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The herpes simplex virus 1 (HSV-1) glycoprotein K (gK)/UL20 protein complex is incorporated into virion envelopes and cellu-
lar membranes and functions during virus entry and cell-to-cell spread. To investigate the role of gK/UL20 in the context of a
highly neurovirulent virus strain, the HSV-1(McKrae) genome was cloned into a bacterial artificial chromosome plasmid
(McKbac) and utilized to construct the mutant virus McK(gK�31-68), carrying a 37-amino-acid deletion within the gK amino
terminus. The McKbac virus entered efficiently into Chinese hamster ovary (CHO) cells constitutively expressing HSV-1 human
receptors, nectin-1, herpesvirus entry mediator (HVEM), or paired immunoglobulin-like type-2 receptor alpha (PILR�). In con-
trast, the McK(gK�31-68) virus failed to enter into CHO-PILR� cells, while it entered CHO cells expressing HVEM and nectin-1
more efficiently than the McKbac virus. Both McKbac and McK(gK�31-68) viruses entered all CHO cells expressing HSV-1 re-
ceptors via a pH-independent pathway. The HSV-1(F) gB�28syn mutant virus, encoding a carboxyl-terminal truncated gB,
causes extensive cell fusion. Previously, we showed that the gK�31-68 amino acid deletion abrogated gB�28syn virus-induced
cell fusion, indicating that the amino terminus of gK is required for gB-mediated virus-induced cell fusion (V. N. Chouljenko,
A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. J. Kousoulas, Virology 83:12301–12313, 2009). Surprisingly, the gK�31-
68/gB�28syn virus caused extensive fusion of CHO-nectin-1 cells but limited cell fusion of CHO-PILR� cells. Coimmunopre-
cipitation experiments revealed that both gK and PILR� bound gB in infected cells. Collectively, these results indicate that the
amino terminus of gK is functionally and physically associated with the gB-PILR� protein complex and regulates membrane
fusion of the viral envelope with cellular membranes during virus entry as well as virus-induced cell-to-cell fusion.

The herpes simplex virus 1 (HSV-1) entry mechanism is both
complex and unique among enveloped viruses, involving mul-

tiple glycoproteins for attachment, binding, and membrane fu-
sion (1). Viral glycoproteins interact with different cellular recep-
tors to facilitate virus entry. Initial attachment of the virus to
cellular membranes is mediated by interaction of glycoproteins gB
and gC with glycosaminoglycan (GAG) moieties of cell surface
proteoglycans (2, 3). Attachment of virions to cellular membranes
facilitates subsequent binding of gD to cellular receptors, includ-
ing the herpesvirus entry mediator (HVEM, also called HveA),
nectin-1 (HveC), and 3-O-sulfated heparan sulfate (4–6). Appar-
ently, gB can also bind to additional cellular receptors, including
paired immunoglobulin-like type 2 receptor alpha (PILR�), non-
muscle myosin heavy chain IIA (NMHC-IIA), and myelin-asso-
ciated glycoprotein (MAG) (7–9). Sequential binding of gD and
then gB to their respective cellular receptors during virus entry
and virus-induced cell-to-cell fusion is thought to alter gB’s con-
formation, resulting in gB-mediated membrane fusion (1, 10–12).

HSV-1 can enter into cells by utilizing different cell-dependent
pathways: (i) virus entry into Vero and HEp-2 cells is predomi-
nantly mediated via pH-independent fusion of the viral envelope
with the host cell membrane (13); (ii) virus entry into HeLa and
Chinese hamster ovary (CHO) cells expressing the nectin-1 gD
receptor is predominantly achieved via receptor-mediated endo-
cytosis, followed by pH-dependent fusion of the viral envelope
with endocytic membranes (14); and (iii) virus entry into C10
murine melanoma cells predominantly occurs via pH-indepen-
dent endocytosis (13). Recently, it has been suggested that gB-
specific receptors, such as PILR�, or other cellular plasma mem-

brane factors determine whether virions enter predominantly via
fusion at the plasma membrane or via receptor-mediated endocy-
tosis (pH dependent or pH independent), followed by fusion of
the viral envelope with endosomal membranes (15).

