori strains was motivated in part by considering that H.
pylori is a genetically very diverse species, with different genotypes
predominating in different well-separated geographic regions,
even in different parts of Africa (31) and that most studies of drug
susceptibility and resistance have focused on strains from Europe,
the Americas, or Asia. As with many infection-related topics, there
have been far fewer critical studies of antimicrobial resistance and
susceptibility of H. pylori strains from Africa, especially those from
West Africa—the ancestral home of most people of African eth-
nicity in the Americas. Given H. pylori transmission preferentially
within families and local communities (11–13), West African
strains may well have contributed to H. pylori gene pools in the
Americas.

Bearing in mind H. pylori’s impact on public health worldwide,
The Gambia included, and the distinctiveness of African strains,
we assessed here the frequencies of resistance to Amo, Cla, Ery,
Mtz, and Tet in a set of 64 strains from Gambian citizens. We
tested the importance of rdxA status for Mtz susceptibility and
resistance by transformation and DNA sequence analysis, and in-
terpreted amino acid sequence differences in RdxA protein in
terms of its recently determined structure (32). We also tested by
DNA sequencing whether 16S rRNA gene mutations could be
responsible for the very few Tet-resistant (Tetr) isolates found as
minority components of mixed H. pylori populations from several
patient biopsy specimens.

MATERIALS AND METHODS
Patients. Sixty-four patients were enrolled in the present study: 35 male
and 29 female, ranging from 18 months to 70 years, with a mean age of 30
years. These patients were part of a group recruited during a primary
study of H. pylori genetic diversity reported previously (33). All subjects
were Gambian citizens and provided written informed consent. Children
younger than 18 years were enrolled only after parental/guardian written
informed consent. The study was approved by the Gambia Government/

MRC joint ethics committee and the international Review Board of the
U.S. National Institute of Health Division of Microbiology Infectious Dis-
eases.

Bacterial cultures. H. pylori strains were cultured, generally as pools of
bacteria, from gastric biopsy samples on brain heart infusion (BHI) agar
(Difco, USA) supplemented with 7% horse blood, 0.4% IsoVitaleX, tri-
methoprim at 5 �g/liter, vancomycin at 6 �g/liter, and amphotericin at 8
�g/liter. The plates were incubated at 37°C in a microaerobic atmosphere
for 3 days as previously described (33). Exponential growth of these
strains was obtained by culturing on fresh BHI agar medium for 24 h.
Strains were stored at �70°C as suspensions of fresh exponentially grow-
ing cells suspended in BHI broth with 20% glycerol.

MIC determined by agar dilution. Freshly grown bacteria were
screened for antibiotic resistance by suspending them in phosphate-buff-
ered saline (pH 7.2) (Invitrogen, USA) at a 105 McFarland standard. A
series of sequential 10-fold dilutions was prepared from this suspension,
and 10 �l of each dilution was spot inoculated onto BHI medium con-
taining antibiotics appropriate for this experiment as follows: Amo (2
�g/ml), Cla (2 �g/ml), Ery (2 �g/ml), Tet (2 �g/ml), and Mtz (8 �g/ml).
When resistance was encountered, susceptibility to higher concentrations
of the antibiotic was tested. The plates were incubated at 37°C under
microaerobic conditions for 5 days. A strain was considered to be suscep-
tible to a concentration of an antibiotic that caused at least a 10-fold
decrease in the efficiency of colony formation by individual cells (effi-
ciency of plating [EOP]) as previously described (16, 21, 23, 34).

DNA extraction. Total genomic DNA was extracted using a commer-
cial kit (rDNA minikit; Qiagen, United Kingdom) according to the man-
ufacturer’s guidelines and stored at �20°C.

