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ABSTRACT

An ensemble classifier approach for microRNA pre-
cursor (pre-miRNA) classification was proposed
based upon combining a set of heterogeneous algo-
rithms including support vector machine (SVM),
k-nearest neighbors (kNN) and random forest (RF),
then aggregating their prediction through a voting
system. Additionally, the proposed algorithm, the
classification performance was also improved
using discriminative features, self-containment and
its derivatives, which have shown unique structural
robustness characteristics of pre-miRNAs. These
are applicable across different species. By applying
preprocessing methods—both a correlation-based
feature selection (CFS) with genetic algorithm (GA)
search method and a modified-Synthetic Minority
Oversampling Technique (SMOTE) bagging rebalanc-
ing method—improvement in the performance of this
ensemble was observed. The overall prediction
accuracies obtained via 10 runs of 5-fold cross valid-
ation (CV) was 96.54%, with sensitivity of 94.8%
and specificity of 98.3%—this is better in trade-off
sensitivity and specificity values than those of other
state-of-the-art methods. The ensemble model was
applied to animal, plant and virus pre-miRNA and
achieved high accuracy, >93%. Exploiting the dis-
criminative set of selected features also suggests
that pre-miRNAs possess high intrinsic structural
robustness as compared with other stem loops. Our
heterogeneous ensemble method gave a relatively

more reliable prediction than those using single clas-
sifiers. Our program is available at http://ncrna-pred
.com/premiRNA.html.

INTRODUCTION

MicroRNAs (miRNAs) are small endogenous non-coding
RNAs (&19–25 nt). They play crucial roles in post-
transcriptional regulation of gene expression of plants
and animals (1). The miRNAs are expressed at different
levels during cell proliferation, metabolism, development,
apoptosis and tumor metastasis (1–2). In animals, miRNA
biogenesis begins with the transcription of several-
hundred-nucleotides-long primary transcripts called pri-
mary miRNAs (pri-miRNAs). An enzyme called Drosha
recognizes hairpin substructures in the pri-miRNAs and
cleaves them to produce �70-nt long miRNA stem-loop
precursors (pre-miRNAs) (3). The pre-miRNAs are then
subsequently processed to yield mature miRNA by Dicer
enzyme, which targets pre-miRNAs on the basis of their
hairpin secondary structures, which are considered as a
crucial characteristic for enzyme substrate recognition in
miRNA biogenesis pathways (4). A number of miRNAs
remain undiscovered. Identification of miRNA genes is
one of the most imminent problems towards the under-
standing of post-translational gene regulation in both
normal development and human pathology (5).
There are two main approaches in miRNA identifica-

tion: experimental and computational approaches. The
discovery and characterization of novel miRNA genes
have proved to be challenging both experimentally and
computationally (6). Experimental approaches have suc-
cessfully identified highly expressed miRNAs from various
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tissues. However, cloning methods are biased towards
miRNAs that are abundantly expressed (3,5,7). Computa-
tional methods have been developed to complement
experimental approaches in facilitating biologists for iden-
tifying putative miRNA genes. These methods offer the
most cost-effective and time-effective screening appro-
aches to identifying miRNAs. There are two types of com-
putational techniques: comparative and non-comparative
methods. The former is based on identifying conservation
of sequences from closely related species to find homolo-
gous pre-miRNAs. However, a key drawback of this
approach is their lack of ability to detect novel
pre-miRNAs that are not homologous to previously
identified miRNAs. For the latter, classification models
are trained by machine learning (ML) in identifying
non-conserved miRNAs, both known and novel, based
on miRNA characteristics. Numerous de novo non-
comparative methods for identifying pre-miRNA
hairpins based on single ML algorithm have been
proposed (8–16). For such methods, stem-loop structures
are involved in prediction. However, the stem-loop struc-
tures of non-miRNA sequences, similar to those of
pre-miRNAs, can be found all over the genome. This
could lead to a high false positive rate (FPR). Moreover,
there is a risk of over-fitting of an algorithm to the training
data. Therefore, the computational de novomethod should
be improved to obtain a more efficient and reliable
pre-miRNA classification method. To handle the false
positive and the over-fitting, we introduced an ensemble
technique in ML to the problem of pre-miRNA classifica-
tion. The ensemble, the committee of various algorithms,
has been known to provide more reliable and less false
positive results than a single classifier through the agree-
ment among heterogeneous classifiers. Each single algo-
rithm has its own strengths (and weaknesses) depending
on the induction hypothesis embedded in its learning
process; no single algorithm can perform significantly
better than others in all problems and performance meas-
urements (17–20). The voting of distinct algorithms can
reduce the bias occurring in a single learning algorithm
and this can therefore be relatively more generalized in
prediction on new unseen data. (18,21–23). Performances
of ensemble ML-based methods have been examined
extensively (24–30) and they have been proven to be
effective in various applications, such as optical character
recognition, face recognition, protein classification and
gene expression analysis (18,31–32).
In general, most ML-based methods rely on known