HSV-1 gK has been shown to be involved in neurovirulence
and immunomodulation (16, 17). We have shown that HSV-1 gK
and UL20 functionally and physically interact, and this interaction
is mandatory for their coordinated intracellular transport, cell
surface expression, and functions in virion egress, virus-induced
cell fusion, and virus entry (18–21). Recently, we showed that the
amino terminus of gK interacts with gB and gH and can comple-
ment gB-mediated cell fusion (22, 23). Virions lacking the entire
gK or the amino terminus of gK (amino acids [aa] 31 to 68) enter
susceptible cells substantially slower than the wild-type virus (20,
21). Importantly, gK-null virions cannot infect neurons via their
neuronal axons (24), an entry route known to involve fusion of the
viral envelope with synaptic membranes of axonal neuronal ter-
mini (25). Overall, these results have strongly suggested that the
gK/UL20 protein complex can regulate virus entry and virus-in-
duced cell fusion via modulating gB and gH membrane fusion
functions.
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Here, we show that the gK amino terminus is necessary for
efficient virus entry via the gB-specific receptor PILR� but not for
entry via the gD-specific receptors nectin-1 and HVEM. More-
over, we show that PILR� forms a multiprotein complex with gB
and gK but not gD. In contrast to previous reports (14), we show
that HSV-1(McKrae) entry occurs via a pH-independent mecha-
nism. These results suggest a functional and physical association
of gK/UL20 with gB and gB-specific receptors, such as PILR�,
during virus entry and virus-induced cell fusion.

MATERIALS AND METHODS
Cells and plasmids. African green monkey kidney (Vero) cells were ob-
tained from the American Type Culture Collection (Rockville, MD) and were
grown and propagated in growth medium consisting of Dulbecco’s modified
Eagle medium (DMEM) (Gibco-BRL, Grand Island, NY) supplemented with
10% fetal bovine serum (FBS) and antibiotics (22). VK302 cells permanently
expressing gK were originally obtained from David Johnson (Oregon Health
Sciences University, Portland, OR) and maintained in growth medium.
CHO-nectin-1(human) cells were a gift from Richard Longnecker (North-
western University, Chicago, IL) and were propagated in Ham’s F12 growth
medium supplemented with 10% FBS and 200 �g/ml G418. The CHO-
PILR� (human) cells were also obtained from R. Longnecker and were grown
in Ham’s F12 medium supplemented with 10% FBS and 700 �g/ml G418.
The human CHO-HVEM cells were created by using a PiggyBac Transposon
system (System Biosciences) as described earlier (26). All cells were cultured
in nonselective medium prior to use in the virus entry assay. 293 PEAK TM
Rapid cells (a gift from R. Longnecker) were grown in DMEM supplemented
with 10% FBS and antibiotics. Plasmids expressing the soluble human
PILR�-IgG Fc hybrid protein (pME18S-PILR�-Ig) and CD200-Ig Fc fusion
protein were kind gifts from Hishashi Arase (Osaka University, Osaka, Japan)
and Y. Kawaguchi (University of Tokyo, Tokyo, Japan), respectively. Plas-
mids expressing the Ig fusion proteins were constructed as described previ-
ously (8).

Viruses. The clinical ocular, neuroinvasive HSV-1(McKrae) strain
was obtained from J. M. Hill (Louisiana State University Health Sciences
Center, New Orleans, LA). The McKrae genome was cloned into the bac-
terial artificial chromosome (BAC) vector, which also contains an excis-
able enhanced green fluorescent protein (EGFP) expression cassette. This
BAC was used to recover the McKrae-EGFP-BAC (McKbac) virus. The
recombinant mutant virus HSV-1(F) YE102-VC1 specifies gK and UL20
tagged with V5 and 3� FLAG antigenic epitopes, respectively. GFP-
tagged vesicular stomatitis virus (VSV-GFP) was a kind gift from John
Rose (Yale University, New Haven, CT). The mutant viruses gK�31-68,
gB�28syn (deletion of 28 aa from the carboxyl terminus of gB), and
gK�31-68/gB�28syn were described earlier (22).

Construction of mutant viruses. The HSV-1 McKrae (wild-type)
strain was cloned into the BAC plasmid pBeloBAC11 (NEB) essentially as
described previously (27), with the following modifications. Specifically, a
gene construct was created wherein the LoxP recombination site was
fused together with DNA fragments of approximately 1 kb of McKrae
DNA sequence, encompassing portions of the UL3(L-left)-UL4(R-right)
targeted genomic region by PCR-based overlap extension. This gene con-
struct was subsequently cloned into the pCR2.1-TOPO plasmid vector
(Invitrogen, Grand Island, NY). Similarly, another gene expression cas-
sette containing the EGFP gene flanked by FLP recombination target
(FRT) sites (enabling removal of the EGFP gene cassette) was constructed
and cloned into pEF6/V5-His TOPO plasmid vector (Invitrogen) under
the control of the EF1� promoter. This gene cassette was excised from the
vector by using EcoRI endonuclease and blunt ended by T4 polymerase.
Subsequently, it was cloned into the blunt-ended BamHI site of
pBeloBAC11. Cre recombinase enzyme (New England BioLabs, Ipswich,
MA) was used for in vitro reaction to fuse together the L-LoxP-R ampicil-
lin-resistant PCR 2.1-based plasmid and LoxP-EGFP chloramphenicol-
resistant pBeloBAC-based plasmid. The plasmid DNA created after fusion
with Cre recombinase was used to transfect Vero cells using Lipo-