RAPD-PCR. RAPD [random(ly) amplified polymorphic DNA] typ-
ing was carried out using two arbitrary primers (1254 [5=-CCGCAGCCA
A-3=] and 1283 [5=-GCGATCCCCA-3=]) as previously described (35).
The cycling parameters were 45 cycles of 94°C for 1 min, 36°C for 1 min,
and 72°C for 2 min. The amplified products were detected by electropho-
resis on a 1.5% (vol/vol) agarose gel with ethidium bromide (500 ng/ml),
and the bands were visualized by using Gel Doc 2000 (Bio-Rad Laborato-
ries, Milan, Italy).

16S rRNA gene and rdxA gene sequencing. To detect changes in 16S
rRNA sequences associated with Tet resistance, 16S rRNA genes were
amplified by PCR with the primers 16S-F (5=-CGGTTACCTTGTTACG
ACTTCAC-3=) and 16S-R (5=-TATGGAGAGTTTGATCCTGGCTC-3=),
and the amplified 16S rRNA genes were sequenced as previously described
(23). To detect mutations associated with Mtz resistance, the rdxA genes
of 51 strains (33 Mtzr and 18 Mtzs) were amplified by PCR with the
primers rdxAF (5=-GTTTCGTTAGGGATTTTATTGTATGCTA-3=) and
rdxAR (5=-CACCCCTAAAAGAGCGATTAAAACCATT-3=), the PCR
products were sequenced, and the sequences were edited, aligned, and
analyzed by using the DNAStar program (version 7; Lasergene, USA) and
the Clustalw2 program.

Mutant RdxA protein structure analysis. The impact on protein
structure of mutations found in rdxA genes from Mtzr and Mtzs H pylori
strains was assessed by modeling the mutations in the X-ray structure of
the RdxA enzyme (PDB ID 3QDL) (32) using Swiss-PdbViewer (36).
Distances from mutated residues to flavin mononucleotide (FMN) atoms
or to the closest atoms of the associated monomer of the RdxA dimer were
also calculated using Swiss-Pdbviewer. Solvent exposure of mutated resi-
dues was calculated using the ProtSA server (37). Proteins encoded by
genes with insertion, deletion, or nonsense (stop) codon mutations were
not modeled. Individual point mutations at the protein surface and far
from the FMN group and dimer interface were considered to be neutral
and did not affect RdxA function. Mutations resulting in small to large
residue replacement at the protein core or leading to the loss of hydrogen
bonds between apoprotein and FMN, the burial of polar or charged resi-
dues, or the replacement of Gly residues exhibiting dihedral angles not
allowed to other residues were regarded as structurally disruptive and thus
potentially causing the loss of RdxA function.
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Statistical analysis. Comparisons of antimicrobial resistance in
strains from children versus adults, males versus females, and the distri-
bution of rdxA nonsense mutations in different groups of strains were
determined using the Fisher exact test; a P value of �0.05 was considered
significant.

RESULTS

Of the 64 strains tested for Mtz susceptibility, 20 (31.2%) were
sensitive (single cells unable to form colonies) on medium with
Mtz at 8 �g/ml, and 44 (68.8%) were resistant. All six strains from
infants (18 to 31 months old) were sensitive to this modest level of
Mtz, whereas only 14 (24%) of 58 strains from adults were sensi-
tive (P � 0.0031; Table 1). The prevalence of Mtz resistance in
males versus females was 66% versus 72%, respectively (P � 0.05;
Table 1 and Fig. 1).

All but 3 of the 44 strains that were resistant to 8 �g of Mtz/ml
also grew well on medium with 16 �g of Mtz/ml. In addition, 28 of
these strains also grew on medium with 32 �g of Mtz/ml; and 2 of
the 28 grew on medium with 64 �g of Mtz/ml. None of our 44
strains grew on medium with 128 �g of Mtz/ml (Fig. 2).