pre-miRNA characteristics as features for training predic-
tion models. Among these specific features, hairpin second-
ary structure and minimum free energy (MFE) of
stem-loop hairpins are considered as key features (4).
However, plant pre-miRNAs have been reported to have
different characteristics from those of animals in MFE dis-
tribution, size and stem-loop structure (3,14,33). Moreover,
MFE of hairpin structure was not a unique characteristic
for miRNA because some small non-coding RNA
(ncRNA) also has high negative MFE value similar to
those of pre-miRNAs (34). It has been reported that the
stem loops of pre-miRNAs exhibit a significantly high level
of genetic robustness in comparison with other stem-loop

sequences (35–37). The high intrinsic robustness of miRNA
stem loops which goes beyond the intrinsic robustness of
other stem-loop structures is likely a consequence of selec-
tion for functionally relevant substructure toward increased
robustness (38). In this study, we considered various
robustness features of miRNA such as Z-score, P-value
and self-containment (SC) score. The SC score is an in
silico used to measure the structural robustness property
of the RNAs in the face of perturbations. It has been
shown that both plant and animal pre-miRNA hairpins
have particularly high SC scores, with right-skewed distri-
bution, compared with other hairpins. Since the
pre-miRNAs need to maintain stable structural folding
through cleavage steps during their biogenesis pathway,
the pre-miRNA stem loops exhibit high SC whereas
pseudo-hairpin sequences and other structured RNAs do
not (39). Therefore, we were interested in exploring these
kinds of robustness characteristics of pre-miRNAs.

In addition, there are two challenging issues for further
enhancement of ensemble performance. Firstly, irrelevant
and redundant features can significantly reduce the per-
formance of classifiers. Therefore, identification of dis-
criminatory features is required. Secondly, for training
data, the class of interest (minority class) is rare and has
less data than the majority class, which is commonly
found in Bioinformatics data, including pre-miRNA
data. In the case of imbalanced data, algorithms aim to
maximize overall accuracy and bias toward the majority
class. Thus, rebalancing the imbalanced training data is a
necessary step for improving performance on both sensi-
tivity and specificity.

This study presents a novel heterogeneous ensemble
combining various efficient classifiers to the problem of
pre-miRNA classification. The method, a cooperative com-
bination of different learning algorithms exposed to differ-
ent training subsets, can create a high level of diversity and
reduce bias that tends to occur when single individual clas-
sifier is used. Consequently, the ensemble provides a more
reliable prediction. Additionally, novel robustness features
were introduced: the SC-base pair composite features
served as promising discriminators in distinguishing real
pre-miRNA hairpins from other hairpin sequences with
improved sensitivity and specificity from an original SC
feature. Moreover, a feature selection (FS) method was
applied to select only relevant and discriminative
features. The problem of imbalanced data was solved by
the modified-Synthetic Minority Oversampling Technique
(SMOTE) bagging method. This enhanced ensemble-based
method would effectively differentiate pre-miRNA from
non-miRNA sequences with higher accuracy and better
balanced sensitivity and specificity score, across various
organisms, making our model a useful tool for finding
novel animal, plant and virus pre-miRNAs.

MATERIALS AND METHODS

Data set

Training data
We randomly selected 600 non-redundant sequences of
1424 Homo sapiens pre-miRNAs, 200 of 491 of Oryza
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sativa, and 200 of 232 of Arabidopsis thaliana from the
miRBase version 17 (40) as our positive data sets, where
H. sapiens, O. sativa and A. thaliana represent animal,
monocot plant and dicot plant positive data, respectively.