fectamine 2000 (Invitrogen). The transfected cells were infected with
HSV-1(McKrae) at 6 h posttransfection. Fluorescence microscopy was
used to select fluorescent viral plaques that contained the inserted McKrae
genome in the BAC plasmid (McKbac). The presence of the BAC plasmid
was verified by PCR-assisted DNA sequencing. The recovered McKbac
virus was utilized for the construction of gK mutant viruses. The mutant
viruses gK�31-68 (encoding gK carrying an in-frame deletion of aa 31 to
68) and gK�31-117 (encoding gK carrying an in-frame deletion of aa 31 to
117) were created as described earlier for the HSV-1(F) genome cloned
into BAC plasmid pYEbac102 (28).

Replication kinetics, plaque morphologies of McKbac and gK mu-
tant viruses, and electron microscopy. Viral plaques were visualized by
immunohistochemistry as we have previously described (29–32). Analysis
of one-step growth kinetics was performed as described earlier (20, 22,
33). Confluent Vero cell monolayers were infected with each virus at 4°C
for 1 h at a multiplicity of infection (MOI) of either 0.1 or 2. Thereafter,
plates were incubated at 37°C and 5% CO2 and virus was allowed to
penetrate for 1 h at 37°C. Any remaining extracellular virus was inacti-
vated by low-pH treatment (pH 3.0), and cells were subsequently incu-
bated at 37°C and 5% CO2. Viral titers at different times postinfection
were obtained on the VK302 cell line that expresses the HSV-1(KOS) gK
gene. The ultrastructural morphology of virions within infected cells was
examined by transmission electron microscopy as described previously
(30, 32, 34–36). All infected cells were processed at 18 h postinfection
(hpi) and visualized by transmission electron microscopy.

Virus entry assay. Confluent monolayers of CHO-neo (not shown),
CHO-HVEM, CHO-PILR�, CHO-nectin-1, and Vero cells were infected
with McKbac, McK(gK�31-68), and McK(gK�31-117) at an MOI of 1 for
1 h at 34°C. The virus inoculum was subsequently removed, and the cul-
tures were shifted to 37°C. Eight to 12 hpi, the cells were fixed, stained with
anti-ICP4 antibody (Ab) (Virusys, Inc., Taneytown, MD) and Alexa Fluor
647 goat anti-mouse IgG1 (Life Technologies, Grand Island, NY), and
analyzed by flow cytometry (fluorescent-activated cell sorting [FACS]).
The relative efficiency of virus entry was calculated as the percentage of
cells expressing ICP4 and normalized to CHO-neo entry values. Entry
experiments were performed in triplicate, and error bars represent stan-
dard errors of the means. Comparison of groups was performed by one-
way analysis of variance (ANOVA) using GraphPad Prism software (ver-
sion 5) (21). A P value of �0.05 was considered significant.

Treatments with lysosomotropic agents. Stock solutions of ammo-
nium chloride (1.5 M) were prepared in distilled water immediately prior
to use. Monensin (75 mM; Sigma, St. Louis, MO) and bafilomycin A1
(100 mM; Sigma) were dissolved in ethanol and dimethyl sulfoxide, re-
spectively, and stored at �20°C. Growth medium was removed from cells
and replaced by medium containing inhibitors, and the plate was incu-
bated for 1 h at 37°C. After incubation, virus was added in the presence of
the inhibitor for 1 h at 34°C. Subsequently, cells were incubated again in
the presence of inhibitor until they were processed for flow cytometry.

