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PARV4 is a small DNA human virus that is strongly associated with hepatitis C virus (HCV) and HIV infections. The immuno-
logic control of acute PARV4 infection has not been previously described. We define the acute onset of PARV4 infection and the
characteristics of the acute-phase and memory immune responses to PARV4 in a group of HCV- and HIV-negative, active intra-
venous drug users. Ninety-eight individuals at risk of blood-borne infections were tested for PARV4 IgG. Gamma interferon en-
zyme-linked immunosorbent spot assays, intracellular cytokine staining, and a tetrameric HLA-A2–peptide complex were used
to define the T cell populations responding to PARV4 peptides in those individuals who acquired infection during the study.
Thirty-five individuals were found to be PARV4 seropositive at the end of the study, eight of whose baseline samples were found
to be seronegative. Persistent and functional T cell responses were detected in the acute infection phase. These responses had an
active, mature, and cytotoxic phenotype and were maintained several years after infection. Thus, PARV4 infection is common in
individuals exposed to blood-borne infections, independent of their HCV or HIV status. Since PARV4 elicits strong, broad, and
persistent T cell responses, understanding of the processes responsible may prove useful for future vaccine design.

PARV4 is a small, nonenveloped single-stranded DNA virus of
the Parvoviridae family that has been commonly associated

with parenteral transmission (1–4). The PARV4 genome contains
two open reading frames that encode a nonstructural (NS) and a
capsid (VP) protein. Though PARV4 is generally absent from
healthy individuals in western countries, 8 to 30% of hepatitis C
virus (HCV)-infected individuals have been found to be PARV4
DNA or IgG positive (2, 4–8). This level can reach up to 95%
among HIV- and HCV-coinfected individuals (9). Despite the
growing body of evidence emerging on the prevalence of PARV4
exposure in remotely infected cohorts, relatively little is known
about the features that accompany acute acquisition of PARV4 in
such at-risk cohorts (3, 10–12).

We previously analyzed the immune responses to PARV4 and
described a striking T cell response to the NS protein in HCV� and
HIV� individuals (13). However, this analysis was cross-sectional
and the time point of infection was not known in these cases.
Additionally, we were interested in studying PARV4 infection in-
dependently of other coinfections. Therefore, we subsequently
sought a cohort of individuals who were HCV and HIV-1 negative
but had a risk of acquiring PARV4 so that we could study acute
acquisition of the virus and the evolution of immune responses in
relation to viremia and seroconversion.

We describe here a rare cohort of active intravenous drug users
(IDUs), both HIV and HCV negative, who acquired PARV4 dur-
ing the period they were under study. Because of the detailed na-
ture of the study, with monthly follow-up over several years, it was
possible to precisely identify the time of PARV4 seroconversion.
We describe here the incidence of PARV4 in this cohort and the
duration of viremia and characterize the humoral and cellular
immune responses in the acute phase of PARV4 infection through
the analysis of longitudinal plasma and peripheral blood mono-
nuclear cell (PBMC) samples. Our findings confirm a transient
detectable viremia in the acute phase of disease that is associated
with early seroconversion but a late evolution of T cell responses.

MATERIALS AND METHODS
Patient cohort and study design. This study was approved by the Johns
Hopkins School of Medicine Institutional Review Board. Informed pa-
tient consent was obtained from 98 HCV- and HIV-negative active IDUs
from the Baltimore Before-and-After Acute Study of Hepatitis (BBAASH)
to have blood drawn for isolation of plasma and PBMCs in a protocol
designed for monthly follow-up. These individuals were between 15 and
30 years of age and acknowledged the use of injection drugs (14). These
individuals were selected from the BBAASH cohort according to the fol-
lowing criteria: that they remain HIV and HCV uninfected during the
course of the study and that they be followed up for 24 months or more. At
enrolment, the time of intravenous drug use was less than 2 years for 90%
of the individuals. Figure 1 illustrates the design of this study.