The negative training data set was composed of both
pseudo-hairpin sequences and other ncRNAs. 8494
non-redundant pseudo-hairpins were extracted from the
protein-coding region (CDS) according to the human
RefSeq genes. The pseudo-hairpins were selected based
on the following criteria: (i) length distribution of pseudo
sequences similar to those of pre-miRNAs, (ii) have a
minimum 18 bp on stem structure and (iii) a maximum
�18 kcal/mol of free energy. A set of 4000 pseudo-hairpin
sequences, randomly selected from 8494 hairpins, were rep-
resented as one type of negative training data set. A set of
754 other non-coding RNA (ncRNAs) originally from the
Rfam database (41) is another type of negative training
data, composed of 327 tRNAs (transfer RNAs), 5 sRNAs
(small RNAs), 53 snRNAs (small nuclear RNAs),
334 snoRNAs (small nucleolar RNAs), 32 YRNAs (non-
coding RNA components of Ro ribonucleoproteins) and
3 other miscellaneous RNAs. These non-redundant
ncRNA sequences have length between 70 and 150 nt and
can form hairpin structures. In this work, four independent
testing sets were used to evaluate the performance of the
algorithm. Description of the four testing data sets is pre-
sented in Supplementary Method S1.

Features

We gathered 103 features previously introduced in other
works (8–9,11–12), including 19 sequence-based features,
24 secondary-structure-based features, 28 base-pair fea-
tures and 32 triplet-sequence-structure-based features.

This study, not only included all features used in previ-
ously proposed methods, but also incorporated structural-
robustness-related properties into the feature set. We
defined new features—namely ‘the SC-derived feature’
which were SC/(1� dP), SC�dP, SC�dP/(1�dP), SC/
tot_bp, SC/Len, SC�MFE/Mean_dG, SC� zG, SC/
NonBP_A, SC/NonBP_C, SC/NonBP_G and SC/NonBP_
U—and incorporated them into the list.

The list of 125 features used in our study is summarized
in Table 1. Detailed descriptions of these features are
provided in Supplementary Method S2.

FS methods

We considered three filter FS methods: ReliefF, Informa-
tion Gain (InfoGain) and correlation-based feature selec-
tion (CFS) (42–45). Details of the FS determination are
described in Supplementary Method S3.

Algorithm selection

To select base classifiers for constructing an ensemble,
various algorithms were compared. Eight algorithms—
naı̈ve bayes (NB), neural networks (MLP), support vector
machine (SVM), k-nearest neighbors (kNN), decision tree
(J48), repeated incremental pruning to produce error
reduction (RIPPER), RBF network (RBFNets) and
random forest (RF)—were considered in our algorithm
selection experiment. Each displays a different inductive

bias and learning hypotheses (instance-based, rules, trees
and statistics) and, therefore, provides a potentially more
independent and diverse set of predictions to build upon.
The details of algorithms are described in Supplementary
Method S4.

Ensemble method

Our heterogeneous ensemble method was implemented
using Perl and Java scripts. Our program was run on a
Fedora Linux-based machine. We used Weka (46),
LIBSVM (47,48) and R programming (49) to build and
compare base classifiers. The computational procedure of
our method was illustrated in Figure 1A. The training
process started from collecting positive and negative data.
Each sequence in the training datawas extracted as an input
vector of 125 features by a feature extraction process. Then,
the FS method selected informative and relevant features
and removed irrelevant and redundant features from the
125 feature set. The sub-sampling methods were applied
to rebalance the distribution in the training data as
illustrated in Figure1B. To handle the class imbalance in
the data set, the resampling techniques, both over-sampling
and under-sampling, were integrated to improve the
minority class prediction performance, andwere performed
as follows. First, we applied the SMOTE (50) with a
resampling rate of 50% to increase the frequency of the
minority class by synthesizing 500 new samples of the
minority class (using the parameter k=5). Under-
sampling was applied to create equal class balance
in training subsets by under-sampling the majority class
with the same number of examples of minority class.
These resampling methods were called the ‘modified-
SMOTEbagging’ method. The method finally gave four
class-balanced training subsets: one subset of ‘miRNA
versus ncRNA’ and three subsets of ‘miRNA versus
pseudo-hairpin’. After the rebalancing, the chosen algo-
rithms were then trained on each balanced training subset.
As a result, 12 base classifiers (4 SVM, 4 RF, 4 kNN) were
combined to form the ensemble. Finally, the predictions
of 12 individual classifiers, which were 3 algorithms
trained on 4 well-balanced distribution training data
subsets, were voted to obtain the final prediction.

Performance evaluation methods

To precisely assess the predictive power of a prediction
method and model comparison, we used several perform-
ance measurements already applied extensively in the field
of Bioinformatics. All the performance measures are
defined as:

Accuracy ðACCÞ ¼ TPþTN
TPþTNþFPþFN

Positive Predictive Value ðPVVÞ ¼ TP
TPþFP

False Positive Rate ðFPRÞ ¼ 1-Specificity ¼ FP
TNþFP

Sensitivity ðSnÞ ¼ TP
TPþFN

Selectivity or Specificity ðSpÞ ¼ TN
TNþFP

Geometric Mean ðGmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSn� SpÞ

p
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The receiver operating characteristic (ROC) curve is a
graphic visualization of the trade-off between the true
positive and false positive rates for every possible cut
off; we used an area under the ROC curve (AUC) to
compare the performance of classifiers.