Immunohistochemistry. Nearly confluent CHO-neo, CHO-nec-
tin-1, and CHO-PILR� cell monolayers were infected at an MOI of 1 with
mutant viruses gK�31-68, gB�28syn, and gK�31-68/gB�28syn [all mu-
tants were constructed in the HSV-1(F) genetic background], and HSV-
1(F). Fourteen hpi, monolayers were washed with Tris-buffered saline
(TBS)-Ca-Mg and fixed with ice-cold 100% methanol for 10 min. Cell
fusion was visualized by immunostaining with anti-HSV-1 polyclonal an-
tibody as described previously (22).

Preparation of purified Ig fusion proteins and immunoprecipita-
tion assay. 293 PEAK Rapid cells were transfected with the plasmid
pME18S-PILR�-Ig and a control plasmid expressing human CD200-Ig Fc
fusion protein with 293 Fectin (Invitrogen, Grand Island, NY). Superna-
tants from transfected cells were collected at 48 and 72 h after transfection
and pooled. Ig fusion proteins were purified by protein A affinity chro-
matography and were subsequently used for immunoprecipitation. Vero
cells infected with the YE102-VC1 virus were lysed with NP-40 lysis buffer
(Invitrogen). Subsequently, lysates were immunoprecipitated with
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PILR�-Ig or CD200-Ig (control) using protein A Dynabeads (Invitrogen).
Immunoprecipitates were separated on 5 to 20% polyacrylamide gels and
transferred onto polyvinylidene difluoride (PVDF) membranes (Milli-
pore, Billerica, MA), which were blotted with anti-gB, anti-gD, anti-
FLAG, or anti-V5 Ab (21). Ig fusion proteins used for immunoprecipita-
tion were detected by anti-human IgG Ab (Amersham Biosciences).

RESULTS
Construction and characterization of recombinant HSV-
1(McKrae) viruses. To facilitate the construction of recombinant
viruses carrying specific mutations in gK and other genes in the con-
text of a highly neurovirulent virus strain, the HSV-1(McKrae) ge-
nome was cloned into a bacterial artificial chromosome essentially as
described previously (27). Specifically, the BAC plasmid was inserted
within the intergenic region between the UL3 and UL4 genes. The
BAC plasmid contained a gene cassette encoding the enhanced green
fluorescence protein (EGFP) under the elongation factor 1 alpha
(EF1a) (Fig. 1). The cloned McKrae genome (McKbac) was subse-
quently utilized for the construction of recombinant viruses carrying
deletions of 37 (gK�31-68) and 86 (gK�31-117) amino acids using
the two-step markerless red recombination mutagenesis system (28)
(Fig. 1), as previously described for the construction of similar mu-
tant viruses in the HSV-1(F) genomic background (22).

The McKbac virus produced viral plaques on Vero cells that
were similar to those of the HSV-1(McKrae) wild-type virus (not
shown). The McK(gK�31-117) recombinant virus produced very
small viral plaques containing an average of 2 to 7 cells per plaque.
In contrast, the McK(gK�31-68) virus produced viral plaques that
were much larger than those of the McK(gK�31-117) virus, ap-
proaching approximately half the size of the McKbac wild-type-
like plaques. Infection of VK302 cells that express the HSV-
1(KOS) gK gene under the gD promoter control (37) resulted in
efficient complementation for plaque morphology and virus
spread for the McK(gK�31-68) virus but not for the McK(gK�31-
117) virus (Fig. 2I). These plaque phenotypes were consistent with
similar plaque morphologies and cellular spread defects exhibited

by the HSV-1(F) gK�31-117 and gK�31-68 mutant viruses with
the following exceptions: (i) the McK(gK�31-68) virus produced
partially syncytial plaques in VK302 cells (Fig. 2I, panel E), unlike
the HSV-1(F) gK�31-68 virus characterized previously (22), and
(ii) the McK(gK�31-117) virus was not efficiently complemented
in VK302 cells (Fig. 2I, panel F), unlike the HSV-1(F) gK�31-117
virus (22). The apparent lack of complementation of the
McK(gK�31-117) virus by VK302 cells was not due to potential
mutations elsewhere in the viral genome, since a recombinant
virus produced by rescuing the gK�31-117 deletion with homol-
ogous HSV-1(McKrae) gK sequence produced wild-type-like
plaques (not shown). The McK(gK�31-68) mutant virus repli-
cated efficiently in Vero cells, achieving viral titers of approxi-
mately 1 log less than the parental McKbac virus. In contrast, the
McK(gK�31-117) virus replicated inefficiently, producing viral
titers that were more than 3 logs less than that of the McKbac virus
at both low MOI (0.1) and relatively high MOI (2) (Fig. 2II).

