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Hypermutable (HPM) strains of Pseudomonas aeruginosa have been found at high frequencies in cystic fibrosis (CF) pa-
tients in Europe. We report the results of testing for HPM frequencies, mutator genotype, and antimicrobial resistance of
P. aeruginosa strains from Brazilian CF patients. A modified disk diffusion technique was used to quantify antibiotic-re-
sistant subpopulations of an isolate, and estimations of the frequency of mutation to rifampin resistance were determined
for 705 isolates from 149 patients attending clinics in two Brazilian cities. Mutations in the mutS gene were detected by
sequencing assays. We found 194 (27.5%) HPM isolates in samples from 99 (66.4%) patients. Thirty-five HPM isolates
(18.0%) from 31 (31.3%) patients exhibited a high increased spontaneous mutation rate compared with controls, and eight
isolates from six patients displayed a defective mutS gene. The dominant HPM population was associated with very low
antibiotic resistance levels, while HPM subpopulations were generally more resistant to antimicrobials. A relatively high
prevalence of HPM P. aeruginosa in CF patients was associated with surprisingly low antibiotic resistance levels, in con-
trast to some earlier studies.

Pseudomonas aeruginosa is commonly associated with the
chronic, progressive lung disease that is the leading cause of

morbidity and mortality in cystic fibrosis (CF) patients (1). Dur-
ing the course of infection, isolates of P. aeruginosa undergo a
series of profound genotypic and phenotypic changes to adapt to
the CF lung environment, and they promote their survival by
maximizing diversity in cell populations. Hypermutation (HPM)
in specific regions of the genome is one of the mechanisms used
for this purpose and may confer fitness benefits for colonization of
anatomical niches (2). It has been shown that 37% to 54% of CF
patients chronically infected with P. aeruginosa harbor isolates
with a hypermutator phenotype, as defined by an increased spon-
taneous frequency of mutations (3–5). HPM strains usually ex-
hibit alterations in genes participating in DNA error avoidance
systems (6), and the majority of these strains from CF patients are
deficient in the mismatch repair system (MRS), with the mutS
gene being most frequently affected (3, 4, 7). The MRS is a major
barrier to interspecies recombination events. Removal of this bar-
rier also enhances the frequency of horizontal gene transfer, which
is an important mechanism of acquired drug resistance in bacteria
(8). Maciá and collaborators (4) proposed that the presence of
subpopulations of resistant mutant colonies growing in the zone
of inhibition of particular antibiotics could be used as a screening
test to detect HPM.

An association between high antibiotic resistance rates of P.
aeruginosa in CF patients and the presence of a high proportion of
HPM strains has been repeatedly documented (3, 4, 7, 9), but
there is no consensus as to whether there is a causative link be-
tween increased antimicrobial resistance and hypermutability.

We report here the results of a survey of P. aeruginosa isolates
from CF patients in three CF reference centers in two Brazilian
cities with respect to their mutator frequencies, mutator geno-
types, and correlations with antimicrobial resistance.

MATERIALS AND METHODS
Patients and clinical samples. From 2002 to 2008, P. aeruginosa isolates
representing different colony morphotypes (mucoid, nonmucoid, pig-
mented, and nonpigmented) were selected from sputum culture from 51
pediatric and 78 adult CF patients attending the CF Reference Center in
Porto Alegre (CFRCPA) in southern Brazil and 14 pediatric and six adult
CF patients attending two different CF Reference Centers in Rio de
Janeiro (CFRCRJ). These cities are located 1,500 km apart and represent
two of the main CF centers in Brazil. The inclusion criteria for patients
were chronic pulmonary infection by P. aeruginosa, defined as the contin-
uous presence of this microorganism in sputum over 1 year prior to the
study or at least three P. aeruginosa-positive cultures all separated by more
than 1 month during the study period. A series of isolates from individual
patients collected on a regular basis were also evaluated. Isolates were
identified by conventional standard tests and the API 20NE system (bio-
Mérieux, Marcy l’Etoile, France).