In further tests of strains that did not grow with 8 �g of Mtz/ml,
2 of the 6 representative strains from infants (18 to 31 months
old), and 2 of 14 representative strains from adults grew on me-
dium with only 4 �g of Mtz/ml.

rdxA (nitroreductase) gene analysis. A transformation test
was used to determine whether Mtzs strains were distinct meta-
bolically from most susceptible reference strains in requiring

more than just rdxA inactivation to achieve Mtz resistance (16–
18). Eleven Mtzs strains were transformed with genomic DNA
from a derivative of strain 26695 whose rdxA gene had been re-
placed with a chloramphenicol-resistant (Camr) cassette (�rdxA-
cat). Each of the 10 to 20 Camr transformant colonies tested from
each of the 11 strain transformations grew well on agar with 8 �g
of Mtz/ml. This outcome indicates that most or all Mtzs Gambian
H. pylori strains are just one mutational (rdxA inactivation) step
away from becoming resistant. In a converse experiment, we
tested whether mutation in rdxA was important for the resistance
of Mtzr Gambian strains. This entailed transforming 12 represen-
tative Mtzr strains with genomic DNA from an H. pylori strain
containing a kanamycin-resistant (Kanr) cassette inserted next to
a functional rdxA gene. We expected that a fraction of Kanr trans-
formants would acquire the donor strain’s rdxA� (functional) al-
lele (38), even though most might retain the recipient rdxA mu-
tant allele because H. pylori transformation tends to involve
mostly short DNA fragments (39). At least 2 of the 20 to 30 Kanr

transformants scored from each of 12 Mtzr recipient strains were
found to be Mtzs on agar with 8 �g of Mtz/ml, even though most
Kanr transformants remained Mtzr. We infer that these few Kanr

Mtzs transformants had gained the donor’s functional rdxA allele
and thereby conclude that rdxA inactivation is needed for most or
all Mtzs Gambian H. pylori strains if they are to become Mtzr.

Sequence comparison of rdxA from Mtzr and Mtzs strains.
The rdxA gene was PCR amplified and sequenced from 33 Mtzr

(MIC range, 8 to 32 �g/ml) and 18 Mtzs Gambian strains (MIC �
8 �g/ml). The average rdxA sequence diversities were 3.6% in Mtzr

strains and 3.4% in Mtzs strains (3.5% overall), which is within the
range of diversities among Gambian strain housekeeping genes
(range, 1.2 to 4.6%; mean, 2.9%), and whose protein products also
act internally in these Gambian strains (O. Secka, unpublished
data).

Of the 33 Mtzr strains characterized, 15 (45.5%) contained
nonsense (translation stop) codons within the rdxA orf, including
13 of the 19 resistant to 32 �g of Mtz/ml; in contrast, only 2 of the
14 isolates with lower-level resistance (8 to 16 �g/ml) contained
nonsense mutations in rdxA (P � 0.004, Table 2). This difference
in distribution is in accord with nonsense mutations causing pro-
tein truncation and thus a complete loss of RdxA function. Some
missense mutations diminish but do not entirely eliminate an en-

TABLE 1 MICs for Mtz against H. pylori isolated from males versus
females

Subject group Sex

No. of subjects

Mtz MIC (�g/ml)

Total�8 8 16 32 64 128

Adult Male 8 2 8 12 1 0 31
Female 6 1 5 14 1 0 27

Infant Male 4 0 0 0 0 0 4
Female 2 0 0 0 0 0 2

Total 20 3 13 26 2 0 64

FIG 1 Prevalence of antibiotic-resistant isolates in males and females.

FIG 2 Number of isolates growing on metronidazole medium. The numbers
of isolates that formed colonies on different levels of metronidazole medium
were determined and graphed.
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coded protein’s activity and thus would confer only leaky pheno-
types (lower-level Mtz resistance in the case of rdxA), whereas
many others would be well tolerated and have little if any effect on
activity of the encoded protein.