Ultrastructural characterization of McKbac and gK mutant
viruses. The ultrastructural phenotypes of all mutant viruses rel-
ative to the wild-type parental virus were investigated at 18 hpi by
visually examining 50 randomly selected virus-infected Vero cells
using transmission electron microscopy. The McKbac virus did
not exhibit any apparent defects in cytoplasmic virion envelop-
ment and egress. Fully enveloped virion particles were observed in
both intracellular compartments as well as in extracellular spaces
(Fig. 3). Similarly, mutant virus McK(gK�31-68) did not show
any apparent defect in envelopment, and fully enveloped virion
particles were excreted out of infected cells. Ultrastructural visu-
alization of Vero cells infected with mutant virus McK(gK�31-
117) showed severe defects in virion envelopment and egress,
characterized by the presence of numerous unenveloped capsids
in the cytoplasm. These results are in agreement with the ultra-
structural morphologies of mutant viruses carrying the same gK
mutations in the HSV-1(F) genetic background (22).

FIG 1 Cloning of the HSV-1(McKrae) genome into a BAC and schematic representation of mutant viruses. Shown is a linear representation of the HSV-1
genome structure, with two unique regions (long-UL and short-US), each flanked by a pair of terminal and inverted repeats (TR and IR, respectively). An
expanded region of the HSV-1 genome in the intergenic region between UL3 and UL4 is shown. L and R represent DNA fragments derived from the UL3 and UL4
genes, respectively, used for recombination purposes. The BAC containing an EGFP sequence was inserted between the intergenic region of UL3 and UL4 to
create a recombinant virus McKrae BAC (McKbac). The McKbac virus was utilized for the construction of gK mutant viruses gK�31-68 (encoding gK carrying
an in-frame deletion of aa 31 to 68) and gK�31-117 (encoding gK carrying an in-frame deletion of aa 31 to 117). An expanded genomic region of the UL53 gene
which encodes glycoprotein K (gK), flanked by UL52 and UL54 genes, is shown.
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Characterization of McKbac and gK mutant viral entry into
Vero and CHO cells expressing different HSV-1 cellular recep-
tors. We have shown previously that HSV-1(F) recombinant vi-
ruses gK�31-68 and gK�31-117 exhibit slower kinetics of entry

into Vero cells than their parental wild-type virus (21). To ascer-
tain the relative efficiencies of virus entry into cells expressing
different viral receptors, viruses were allowed to enter into cells for
an hour at 34°C, and virus entry was detected by monitoring the

FIG 2 Plaque morphology and replication kinetics of the McKbac and gK mutant viruses. (I) Plaque morphology. Vero cells were infected with each virus at an
MOI of 0.001, and at 48 hpi viral plaques were fixed with methanol and stained with anti-HSV antibodies as described in Materials and Methods. Representative
viral plaques of all gK mutant viruses and the McKbac virus are shown on both Vero (A to C) and VK302 (D to F) cells. (II) Replication kinetics. Vero cells were
infected with each virus at either a low MOI (0.1) or a high MOI (2), and the numbers of infectious viruses produced were determined on VK302 cells at different
times postinfection. Viral titers after high-MOI infection are shown in panel A, and low-MOI infections are shown in panel B. All experiments were performed
in triplicate. Error bars represent standard errors of the means.

FIG 3 Ultrastructural morphology of McKbac and gK mutant viruses. Electron micrographs of Vero cells infected at an MOI of 2 with McKbac (A),
McK(gK�31-68) (B), and McK(gK�31-117) (C) and processed for electron microscopy at 18 hpi are shown. Nucleus (n), cytoplasm (c), and extracellular space
(e) are marked. Arrows indicate virion particles.
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level of ICP4 protein expression at 8 to 12 hpi as described previ-
ously (21) (also see Materials and Methods). Both gK mutant vi-
ruses entered into Vero cells, albeit with decreased efficiencies
compared to the McKbac virus (Fig. 4A). These entry defects were
particularly pronounced in PILR�-expressing CHO cells, in
which both gK mutant viruses entered up to 8-fold less efficiently
than the McKbac virus (Fig. 4B). In contrast, all viruses entered
efficiently into both CHO-nectin-1 and CHO-HVEM cells, while
gK mutant viruses appeared to enter more efficiently than the
McKbac virus (Fig. 4C and D).