Serological screening. Plasma samples were screened for anti-PARV4
IgG as previously described (4). Seroconversion in this study refers to
PARV4 IgG status. Levels of anti-PARV4 IgG over time were assessed by
testing all available plasma samples from subjects BA1 to BA8 (median
time span, 33 months; range, 14 to 63 months). To normalize between
runs, net optical density readings of samples were converted to arbitrary
units by comparison to an anti-PARV4 VP2 reference serum of 100 arbi-
trary units/�l that was used throughout the study.

DNA extraction, PCR amplification, and viral loads. DNA was ex-
tracted from plasma samples from subjects BA1 to BA8 by using the All-
Prep DNA/RNA kit (Qiagen) according to the manufacturer’s instruc-
tions. Nested PCR assays for PARV4 VP and estimation of viral loads were
carried out as described elsewhere (3). The minimum length of viremia
was measured from the first day when PARV4 DNA was detected to the
last. The maximum duration of viremia was defined from the day after the
last DNA negative time point before viremia until 1 day before the next
DNA-negative time point.
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T cell assays. Gamma interferon enzyme-linked immunosorbent spot
(ELISpot) assays were carried out for individuals BA1 to BA8 by using
PARV4 NS peptides as previously described (13). Dimethyl sulfoxide and
concanavalin A (20 �g/ml; Sigma) were used as negative and positive
controls, respectively. All time points postseroconversion were tested, in-
cluding the time point prior to seroconversion (median time span, 11
months; range, 4 to 63 months). A cutoff of 55 spot-forming units (SFU)/
106 PBMCs per pool of peptides was considered positive, after the sub-
traction against the average background well, as defined previously (13).

Phenotypic analysis using the corresponding fluorochrome-conju-
gated tetramer complex HLA-A2 RMT–phycoerythrin (PE) was carried
out with samples from individuals BA1 (five samples spanning 22
months) and BA4 (four samples spanning 15 months), as they showed a T
cell response to previously defined epitope RMTENIVEV (13). Four
PBMC samples from BA1, spanning 22 months, were also tested by intra-
cellular cytokine staining (ICS) as described previously (13). Cells were
incubated with epitope RMTENIVEV for 5 to 6 h, and brefeldin A (2
�g/ml, Sigma) was added after 1 h of stimulation.

Cells were stained with live-dead marker (L10119), CD3-Pacific Or-
ange, CD4-QDot 605 (Invitrogen), CD8-Pacific Blue, CCR7-PECy7,
CD45RA-fluorescein isothiocyanate (FITC), perforin-FITC, granzyme B-
Alexa 700, PD-1–PECy7, gamma interferon (IFN-�)-Alexa Fluor 700,
MIP1-�–PE, tumor necrosis factor alpha (TNF-�)-PECy7, CD107a-
PECy5, interleukin-2 (IL-2)–allophycocyanin (APC; BD Pharmingen),

CD57-Pacific Blue, CD38-PerCPCy5.5, granzyme A-PerCPCy5.5 (Bio-
legend), and CD127-APC (MACS Miltenyi Biotech) antibodies. All sam-
ples were processed on a BD LSR II and analyzed by using FlowJo soft-
ware. Cells were gated on live CD3� lymphocytes unless otherwise
indicated. SPICE software was used to analyze single-cell function (15).

RESULTS
High prevalence of PARV4 infection and identification of acute
infection. Ninety-eight active IDUs that were HCV and HIV neg-
ative were tested for PARV4 infection. Plasma samples from the
latest time point studied were screened for anti-PARV4 IgG. Thir-
ty-five (36%) of the 98 were PARV4 seropositive (data not
shown). Thirty-three seropositive individuals (two were unavail-
able for further study) were also tested for these antibodies by
using the first sample available. Eight individuals (BA1 to BA8)
were IgG negative at the earliest time point and thus had serocon-
verted for PARV4 IgG during the study (Fig. 1 and Table 1).