Susceptibility testing and detection of HPM isolates. Inhibition zone
diameters were determined for ceftazidime (CAZ, 30 �g), ciprofloxacin
(CIP, 30 �g), imipenem (IPM, 10 �g), meropenem (MEM, 10 �g), and
tobramycin (TOB, 10 �g) (Oxoid, Basingstoke, United Kingdom) using
the disk diffusion method according to the CLSI (10). Hypermutable
isolates were detected as described by Maciá et al. (4). Briefly, the presence
or absence of resistant subpopulations within the inhibition zones, and
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the smallest inhibition zone diameters were recorded after 12 h. Isolates
showing a reduced inhibition zone diameter of �5 mm for at least three
antibiotics, with the exception of TOB, for which the presence of any
mutant colony was considered, were defined as HPM. Colonies of this
subpopulation were retested after growth in antibiotic-free medium to
confirm the stability of the resistance phenotype and to exclude the pos-
sibility that they were a consequence of antibiotic inactivation during the
incubation period. P. aeruginosa PAO1 and P. aeruginosa ATCC 27853
were used as quality controls for the procedure.

Phenotypic determination of mutation frequency. Isolates classified
as HPM as described above were analyzed by the mutation frequency
estimation method of Oliver et al. (3). Briefly, independent triplicate
10-ml Mueller-Hinton broth (MHB) overnight cultures were pelleted
and resuspended in 1 ml MHB, and serial 10-fold dilutions were pre-
pared in sterile saline. Volumes of 100 �l of each dilution were plated
on Mueller-Hinton agar (MHA) with and without 300 �g of rifampin/
ml. After 36 h of incubation, colonies were counted and the mean
frequency of mutants was estimated. A positive HPM control strain
(RH04000003-2) was kindly supplied by Joanne L. Fothergill, Univer-
sity of Liverpool, United Kingdom.

Isolates were classified according to the frequency of mutation (f) pro-
posed by Ciofu and collaborators (5) in three categories: strongly in-
creased spontaneous frequency of mutation (SISf) when f was �2 � 10�7,
weakly increased spontaneous frequency of mutation (WISf) when f was
�2 � 10�7 and �2 � 10�8, and nonincreased spontaneous frequency of
mutation (NISf) when f was �2 � 10�8.

Genotypic determination of mutS gene mutation. The isolates clas-
sified as SISf were analyzed by sequencing of the mutS gene as described by
Kenna et al. (11). DNA was amplified in an Eppendorf MasterCycler Gra-
dient thermal cycler (Eppendorf, Inc., Hamburg, Germany). PAO1 was
used as a positive control for PCR, and the negative control consisted of a
PCR mix without DNA. PCR products were purified using the ExoSAP-IT
purification kit (GE Healthcare, Piscataway, NJ).

PCR products were sequenced using both forward and reverse primers
in a Beckman Coulter CEQ 8000 system (Beckman, High Wycombe,
United Kingdom) and ABI-PRISM 3100 genetic analyzer (Applied Bio-
systems, Foster City, CA). Sequencing data were collected using the soft-
ware Data Collection v1.0.1 (Applied Biosystems). DNA sequences were
analyzed using BioNumerics software (Applied Maths, St. Marten-Latem,
Belgium). Sequences were compared to the published PAO1 genome se-
quence (GenBank accession no. NC002516 or Pseudomonas Genome Da-
tabase V2) in BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html).

Metallo-beta-lactamase detection. PCR was performed to detect the
more prevalent metallo-beta-lactamases genes blaSPM-1, blaIMP-1, and
blaVIM-2 as described by Gales et al. (12) and Senda et al. (13) for all
isolates with reduced susceptibility to imipenem and/or meropenem. P.
aeruginosa SPM-1 (48-1997A), IMP-1 (PSA 319), and VIM-2 (AG-2)
strains were used as positive controls for blaSPM-1, blaIMP-1, and blaVIM-2,
respectively, and the negative control consisted of PCR mix without DNA.

Ethical aspects. The bacterial isolates were obtained from clinical
specimens sent for routine culture in the Microbiology Unit of Hospital
de Clínicas de Porto Alegre and Laboratório de Bacteriologia of Hospital
Universitário Pedro Ernesto. The information was compiled in such a way
as to respect the privacy of patients; written informed consent for partic-
ipation in the study was obtained from participants or, where participants
were children, from a parent or guardian. This study was approved by the
Ethics Committee in Research of the Hospital de Clínicas de Porto Alegre
(project number 06-406) and by the Committee on Ethical Practice of the
Hospital Universitário Pedro Ernesto (approval 1.118-CEP-HUPE).