Effects of lysosomotropic agents on entry of McKbac and gK
mutant viruses into different cell types. It has been reported that
HSV-1 enters into HeLa and CHO-nectin-1 cells via pH-depen-

dent endocytosis (14). Lysomotropic inhibitors NH4Cl, monen-
sin, and bafilomycin inhibit the acidification of endosomes. The
effect of these inhibitors on virus entry was investigated and com-
pared to virus entry of vesicular stomatitis virus (VSV), which is
known to enter via pH-sensitive endocytosis (38). NH4Cl and
monensin inhibited VSV entry into CHO-nectin-1 cells in a dose-
dependent manner (Fig. 5C and D). However, the two inhibitors
inhibited neither McKbac nor gK mutant virus entry (Fig. 5A and
B). Similarly, NH4Cl, monensin, and bafilomycin did not inhibit
McKbac virus entry into CHO-PILR� cells (Fig. 5E, F, and G).

Effects of gK mutations on the ability of gB to cause virus-
induced cell fusion in CHO cells expressing gB- or gD-specific
receptors. To investigate the relationship between gB-induced

FIG 4 Comparison of entry efficiencies of McKbac and gK mutant viruses. (A) Entry into Vero cells. (B) Entry into CHO-PILR� cells. (C) Entry into CHO-HVEM cells.
(D) Entry into CHO-nectin-1 cells. All cells were infected with McKbac and the gK mutant viruses gK�31-68 and gK�31-117 at an MOI of 1. At 8 to 12 hpi, the cells were
stained with anti-ICP4 antibody and analyzed by flow cytometry to determine the percentage of infected cells. Comparison of groups was performed by one-way
ANOVA (see Materials and Methods). P � 0.05 is considered significant. *, 0.01 � P � 0.05; **, 0.001 �P � 0.01; ***, P � 0.001.
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cell fusion and specific viral receptors, the previously character-
ized set of viruses, HSV-1(F)gB�28syn, HSV-1(F)gK�31-68, and
HSV-1(F)gK�31-68/gB�28syn, was utilized (22). Cells express-
ing different viral receptors were infected with these viruses, and
the relative extent of cell-to-cell fusion was compared to that of the

HSV-1(F) wild-type virus (Fig. 6). The gB�28syn virus caused
extensive fusion in Vero (22), CHO-nectin-1, CHO-HVEM (not
shown), and CHO-PILR� cells but not in CHO-neo cells. In con-
trast, gK�31-68/gB�28syn caused extensive cell fusion in both
CHO-HVEM (not shown) and CHO-nectin-1 cells, limited fu-
sion in CHO-PILR� cells (Fig. 6), and no fusion in Vero cells
(reference 22 and data not shown).

PILR� interacts with gB, gK, and UL20p in virus-infected
cells. gB interacts with the amino terminus of PILR� (8). More-
over, we have shown that the amino terminus of gK, as a free
peptide of 82 amino acids, interacted with the amino terminus of
gB and complemented gB-mediated cell fusion (23). To investi-
gate whether PILR� interacted simultaneously with both gB and
gK, the purified PILR�-Ig fusion protein was mixed with cellular
extracts obtained from infected cells and immunoprecipitated us-
ing magnetic beads coated with protein A (see Materials and
Methods). Immunoprecipitates were subsequently tested for the
presence of gB, gD, gK, and UL20 using specific antibodies for
each protein in Western immunoblotting. Detection of gK and
UL20 was accomplished after infection of Vero cells with the
YE102-VC1 virus, which expresses gK tagged with the V5 epitope
and UL20 tagged with the 3� FLAG epitope (21). Virus-infected
cell lysates were immunoprecipitated with soluble PILR� (Fig. 7A,
C, E, G, and I) and control IgG fusion protein CD200 IgG (Fig. 7B,
D, F, H, and J). PILR�-Ig fusion protein immunoprecipitated gB
(Fig. 7C, lane 2), UL20p (Fig. 7E, lane 2), and glycoprotein K (Fig.
7G, lane 2) but not gD (Fig. 7A, lane 2). The control CD200 IgG
fusion protein did not react with any of the viral proteins (Fig. 7).

DISCUSSION

Glycoprotein K and UL20p are highly conserved among alphaher-
pesviruses, suggesting that they serve important functions that
have been evolutionarily conserved (39). Both HSV-1 proteins
have been intimately associated with membrane fusion phenom-
ena, since mutations in either gK or UL20p cause extensive virus-
induced cell fusion (31, 37, 40–45). Moreover, both gK and UL20p
are structural components of the virion particle and function dur-
ing virus entry (20, 21). Recent evidence suggests that gK and
UL20p modulate these membrane fusion phenomena by direct
interactions with viral gB (22, 23). Here, we have utilized CHO
cells expressing individual viral receptors to demonstrate that gK
is functionally and physically associated with the gB-PILR� inter-
acting protein complex.