The rate of PARV4 infection was deduced from the rates of IgG
seroconversion. Clinic attendance data were available for 60 indi-
viduals, 23 of whom were PARV4 seropositive at the end of the
study. Subjects attended the clinic for a mean time of 36 months
(range, 5 to 81 months), and more than 90% had been using

FIG 1 Study design of acute PARV4 infection in the BBAASH cohort. Shown is a schematic representation of the assays of samples from this cohort carried out
to assess the characteristics of the immune response to acute PARV4 infection.
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intravenous drugs for less than 2 years at enrolment. This trans-
lates to a total time of illicit drug use of 5 years (36 months plus 2
years). If it is assumed that these individuals acquired PARV4
through intravenous drug use, then 23/60 individuals were in-
fected with PARV4 over 5 years. This translates to an incidence
rate of (23/60)/5 per year, i.e., 7.6%/year overall. This can be dis-
sected into the rate of incidence at enrolment (25 IgG� individuals
out of 96, over 2 years of IDU), i.e., (25/96)/2 � 13%/year, fol-
lowed by eight new seroconverters over the 3 years of follow-up,
i.e., [8/(96 � 25)]/3 � 3.8%/year.

Serum samples collected before, at, and after seroconversion
were tested for PARV4 IgM. IgM was detected in six of these eight
individuals (Table 1), providing additional evidence of acute in-
fection. IgM was detected at only one time point in each individ-
ual, except for BA3, in whom IgM persisted for over 2 months
(Table 1).

Viremia duration was calculated by using the length of time
that viral DNA could be detected in the samples around the time
of seroconversion (see Materials and Methods). In those individ-
uals for whom such detailed longitudinal analyses were possible
(n � 4), viremia was estimated to have lasted between 32 and 104
days (range, 30 to 125 days). Viral loads were between 5 � 102 and
105 (median, 4.7 � 103)/ml of plasma (Table 1).

Acute-phase PARV4 infection elicits a strong humoral
and/or cellular immune response. Anti-PARV4 IgG levels were
tested at every time point available for subjects BA1 to BA8 and
were plotted relative to the date of seroconversion (Fig. 2A). Fol-
lowing seroconversion, IgG antibody titers rose rapidly to high
levels in all patients, with subjects BA2, BA3, BA7, and BA8 reach-
ing or exceeding levels detected in the reference serum (Fig. 2A).

Samples from all of these time points were tested for T cell
responses by IFN-� ELISpot assay with PARV4 NS peptide pools.
Several individuals showed strong, broad, and long-lasting T cell
responses to NS that reached 	1,000 SFU/106 PBMCs (Fig. 2B to
D and 3). T cell responses were consistently seen several years after
infection, as demonstrated in subject BA1, from whom all PBMC
samples but one were taken 3 years after seroconversion (Fig. 2D).
In this individual, T cell responses to peptides 2.3 (pool 2) and 3.6
(pool 3) and to the previously identified RMT epitope
(RMTENIVEV [13], pool 8), which triggered the highest T cell
response in this patient, were elicited (Fig. 2D). The detection of
epitope-specific cells (here described as RMT-specific cells) with
fluorochrome-conjugated tetramer complex HLA-A2 RMT in

subjects BA1 and BA4 confirmed that these RMT-specific cells are
maintained over years (Fig. 2E and F). RMT-specific cells repre-
sented 0.5 to 1.3% of the BA1 CD8� T cells (Fig. 2E) and 0.1 to
0.2% of the BA4 CD8� T cells (Fig. 2F). Although T cell responses
in subject BA4 tested by IFN-� ELISpot assay were observed at 5
months postseroconversion (mps), they had disappeared by 12
months (Fig. 2F, columns). However, they did reappear 2 months
later. This was confirmed through tetramer staining, as RMT-
specific cells were absent at 12 months but recovered to higher
levels 2 months later (Fig. 2F, line).

Though antibody levels were consistently high in all of our
individuals, there was more diversity in T cell responses, which
were strong in subjects BA1 and BA6 but weak in subjects BA3 and
BA7 (Fig. 3). PARV4 NS triggered a late T cell response in most of
the individuals that peaked at around 5 months after seroconver-
sion. No CD4� T cell responses were detected in response to
PARV4 NS, as seen in our previous study of chronic infection
(data not shown; 13).