Three of 33 Mtzr (9.0%) strains had insertions of one or two
nucleotides and thereby rdxA frameshift mutations, which would
result in new amino acid sequences distal to the mutant site and
thereby loss of rdxA function. In addition, two strains contained
in-frame deletions of 3 and 21 nucleotides, which do not cause
changes in RdxA protein sequences distal to the mutant sites.
Thirteen of 33 (39%) Mtzr strains had neither translation stop nor
indel mutations in rdxA, but their rdxA alleles differed from those
in Mtzs strains by numerous substitutions. Consideration of
translation products in terms of H pylori RdxA protein’s recently
reported tridimensional structure (32) (PDB ID 3QDL) identified
nine substitutions found only in Mtzr strains (S43L, P44L, and
G163D [each in two strains] and A80I, A80T, C87Y, S158R,
G189C, and A206T [each in one strain]) that are likely to have
decreased RdxA function due to effects on stability, dimerization,
and FMN binding and also indicated that the many other differ-
ences might not interfere with these best understood of RdxA
protein’s functional properties. One substitution found in Mtzr

strains, R16H, that should decrease FMN binding affinity was also
found in an Mtzs strain.

The basis of Mtz resistance in two strains (127R and 104R,
MIC � 32 �g/ml) is not clear from RdxA structure consider-
ations. Their 210-residue RdxA proteins differ at many positions
from the RdxA protein whose structure was determined (Hp0954
of reference strain 26695). However, all of the differences present
in strain 127R (D59N, R90K, G98S, R131K, V172I, A183V,
Q197K, and V204I) and most (Q6H, D59N, R90K, G98S, R131K,
E133K, G170S, V172I, E175Q, A183V, E194K, Q197K, and

V204I) in 104R were also present in many other resistant and
susceptible strains and thus may not perturb function. We inter-
pret that most of these differences simply reflect neutral mutations
in accord with H. pylori’s great genetic diversity. None of the three
mutations that were specific to 104R (E133K, G170S, and E194K)
is expected to affect RdxA function because they appeared on the
protein surface far from the FMN binding site. Thus, why strains
127R and 104R were resistant is not obvious: possibly their par-
ticular combinations of changes in RdxA diminished function
(conferred resistance), or these strains might have polar muta-
tions in the upstream DNA that we did not sequence.

Among the 18 rdxA sequences from Mtzs strains, 3 (17%) had
internal stop codons (Table 2), and 3 others had point mutations
that also might lead to rdxA inactivation, R16H (in one strain)
because it should decrease RdxA affinity for FMN=s negatively
charged phosphate and A67V (in two strains) because it entails
replacement of small alanine by bulky valine in the protein core,
although direct tests are needed to learn how severely this replace-
ment affects protein stability and function. If these mutations do
indeed cause rdxA inactivation, the Mtzs phenotypes might stem
from high-level frxA expression (16, 18); the possibility of non-
sense suppressor mutant tRNAs in certain strains also merits con-
sideration. The nonsense mutations between Mtzs and Mtzr

strains to 32 �g of Mtz/ml was significant (P � 0.0025, Table 2);
however, overall, the nonsense mutations between Mtzs and Mtzr

strains was not (P � 0.065, Table 2).
Fifteen substitutions were found only in Mtzr isolates (H25R,

S43L, P44L, A80I, A80T, C87Y, H97T, E133K, S158R, G163D,
G170S, G189C, E194K D205A, and A206T), which suggests that
some of them might decrease RdxA function. Conversely, five
were only found in Mtzs isolates (S30G, T31A, A67V, A68V, and

TABLE 2 rdxA nonsense and frameshift mutationsa

Strain Concn (�g/ml) Frameshift Mutation description (base position)b Mutation (codon, base position)c

Mtzr

71R 32 0 Substitution* (523), C¡T or G¡T Stop codon (175, 523)
83R 32 �1 Insertion (576) Stop codon (205, 613)
93R 32 0 Substitution (415), C¡T Stop codon (139, 415)
100R 32 0 Substitution* (523), C¡T or G¡T Stop codon (175, 523)
114R 32 0 Substitution (19), G¡T Stop codon (7, 19)
115R 32 �1 Deletion (496) Stop codon (167, 499)
121R 16 �2 Insertion (6,7) Stop codon (14, 40)
123R 32 �1 Insertion (23) Stop codon (23, 67)
205R 32 �1 Insertion (595) Stop codon (205, 613)
239R 8 �1 Insertion (313) Stop codon (110, 328)
244R 32 �7 Deletion �7 (179) Stop codon (74, 220)
249R 32 �5 Insertion �5 (178) Stop codon (64, 190)
263R 32 �1 Insertion (193) Stop codon (73, 217)
269R 32 �1 Deletion (191) Stop codon (76, 226)
270R 32 �1 Insertion (193) Stop codon (74, 220)