The McKrae viral strain was isolated from an ocular clinical
sample of a patient suffering from acute infection (46). This viral
strain is particularly virulent in mice and rabbits compared to
other laboratory and clinical strains (47). Initial investigations
suggested that the McKrae viral strain is able to utilize the PILR�
receptor more efficiently than other viral strains (26). Therefore,
the McKrae genome was cloned into a BAC plasmid to facilitate
the construction of additional recombinant viruses with defined
mutations in gK and UL20p. The McKbac virus appeared to have
characteristics similar to those of the McKrae wild-type virus with
regard to viral growth and plaque formation. Moreover, initial
results suggest that insertion of the BAC plasmid did not substan-
tially affect the neurovirulent characteristics of the parental
McKrae virus in mice infected via the ocular route (not shown).

Recombinant McKbac viruses containing the gK�31-68 and
gK�31-117 mutations appeared to replicate in a manner similar to
that previously reported for identical mutations in the HSV-1(F)

FIG 5 Effect of lysosomotropic agents on McKbac and gK mutant virus entry.
Cells (CHO-nectin-1) were pretreated with different concentrations of ammo-
nium chloride (A and C) and monensin (B and D) and infected with McKbac
and McKbac gK mutants (A and B) or VSV (C and D) for 1 h at 34°C in the
presence of the inhibitor. One hour after infection, the inoculum was removed
and the cells were incubated in the presence of each inhibitor at 37°C until the
cells were processed. The percentages of infected cells were determined after
staining with anti-ICP4 antibody and analyzed by flow cytometry. Six hours
after VSV infection, the percentage of GFP-positive cells were measured by
flow cytometry. CHO-PILR� cells were pretreated with different concentra-
tions of ammonium chloride (E), monensin (F), and bafilomycin (G), infected
with McKbac, and processed for flow cytometry as described above.
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pYEbac102 genetic background. Plaque phenotypes, replication
kinetics, and ultrastructure morphologies were generally similar
irrespective of the viral genetic background (22), with the follow-
ing differences. The McK(gK�31-68) virus caused cell fusion in
the gK-complementing cell line VK302, while the HSV-1(F)
gK�31-68 virus did not (22). Moreover, the HSV-1(F) gK�31-
117 virus was efficiently complemented by VK302 cells (22), while
the McK(gK�31-117) virus was not. Recently, we sequenced all
major HSV-1(McKrae) genes encoding membrane proteins and
glycoproteins (gB, gC, gD, gH, gL, gK, and UL20p) involved in
membrane fusion and compared their primary structures to those
of other viral strains. These results showed that the McKrae and F
viral strains have identical gK and UL20 amino acid sequences;
however, there are specific amino acid differences between their
respective gB glycoproteins, predominantly located in their amino-
terminal portions. Similarly, there are two amino acid differences
between the gK expressed in VK302 cells (KOS genetic origin) and
the gK amino acid sequences encoded by the McKrae and F strains
at amino acid positions 101 (KOS-Thr to McKrae-Met) and 309
(KOS-Met to McKrae-Val) (26, 42). Therefore, these gB and gK
amino acid differences may alter the known interactions of gK
with gB (22, 23), resulting in the observed differential comple-
mentation of McK(gK�31-117) and F(gK�31-117) mutant vi-
ruses in VK302 cells.

Viral glycoproteins gB, gD, gH, and gL play important roles in
mediating fusion of the viral envelope with cellular membranes
and fusion of adjacent infected cells (1, 10). Historically, gK and
UL20 have been intimately associated with virus-induced cell fu-
sion because mutations in either gK or UL20 cause extensive cell
fusion in a variety of cell types. A largely unexplained phenome-
non is that gK and UL20 are absolutely required for virus-induced
cell fusion even in the presence of highly fusogenic mutations in

FIG 7 Soluble PILR� interacts with gB, gK, and UL20p in virus-infected cells.
Western blot analysis of immunoprecipitates of PILR� ligand from HSV-1-
infected cells is shown. Vero cells were infected with a double-tagged HSV-1
virus (YE102-VC1). (A to H) Infected lysates were immunoprecipitated with
PILR�-Ig or CD200-Ig (control) and the immunoprecipitates were separated
by SDS-PAGE, followed by blotting with anti-gB, anti-gD, anti-V5 (gK), and
anti-FLAG (UL20) Ab. (I and J) The Ig fusion proteins used for immunopre-
cipitation were detected by anti-human IgG Ab. Molecular mass standards are
shown as dots (150, 100, 75, 50, 37,25, 20, 15, and 10 kDa; Precision Plus
protein standards; Bio-Rad). Lane 1, lysate from infected cells; lane 2, lysates
immunoprecipitated with PILR�-Ig or CD200-Ig. Arrows indicate protein
species of interest.