PARV4 RMT-specific T cells have an effector memory, ma-
ture, and activated phenotype. Having confirmed the late evolu-
tion of a strong CD8� T cell response, we next addressed the
phenotype and functionality of these memory populations. RMT-
specific cells from patient BA4 were 53 to 62% CCR7� CD45RA�

(effector memory cells, TEM, Fig. 4A and B). RMT-specific cells
from patient BA1 also had an effector memory phenotype, but
that was more terminally differentiated and ranged from 65 to
76% CCR7� CD45RA� (effector memory CD45RA� cells,
TEMRA), throughout the course of study (Fig. 4A and B).

CD127 and CD57 were studied to assess antigen exposure and
cellular senescence, respectively. From 0.6 to 20% of the BA1 an-
tigen-specific cells were CD127� (Fig. 5A), and 2% of the BA4 cells
were CD127� (Fig. 5B). Because of limited samples, CD57 stain-
ing was carried out only with PBMCs from BA1. Antigen-specific
cells were 80 to 85% CD57� throughout the duration of the study
(Fig. 5A).

To test for T cell activation and exhaustion, RMT-specific cells
were stained for PD-1 and CD38, as well as the cytotoxic markers
perforin and granzymes A and B. Although several time points
were tested, the levels of the markers did not change significantly;
RMT-specific cells in BA1 remained principally CCR7�

CD45RA� CD57� CD127� CD38� perforin� granzyme A�

granzyme B�, while in BA4 they were CCR7� CD45RA� CD127�

CD38� perforin� granzyme A� granzyme B� (Fig. 5A to D).

TABLE 1 Follow-up and detection of PARV4 IgG, IgM, and viremia in individuals BA1 to BA8

Individual

Follow-up
duration
(mo)

IgG detection
(mo after first visit)

IgM detection
(mo after first visit)

IgM
duration
(days)b

Viremia detection
(mo after first visit)

Viremia duration
(days)a

Peak viral
load/ml
plasma

BA1 63 1 At first time point NA At first time point NA 104

BA2 37 13 13 NA 13, 14 33–109 103

BA3 30 19 19, 20 32–93 18, 19 32–98 104

BA4 14 2 Not detected Not detected
BA5 32 27 27 NA 27 Max, 102 5 � 102

BA6 31 22 22 NA 22 Max, 63 105

BA7 33 30 30 NA 30, 31 30–124 104

BA8 40 40 Not detected 40 NA 103

a The minimum viremia duration was measured from the first day when PARV4 DNA was detected to the last. The maximum viremia duration was defined from the day after the
last DNA-negative time point before viremia until 1 day before the next DNA-negative time point.
b NA, not available as IgM or viremia was detected at only one time point.
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PARV4-specific T cells are polyfunctional. From the data
above, the cell populations elicited late after PARV4 infection ap-
peared to be effector memory pools. To further assess function,
PBMC samples from subject BA1 were tested by ICS after stimu-
lation with the RMT epitope. Figure 6 illustrates the broad poly-
functionality of T cells in subject BA1 through representative flu-
orescence-activated cell sorter (FACS) plots over several time
points and SPICE pie charts that show polyfunctionality at the
single-cell level. The RMT PARV4-specific CD8� T cells predom-
inantly expressed IFN-�, MIP1-� (Fig. 6A and B), and TNF-�, as
well as IL-2 and CD107a (Fig. 6B). Though these cells consistently
produced multiple cytokines, this did decrease over time com-
pared to the frequency of tetramer-positive cells (Fig. 6C).

DISCUSSION

This is the first prospective study of cellular immune responses to
PARV4 in a cohort of acutely infected individuals. PARV4 has
been strongly associated with intravenous drug use in many stud-
ies (1–4, 9), and rare are the subjects in whom PARV4 can be
studied independently of major coinfections such as HIV and

HCV. Only one study of PARV4 has previously looked at a group
of 10 IDUs who were HCV negative, and only 1 of these was
PARV4 viremic (2). Our cohort provided an ideal setting in which
to study PARV4 infection alone.