Mtzs

JS114S �8 �4 Insertion �4 (300) Stop codon (111, 331)
JS124S �8 �4 Insertion �4 (300) Stop codon (111, 331) frameshift �4
101S �8 �1 Deletion (86) Stop codon (33, 97)

a Not listed in this table are other Mtzr strains that contained a 3-nucleotide deletion at codon 191, a 21-nucleotide (7-codon) deletion starting at codon 18, or the many missense
mutations that resulted in amino acid differences in the encoded protein relative to rdxA of reference strain 26695. These amino acid replacements are shown in Fig. S1 in the
supplemental material.
b *, A total of 17 isolates have a “C” and 14 isolates have a “G” at position 523 (see Fig. S1 in the supplemental material).
c The complete RdxA protein is 210 amino acids long.
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Q197R) and thus might be neutral (of these five, only A67V is
suspected of decreasing RdxA function, as noted above).

Susceptibility of Gambian strains to other antibiotics. All 64
of our Gambian H. pylori cultures grown directly from gastric
biopsy specimens were found to be highly sensitive to the closely
related macrolides Cla and Ery. All cultures were also Tets and
Amos (Table 3), although one and four of them contained rare
Amor and Tetr cells able to grow on medium with 2 �g of Amo or
Tet/ml, respectively (frequencies of 10�3 to 10�4). Further tests of
one Tetr colony from each of these unusual Tetr subclone-con-
taining cultures showed that their MICs ranged from 2 to 4 �g of
Tet/ml and that each was indistinguishable by RAPD-DNA finger-
printing from the predominant Tets strains from the same biopsy
specimen (data not shown). These four sets of strains were not
closely related to one another, as expected, since they came from
different persons. We found that the PCR-amplified 16S rRNA
gene of each Tetr strain was identical in sequence to that of its Tets

sibling from the same biopsy specimen. We conclude that in each
of these four cases, Tet resistance is due to mutation in a gene
distinct from that for 16S rRNA.

DISCUSSION

H. pylori infection contributes importantly to several human dis-
eases in both developing and industrialized countries and directly
impacts on health care systems worldwide. Its public health im-
pact is of particular concern in developing countries because the
prevalence of infection is so very high (1, 2).

Here, we scored susceptibility and resistance to clinically rele-
vant anti-H. pylori agents using a test of efficiency of colony for-
mation by single cells. This test is especially useful for scoring
susceptibility to Mtz because Mtz can be both mutagenic and bac-
tericidal; it both induces and selects for resistance mutations (15,
16, 18). We found that more than two-thirds of Gambian H. pylori
strains were Mtzr. This high prevalence can be explained by the
relative low cost and easy availability of Mtz in The Gambia, as is
typical of developing countries worldwide. Our results are in ac-
cord with other reports of many Mtzr strains elsewhere in Africa
(Senegal, Nigeria, South Africa Cameroon, and Egypt) (40–44),
India, and Latin America (45, 46). Typically, somewhat less than
half of H. pylori strains from Europe and North America have been
found to be Mtzr (22), likely reflecting the tighter control of Mtz
usage in industrialized than in developing countries. Our obser-
vation that all six strains from infants (18 to 31 months of age)
were sensitive to 8 �g of Mtz/ml, in contrast to 24% of those from
older people (�14 years) (P � 0.003), also merits further exami-

nation, especially in light of the possibility that rdxA function
might contribute to fitness during the establishment of infection.