RESULTS

In total, 526 isolates of P. aeruginosa from 129 CF patients (mean,
4 isolates/patient) from CFRCPA and 179 isolates from 20 CF
patients (mean, 8 isolates/patient) from CFRCRJ were studied.
One hundred fifty-one (28.7%) isolates from 82 (63.6%) CFRCPA
patients and 43 (24.0%) isolates from 17 (85.0%) CFRCRJ pa-
tients were classified as HPM. Therefore, 194 (27.5%) isolates
from 99 (66.4%) patients attending the three centers in two Bra-
zilian cities proved to be HPM. Most HPM isolates were obtained
from pediatric patients (13/17 patients at CFRCRJ and 43/82 pa-
tients at CFRCPA).

Classification of HPM isolates according to the frequency of
mutation (f) revealed 35 (18.0%) isolates with an increased spon-
taneous mutation rate (SISf or WISf) from 31 (31.3%) CF pa-
tients. A total of 30 (19.9%) isolates were from 27 (32.9%) patients
and five (11.6%) were from four (23.5%) patients with increased
spontaneous mutation rates attending CFRCPA and CFRCRJ, re-
spectively (Table 1).

Sequencing of the mutS gene from isolates classified as SISf
showed several synonymous (silent) substitutions in one or more
loci of this gene, as well as mutations responsible for amino acid
changes, due to base substitution. Alignment studies of the mutS
gene revealed alterations in amino acids in five isolates from four
patients and in three isolates from two patients attending
CFRCPA and CFRCRJ, respectively (Table 1). The mutS gene mu-
tation positions were variable for each isolate and corresponded to
different nucleotide and amino acid changes (see Table S1 in the
supplemental material). It is noteworthy that 6 of the 8 SISf iso-
lates (from 6 different patients) with mutS mutations belonged to
different clones according to pulsed-field gel electrophoresis
(PFGE) molecular typing.

The susceptibility profile of the dominant (unselected) popu-
lation from HPM isolates for CAZ, CIP, IMI, MEM, and TOB in
patients attending CFRCPA and CFRCRJ revealed very low resis-

TABLE 1 Hypermutable, frequency of mutation, and mutS mutation prevalences of Pseudomonas aeruginosa isolates from Brazilian CF patients

Characteristic

No. (%) positive

At CFRCPA At CFRCRJ Total

Isolates Patients Isolates Patients Isolates Patients

HPM 151 (28.7) 82 (63.6) 43 (24.0) 17 (85.0) 194 (27.5) 99 (66.4)
Non-HPM 375 (71.3) 47 (42.0) 136 (76.0) 3 (15) 511 (72.5) 50 (33.5)
SISf 9 (6.0) 7 (8.5) 3 (7.0) 2 (11.8) 12 (6.2) 9 (9.1)
WISf 21 (13.9) 20 (24.4) 2 (4.7) 2 (11.8) 23 (11.9) 22 (22.2)
NISf 121 (80.1) 55 (67.1) 38 (88.4) 13 (76.4) 159 (81.9) 68 (68.7)
mutS mutation 5 (55.6) 4 (57.1) 3 (100) 2 (100) 8 (66.7) 6 (66.7)

HPM, hypermutable isolates; SISf, strong increased spontaneous frequency of mutation; WISf, weak increased spontaneous frequency of mutation; NISf, non increased
spontaneous frequency of mutation; CFRCPA, Cystic Fibrosis Reference Center in Porto Alegre; CFRCRJ, Cystic Fibrosis Reference Center in Rio de Janeiro.
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tance to all antibiotics tested, and this was particularly striking at
CFRCRJ, where resistance only to CAZ was observed (4.6%)
(Table 2). However, a comparison of the profile of susceptibility to
these antibiotics in the dominant population with that in the sub-
population selected by the Maciá test showed the latter to be
markedly more resistant to all antibiotics tested (Table 2).