Although this infection is commonly associated with HCV and
HIV infections, 36% of the 98 individuals in this cohort were
PARV4 seropositive despite remaining HCV and HIV negative.
This seropositivity rate is similar to that of other HCV-infected
cohorts, strengthening the correlation between PARV4 and intra-
venous drug use, rather than HCV per se (4, 5, 13). The most
conservative estimate of incidence was calculated to be a PARV4
seroconversion rate of 7.6%/year overall. This estimate is much
lower than the HCV incidence in this cohort of 27.2 HCV sero-
conversions per 100 person-years (14), suggesting that these two
infections do not always occur together, as is seen in many other
cohorts. This still suggests that PARV4 is a common percutane-
ously acquired virus, highlighting its importance in the safety of
blood products. We did note a decrease in the rate of incidence
from enrolment to the end of the study (13 to 3.8%). This could be
attributed to the counseling the individuals receive when they en-

FIG 2 Humoral and cellular immune responses to PARV4 in the acute phase of infection. (A) Levels of anti-PARV4 IgG increase steeply or remain below 50
arbitrary units. The data were normalized to the date of seroconversion of each subject. The cutoff was set at 0.5 arbitrary unit (4) (B) The magnitudes of T cell
responses to PARV4 NS across all BA individuals, as measured by IFN-� ELISpot assay, were plotted by using the time point with the highest value when several
were available. (C) Broad T cell responses are elicited in BA6. The dashed line indicates the cutoff at 55 SFU/106 PBMCs. (D) T cell responses are maintained at
high levels several years after infection in BA1. (E) RMT-specific T cells detected by tetramer (HLA-A2 RMT) staining in BA1. The inset shows the FACS plot at
63 mps. (F) RMT-specific T cells detected by tetramer (HLA-A2 RMT) staining in BA4 together with the levels of T cell responses to pool 8 (P8; containing the
RMT epitope) shown by ELISpot assay. The inset shows the FACS plot at 14 mps. The connecting line is dashed, as samples from only four time points were
measured for RMT-specific cells.

FIG 3 Prolonged T cell responses in PARV4 seroconverters. Shown is a summary of positive T cell responses (columns) and anti-PARV4 IgG levels (curves) in
subjects BA1 to BA8. The number of pools eliciting positive responses is indicated below each time point. The dashed horizontal line corresponds to the cutoff
for IgG seropositivity (referring to the left-hand y axis) as established previously by Sharp et al. (4). For individual BA1, samples between the first time point and
37 months of follow-up were missing as the subject did not attend the clinic during that time. This is indicated by the dashed IgG curve of this individual. The
presence of viral DNA is indicated by the asterisk below each graph.
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roll in the program (16). As these individuals were selected for
never seroconverting for HCV, it may be that they have lower-risk
behavior. Additionally, these rates of incidence were calculated on
the basis of the approximate time of intravenous drug use as a
means of transmission; however, other parenteral routes of
PARV4 transmission, such as intranasal and skin injury, may play
a role and therefore may affect the rates of incidence in different

subsets of patients. Further information on possible PARV4 trans-
mission and detailed behavioral information is required to answer
these questions.

Viremia and PARV4-specific IgM are short-lived in the acute
phase of PARV4 infection. Two previous studies found that
PARV4 viremia lasted 1 and 9 months, respectively; however,
these estimates were based on only one individual each time, in