RESULTS AND DISCUSSION

Predictive performance improvement using SC-derivative
features

Since the choice of features has an impact on predictive
performance of classifier, the discriminative powers for
each feature group are compared. The average 5-fold
CV (51) performance of different feature groups is
shown in the Table 2. The accuracy, commonly used meas-
urement, is not an appropriate metric to evaluate the per-
formance of a classifier in class-imbalanced data since the
negative class (majority) in training data is much larger

than the positive (minority) class. The geometric mean
(Gm) is suitable for evaluating the performance in this
situation where class-imbalanced data still occurs
because it considers performance on both majority and
minority classes (52). Among the five feature groups in
this study, the SC derivative group showed the most dis-
criminative power with the highest sensitivity at 84.5%,
the highest specificity at 98.4% and the highest Gm at
91.18%. A classifier employing a SC derivative feature
group outperformed those employing other feature
groups. Moreover, it outperformed the classifier that
utilized all 125 features (Gm of 90.86%). This indicates
that the SC derivative feature group is a strong discrimin-
ant between pre-miRNA and non-miRNA sequences. This
result was consistent with previous reports (38–39) in
which pre-miRNAs showed high robustness in their struc-
ture since pre-miRNAs need to maintain functional struc-
ture in the face of perturbation in their biogenesis. The
real pre-miRNAs exhibit remarkably high SC, which goes

Figure 1. (A) Overview of proposed ensemble method: the training process is shown by dark thick arrows. The testing process is shown in white
arrows. (B) Rebalancing class distribution procedure: the imbalanced training data were processed to obtain four subsets of training data with
balanced distribution between positive and negative classes.

Table 1. List of 125 features used in this work

Feature groups No. of
features

Feature symbol

Sequence-based features 19 Len, %G+C,% A+U, %AA, %AC, %AG, %AU, %CA, %CC, %CG, %CU, %GA, %GC,
%GG, %GU, %UA, %UC, %UG, %UU

Secondary structure features 30 MFE, efe, MFEI1, MFEI2, MFEI3, MFEI4, dG, dQ, dD, dF, Prob, zG, zQ, zD, zF, nefe, Freq,
diff, dH, dH/L, dS, dS/L, Tm, Tm/L, MFEI5, MFE/Mean_dG, dH/loop, dS/loop, Tm/Loop,

dQ/Loop

Base pair features 32 dP, zP, div, tot_bp, stem, loop, A-U/L, G-U/L, G-C/L, %A–U/Stem, %G–C/Stem, %G–U/Stem,
Probpair1–10, Avg_BP_stem, NonBP_A, NonBP_C, NonBP_G, NonBP_U, Non_BPP, %A–U/BP,

%C–G/BP, %G–U/BP, Avg_BP_Loop

Triplet sequence structure 32 A(((, A((., A(.., A(.(,A.((,A.(.,A..(, A . . ., C(((, C((., C(.., C(.(, C.((, C.(., C..(, C. . ., G(((, G((., G(..,
G(.(, G.((, G.(., G..(, U. . ., U(((, U((., U(.., U(.(, U.((, U.(., U..(, U. . .,

Structural robustness features
(SC-derived features)

12 SC, SC/tot_bp, SC/Len, SC�MFE/Mean_dG, SC� dP, SC� zG, SC/(1� dP), SC�dP/(1� dP), SC/

NonBP_A, SC/NonBP_C, SC/NonBP_G , SC/NonBP_U

Total 125

Our additional features are shown in bold.
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beyond the intrinsic robustness of the stem-loop hairpin
structure.

Both plants and human pre-miRNAs are similar in SC
profile distribution but differ from those of ncRNAs and
pseudo-hairpin sequences (Figure 2A). This implies that
the SC score can distinguish real pre-miRNAs not only
from pseudo hairpin, but also from other small ncRNAs.
The result indicated that miRNAs have unique robustness
in their structures, which evolved from their functional
selection, and this evolved robustness is found in all
pre-miRNAs studied in this work. We further investigated
this by calculating average SC values in the training data.
The average SC values of both human (0.86) and plant
(0.91) species are significantly higher than those of other
functional RNAs (0.51) and pseudo-hairpin sequences
(0.44). This result is consistent with previous studies re-
porting that pre-miRNA exhibit high intrinsic structural
invariance with a strong SC score between 0.85 and 0.98,
whereas other stem-loop forming small ncRNAs yield SC
ranges (�0.4–0.6) much lower than the pre-miRNAs (39).
Additionally, they observed correlation relationships
between SC and various structural features. Thus, these
results led to the idea of incorporating various structural
features into the SC as our novel features with an aim to
maximize specificity and sensitivity.