We found 78 (14.8%) P. aeruginosa strains from 28 (21.7%)
patients attending CFRCPA and six (3.3%) isolates from four
(20%) patients attending CFRCRJ, totaling 84 (11.9%) isolates
from 32 (21.4%) patients, to be resistant to imipenem and/or
meropenem. Ten of these isolates from seven CFRCPA patients
were HPM. All carbapenem-resistant isolates were subjected to
PCR for blaSPM-1, blaIMP-1, and blaVIM-2 genes, and only one isolate
(non-HPM) harbored the blaSPM-1 gene.

The presence or absence of the mucoid phenotype was re-
corded at first isolation from the patient, and this phenotype was
observed in 58 (38.4%) of HPM isolates from 34 (41.5%) of
CFRCPA patients, while 190 (50.7%) of non-HPM isolates from
69 (61.6%) of CFRCPA patients exhibited this phenotype. For
CFRCRJ patients, 19 (44.1%) HPM isolates from 11 (55%) pa-
tients were mucoid, and so were 28 (20.6%) of non-HPM isolates
from 16 (80%) of CFRCRJ patients. There was no statistical cor-
relation between HPM and mucoid phenotype (P � 0.131).

DISCUSSION

Over the last decade, several in vitro and in vivo experiments have
shown that mutator phenotypes (HPM) confer an evolutionary
advantage to bacteria exposed to new, stressful, or fluctuating en-
vironments, by the increase of adaptive mutations (14). These
mutators have been observed particularly in P. aeruginosa from
CF patients with significantly worse lung function (15). This study
found a lower prevalence (27.5%) of HPM isolates among CF
Brazilian patients than among CF patients in Spain (37%) (4). The
higher prevalence of HPM in the latter appeared to be associated
with P. aeruginosa with high antibiotic resistance rates recovered
from the chronic stage of pulmonary infection in these patients (3,
4, 7, 9). In contrast to the Spanish study, we found a relatively high
prevalence of HPM (24.0%) in patients attending the two centers
in Rio de Janeiro, but antimicrobial resistance rates were very low
or nonexistent. CF patients attending a larger clinic in Porto
Alegre showed a higher prevalence of HPM (28.7%), but antimi-
crobial resistance was more common. A poor correlation between

resistance and hypermutable phenotype was found in pediatric
patients (15), and as most of the Brazilian CF patients included in
this study were children and harbored mainly strains with antibi-
otic-susceptible phenotypes, one might expect a lower prevalence
of HPM. It is noteworthy that the subpopulations of our HPM
isolates generally proved to be more resistant to all antibiotics
tested than the dominant (unselected) population, which is con-
sistent with the results of others studies (3, 4, 9). Molecular typing
by PFGE of isolates from different CF patients proved that HPM
isolates belonged to different clones (data not shown).

In keeping with results obtained by Maciá et al. (9), we did not
find a statistically significant association between expression of
mucoid phenotype and HPM status.

Metallo-beta-lactamases (MBL) have been reported with in-
creasing frequency worldwide, and blaSPM-1 and blaIMP-1 genes
have been documented to be more frequent among Brazilian P.
aeruginosa isolates (12, 16, 17). Nevertheless, we found an MBL
gene (blaSPM-1) in only one carbapenem-resistant CF isolate. Re-
ports of MBL among CF P. aeruginosa are sparse but indicate a low
prevalence of these carbapenemases (18, 19). This supports the
view that carbapenem resistance mechanisms in CF P. aeruginosa
are not solely due to widespread metallo beta-lactamases.

We were able to detect mutations in the mutS gene in HPM CF
isolates with strong increased spontaneous mutation rates, con-
firming that the hypermutation phenomenon is usually associated
with mismatch repair mutations, as previously described (7, 9,
11). Nevertheless, it has been suggested that other genes may also
be associated with HPM (11).

In conclusion, we were able to demonstrate a relatively high
prevalence of HPM isolates in Brazilian CF patients, although
most of these isolates had very low antibiotic resistance levels,
particularly those from Rio de Janeiro. In addition, the mutations
found in the mutS gene support the view that hypermutation in P.
aeruginosa is usually associated with mismatch repair mutations.
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