FIG 4 PARV4 epitope-specific CD8� T cells have an effector memory phenotype. The memory phenotype was assessed from the expression of CCR7 and
CD45RA on tetramer-positive cells. Representative FACS plots are shown for BA4 and BA1 in panel A, which is gated on live CD3� CD8� HLA-A2 RMT
tetramer-positive cells, and the changes in phenotype over time are shown in panel B. PARV4-specific CD8� T cells have a memory phenotype distinct from that
of other CD8� T cells, as shown in panel C. The panels on the left are gated on live CD3� CD8� HLA-A2 RMT tetramer-positive cells, the panels in the middle
are gated on live CD3� CD8� HLA-A2 RMT tetramer-negative (neg) cells, and the panels on the right are gated on live CD3� CD8� T cells.
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cohorts where most of the subjects were HIV infected (3, 11). The
present study suggests that viral DNA remains in peripheral blood
for 1 to 3 months, on the basis of monthly data from four individ-
uals. PARV4 viral loads were determined for 6/8 patients and av-
eraged at 5 � 103 copies/ml. These low levels are characteristic of
PARV4 infection (5, 7, 17). Anti-PARV4 IgG was detected either
simultaneously with viral DNA or 1 month later. IgM was also
detected at a similar time, but with monthly samples, it was diffi-
cult to assess the exact timing of IgM with respect to IgG and
viremia. Nonetheless, acute PARV4 infection can be defined by
short-lived viremia and the concomitant appearance of IgM. IgG
levels increased progressively and peaked between 4 and 7 months
after seroconversion. The time of appearance of IgG was similar to
that in HCV and HIV-1 infections, which is estimated to be
around 2 to 6 weeks (18, 19).

Figure 3 shows that although antibody levels were consistently
high, T cell responses varied between individuals. We previously
observed a discrepancy between PARV4 IgG and T cell responses
in a cohort of remotely infected individuals (13). It is possible, as
seen in HIV-1 and HCV infections, that host factors such as HLA
types may affect their ability to elicit different types of immune
responses to PARV4. It can also be speculated that if antibody
levels are high enough to eliminate viremia, no or little antigen
would remain to trigger the strong late T cell responses (e.g., in
subjects BA3, BA7, and BA8, Fig. 3).

Rather than leading to an acute T cell flare, PARV4 NS trig-
gered a late cellular response that increased over time, peaking at
around 5 mps. After the expansion phase, T cell responses nor-
mally contract within a few weeks. As shown in Fig. 2 and 3,
PARV4 NS T cell responses were maintained over time, up to 63
mps, and at levels of 	1,000 SFU/106 PBMCs per peptide (Fig.
2D). The late T cell responses observed were not due to subse-

quent reinfection, as plasma samples at later time points proved
DNA negative (data not shown). The kinetics of these memory
cells are reminiscent of those observed in cytomegalovirus (CMV)
infection, sometimes described as memory inflation, which is also
seen in parvovirus B19 infection (20–23). T cell responses to both
PARV4 and B19 are persistent over the years, and this finding is
consistent with our previous data on a cohort of chronically HCV-
infected subjects in whom PARV4 T cell responses were detected
decades after the primary infection (13, 24). It was previously
reported that up to 4.5% of CD8� T cells responded to a specific
parvovirus B19 epitope (20), while PARV4 RMTENIVEV
epitope-specific T cells represented 0.1 to 1.5% of the CD8� T cells
in two individuals, at levels similar to those seen for CMV or other
persistent infections (25–30).

This study found that the PARV4 T cell responses of individu-
als BA4 and BA1 had an effector memory phenotype (TEM or
TEMRA). This effector memory phenotype is consistent with what
we had previously reported for these RMT-specific T cells in an
individual from an HCV-infected cohort (13). It is hypothesized
that intermittent and/or low antigen levels, such as those observed
in latent CMV infection, may allow for the differentiation to a
“late memory” TEMRA phenotype, whereas a high, continuous an-
tigen load, as in HIV-1 infection, may lead to an early abrogation
of differentiation, explaining why most HIV-1-specific T cells are
TEM (31–33). Because of the limited number of samples available
for study and with a response to the RMT epitope, we were unable
to characterize the memory phenotype more precisely. However,
judging from these subjects and our previous study, PARV4-spe-
cific T cells appear to consistently have an effector memory phe-
notype, whether further differentiated to CD45RA� or not.