Prior studies with other sets of strains had shown that Mtz
resistance typically involves inactivation of rdxA, which encodes a
nitroreductase that converts Mtz from prodrug to bactericidal
agent by chemical reduction. However, H. pylori strains also con-
tain a related gene, frxA, which also confers Mtz susceptibility if
highly expressed, independent of rdxA status (16, 43). Our DNA
transformation studies indicated that each of 11 Mtzs Gambian
strains tested required only rdxA inactivation to gain a Mtzr phe-
notype and, conversely, that resistance involved rdxA inactivation
in each of the 12 Mtzr strains tested.

Sequence analysis of rdxA genes from our strains identified
loss-of-function mutations that should cause Mtz resistance sim-
ilar to those found in previous studies (16, 18, 47). In particular,
rdxA nonsense (stop codon) mutations were more common in
strains with moderate level resistance (32 �g/ml) than in strains
with lower-level resistance (8 to 16 �g/ml), in agreement with
other findings (16, 18, 47). However, 3 of 18 Mtzs strains had
rdxA-null nonsense mutations, and 3 others had point mutations
that also possibly might result in inactive RdxA proteins. These
observations are consistent with other reports (16, 18, 48, 49) that
rdxA inactivation need not always lead to Mtz resistance and can
be explained by postulating higher-level expression of the related
frxA nitroreductase gene (16, 18).

We also found that most Mtzr strains had mutations scattered
across the rdxA gene that are not likely to contribute to their re-
sistant phenotype. This is in accord with H. pylori’s well-known
great sequence diversity, seen here in the rdxA gene.

Increasingly frequent Cla resistance, up to one-fourth or more
of H. pylori strains, has been reported in Europe and North Amer-
ica (21, 22). High prevalence, where encountered, has been attrib-
uted to use of macrolides to treat respiratory infections (22, 50–
52). In The Gambia, Ery is now routinely used to treat lower
respiratory tract and skin infections. However, we found no resis-
tance to Cla or Ery in the 64 H. pylori isolates we tested.

Tet and Amo are also much used. Tet, especially, is inexpensive
and readily available in local drug stores in The Gambia, often
without prescription. However, its easy availability did not result
in much resistance in Gambian H. pylori strains: Tetr strains were
recovered from pooled cultures from only four patients and then
only as very rare cells in the population. This outcome is in accord
with the rarity of Tet resistance in H. pylori from other parts of the
world (22, 53). None of our four Tetr strains had mutational
changes in the several allowed positions in the 16S rRNA Tet bind-
ing pocket that can result in modest Tet resistance (23, 25). Thus,
by default, their resistances are likely to stem from mutations in
other loci—a class of mutations previously interpreted as more
easily achieved but also likely to diminish H. pylori fitness (23). We
propose that the low probability of mutation at just a few specific
rRNA sites and the low fitness conferred by Tet resistance muta-
tions in other genes explains the rarity of Tetr H. pylori, despite
considerable exposure, in The Gambia. Resistance to Amo was
also very rare in Gambian strains, much as has been reported for
other geographic regions (22, 53).

Conclusion. The increased prevalence of resistance to antibi-
otics used against H. pylori is of great concern, especially in devel-
oping countries where the costs of even the least expensive first
line drugs are a burden to average citizens. This contributes to the
urgency of monitoring antibiotic resistant strain frequencies to

TABLE 3 Susceptibility of Gambian H. pylori strains to amoxicillin,
clarithromycin, erythromycin, and tetracycline

MIC (�g/ml)

No. of susceptible strainsa

Amo Cla Ery Tet

�2 64 64 64 64
2 0 0 0 0
8 � � � �
16 � � � �
32 � � � �
64 � � � �
128 � � � �
a �, strains sensitive at 2 �g/ml were not tested at higher concentrations (8 to 128
�g/ml).
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help clinicians effectively manage patients and their antibiotic reg-
imens and to effectively deal with treatment failure. The rich rep-
ertoire of rdxA mutations found in our many Gambian H. pylori
strains should be useful for future studies of RdxA structure and
function, of how RdxA and its FrxA homolog make H. pylori sus-
ceptible to prodrugs such as Mtz, and of the roles of these two
nitroreductase enzymes in H. pylori’s central metabolic networks.
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