FIG 6 Visualization of relative extent of virus-induced cell fusion in CHO cells expressing different cellular receptors. CHO-nectin-1, CHO-PILR�, and
CHO-neo cells were infected with HSV-1(F), gK�31-68, gB�28syn, and gK�31-68/gB�28syn. Fourteen hpi the cells were fixed with methanol and stained with
anti-HSV antibody.

HSV-1 gK Functions via the PILR� Receptor

March 2013 Volume 87 Number 6 jvi.asm.org 3311

http://jvi.asm.org


gB (22). Moreover, gK syncytial mutations cause extensive cell
fusion of many cell types, unlike mutations in gB and UL20 that do
not (48). In addition, mutants lacking gK or lacking a portion of
the amino terminus of gK cause delayed entry kinetics in Vero
cells, suggesting that gK and UL20 function similarly during cell-
to-cell fusion and virus envelope-to-cell fusion. In support of
these findings, we show here for the first time that gK functions in
both virus entry and virus-induced cell fusion in conjunction with
the PILR� receptor. Specifically, gK mutants were unable to enter
into CHO-PILR� cells, while they efficiently entered CHO-nec-
tin-1 and CHO-HVEM cells. This functional association between
gK and the gB-specific receptor PILR� was also demonstrated by
the inability of the gK�31-68/gB�28Syn virus to cause extensive
fusion of CHO-PILR� cells, while both CHO-nectin-1 and CHO-
HVEM cells were efficiently fused. Similarly, the previously re-
ported inability of the gK�31-68/gB�28syn virus to cause fusion
in Vero cells (22) may be due to other gB-specific receptors, since
Vero cells do not express PILR� (S. Chowdhury and K. G. Kou-
soulas, unpublished data). Vero cells are known to express the
nonmuscle myosin heavy chain IIA (NMHC-IIA) gB-specific re-
ceptor (7), which may function in a manner similar to that of
PILR�, requiring gK for optimum gB-mediated membrane fu-
sion.

HSV-1 virions can enter cells by fusion at the plasma mem-
brane or by fusion with endosomal membranes in acidic or neu-
tral endosomes after endocytosis (14). Previous work has indi-
cated that HSV-1 enters via a pH-dependent endocytic pathway
into CHO-nectin-1 cells (14). However, testing a variety of lyso-
somotropic inhibitors that prevent acidification of endosomes re-
vealed that the McKbac virus entered into all cells in the presence
of increasing concentrations of inhibitors, i.e., through a pH-in-
dependent entry mechanism. In contrast with our results, it has
been suggested that HSV-1 enters into CHO-nectin-1 cells via a
pH-dependent mechanism (14). We have found that the viability
of cells treated with the various inhibitors should be carefully
monitored to ensure that cell death does not affect virus entry
experiments. Clearly, HSV-1 McKbac and gK mutant viruses en-
ter into all cells via a pH-independent mechanism, unlike VSV.
Additional studies are required to discern whether the different
receptors influence virus entry via either fusion at the plasma
membrane or fusion with endosomal membranes.

The amino terminus of gK was shown to physically and func-
tionally interact with the amino terminus of gB (23). Here, we
show that soluble PILR� was able to precipitate gB, gK, and UL20,
suggesting that PILR�, gB, gK, and UL20 form a functional pro-
tein complex in infected cells. Based on the fact that PILR� binds
to the amino terminus of gB, it is possible that gB binds both
PILR� and the gK/UL20 protein complex independently of each
other, utilizing distinct gB domains. PILR� may also bind gK/
UL20 in the presence or absence of gB. These possibilities will be
discerned in future experiments. The observed functional and
physical association between gK/UL20 and the gB-specific recep-
tor PILR� and potentially other gB-specific receptors, such as
NMHCIIA, suggest that gK/UL20 is required for optimum regu-
lation of the fusogenic properties of gB. Finally, our recent find-
ings that gK-null virions do not infect neuronal axons (24, 49)
suggest the potential involvement of gB-specific receptors in neu-
ronal infections.
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