Other phenotypic features of the cells are consistent with re-
petitive antigenic stimulation. Eighty percent of the PARV4-spe-

FIG 5 PARV4-specific CD8� T cells are activated and mature and contain cytolytic proteins. RMT-specific T cells detected by tetramer staining were stained for
IL-7 receptor CD127, maturation marker CD57, and activation markers PD-1 and CD38 in samples from subjects BA1 (A) and BA4 (B). Their cytotoxic potential
was assessed through the expression of the cytolytic proteins perforin and granzymes A and B for individuals BA1 (C) and BA4 (D).
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cific T cells were CD57�, consistent with the phenotype observed
in a previous cohort (data not shown; 13). The CD8� CD57� T
cell subset has been shown to expand during chronic activation in
several viral infections—including parvovirus B19 —and is
thought to be a result of persistent antigenic stimulation (20, 34).
CD127 (IL-7R�) is required for the maintenance of memory T
cells in the absence of antigen (35). Several studies have shown
that CD8� T cells specific for viruses that are successfully cleared,
such as influenza virus and respiratory syncytial virus, expressed
CD127, whereas CD8� T cells specific for persistent viruses such
as CMV and HIV were CD127� (36, 37). RMT-specific cells from
BA1 and BA4 were CD127lo for the duration of the study, span-
ning 3 to 5 years postinfection for BA1, which suggests that anti-
gen may still persist at 5 years postinfection. As patient BA1 was an
active IDU, it was possible that continuous exposure to PARV4
would result in a constant renewal of antigen. However, a sample

tested 3 years after primary infection was DNA negative. This
suggests that PARV4 antigen may persist at levels below detection.

Fifty percent of the PARV4-specific T cells expressed CD38�,
as also seen in a cohort previously studied (data not shown; 13),
which may reflect an intermediate state of activation due to low
levels of persisting PARV4. Eighty percent of the RMT-specific T
cells expressed PD-1. PD-1 on virus-specific T cells has been char-
acterized as a marker of T cell exhaustion in HIV and HCV infec-
tions, and this is thought to be a possible mechanism of viral
evasion (38, 39). However, PD-1 is also expressed on 60% of the
memory CD8� T cells in healthy individuals and on efficient yel-
low fever virus- and vaccinia virus-specific CD8� T cells (40, 41).
Importantly, we show here that after several years postseroconver-
sion, RMT-specific CD8� T cells still produce a variety of cyto-
kines, a population relevant to long-term viral control, though
function does appear to decrease over time (42–47). Further study

FIG 6 CD8� T cells responding to PARV4 epitope RMT are polyfunctional. (A) Representative FACS plots showing the production of IFN-� and MIP1-� by
CD8� T cells determined by ICS (plots gated on live lymphocytes, CD3� CD8� cells). (B) SPICE charts illustrate the polyfunctionality of these CD8� T cells in
response to epitope RMT, through the production of IFN-�, MIP1-�, CD107a, TNF-�, and IL-2. (C) Comparison of the frequency of HLA-A2 tetramer-positive
cells (red, left axis) and the percentage of CD8� T cells producing cytokines (green, right axis). PMA iono, phorbol myristate acetate and ionomycin (positive
control).
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samples are required to test the consistency and significance of this
result. It is likely that a combination of high-magnitude, broad,
and polyfunctional T cell responses is important for optimal pro-
tection (45, 48). In this respect, PARV4 or mechanisms related to
its persistence and triggering could be considered interesting
properties for a vaccine vector.

In conclusion, the nature of this cohort and the monthly fol-
low-up of the subjects have allowed the precise characterization of
acute PARV4 infection. The high incidence of PARV4 in this co-
hort emphasizes the risk of transmission of novel viruses through
blood products. The immunologic data clearly show that PARV4-
specific cells expand late and are retained in a mature and acti-
vated state, which is very similar to that of B19- and CMV-specific
CD8� T cells (20, 49), and suggest that, similar to these viruses,
PARV4 antigen persists, although its tropism is still unknown.
Definition of the features underlying this process is of relevance
not only to parvovirus infection but also potentially more broadly
to vaccine design.
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