To further evaluate the performance of individual SC
derivative features, the classification performances gained
using individual features of our 11 SC-derived features
were reported (Table 2). SC-base pair composite
features, such as SC�dP, SC/(1�dP) and SC�dP/
(1� dP), showed the most discriminative features. We
found that the use of so-called SC-base pair composite
features—the incorporation of information about base
pairing or non-base pairing with the SC score—can
increase predictive performance by 4–5% in terms of sen-
sitivity value, 1% in terms of specificity and 2–3% in terms
of Gm value. By using these three features individually,

the classifier distinguishes real pre-miRNA from other
hairpins with higher sensitivity and specificity than the
original SC score.
In Figure 2B, C and D, the distribution of SC-base pair

composite features of real pre-miRNA and negative
hairpins were well separated. The human pre-miRNA
(H. sapien) and plant pre-miRNAs (O. sativa and
A. thaliana) distributions are similar but they differed
from those of pseudo-hairpins and other ncRNAs. This
result indicated that our SC-base pair combining features
were capable of distinguishing real pre-miRNA from
other false hairpins across human and plant species.
Among the SC-base pair composite features, the feature
SC� dP/(1� dP) yields the highest discriminative power
with Gm of 89.84%. The results suggested that using some
certain features can give as good performance as using all
of the 125 features (Table 2). This may be due to the fact
that there are redundant and irrelevant features overall.
Therefore, it is reasonably suitable to incorporate the FS
method to select only informative, relevant, and
non-redundant feature subsets, plausibly increasing the
predictive performance of the classifier and decreasing
the computation time in the feature extraction process.
We investigated three statistical filtering methods based
on different criteria, namely ReliefF, InfoGain and
CFS+GA. The filter methods for FS rely on general char-
acteristics of data without involving any learning algo-
rithms while the wrapper method needs predetermined
classifiers in selecting features. It should be noted that
since our method is based on an ensemble system, the
wrapper methods that are dependent upon predetermined
classifier were not suitable in this study.
To choose the most appropriate FS method, we

compared the effectiveness of the 3-fold CV performance
of the three filtering methods (Table 3). ‘All features’ and
‘microPred feature’ were also shown as a baseline for com-
parison. The microPred feature is a set of 21 features from
microPred (11), not including our additional features (i.e.
SC-derived feature group). In FSs 1 and 2, features were
ranked according to ReliefF and infoGain, respectively.
The top 75 ranked individual features of the InfoGain
criterion produced a Gm of 91.35%. For ReliefF, the
top 50 ranked individual features yielded a Gm of
91.40%. The CFS+GA method selected the subset of 20
features with a Gm of 91.49%. The classifiers with selected
feature sets (FS1, FS2 and FS3) performed better than
classifiers with full feature sets. The possible reasons are
some features may be irrelevant and some of them may be
redundant due to their high correlation with others in a
large number of features. When using the FS method to
select relevant and informative features that contribute to
discrimination between true and false pre-miRNAs, the
performance and robustness of classifiers can be
improved (53). Among classifiers with the different FS
method, the classifier with the CFS+GA feature set
yielded the highest Gm and performed better than those
from other methods. Thus, we chose the CFS+GA as a
FS method because it gave better overall accuracy and
selected a more compact set of features than the other
two methods. A selection of relatively fewer features has
the advantage of being less time consuming in computing

Table 2. Predictive performance of each feature groups by the 5-fold

CV

Feature groups No. of
features

Sn Sp Gm

Sequence features 19 45.0 96.3 65.83
Structure features 30 82.8 97.6 89.90
Base pair feature 32 81.5 97.8 89.28
Triplet sequence structure 32 77.7 97.1 86.86
SC related feature 12 84.5 98.4 91.18
All five feature groups 125 84.0 98.3 90.86
Feature SC 1 76.6 96.9 86.15
Feature SC�dP 1 80.5 98.1 88.86
Feature SC/(1� dP) 1 81.3 97.9 89.76
Feature SCxdP/(1� dP) 1 82.2 98.2 89.84
Feature SC�MFE/Mean_dG 1 81.9 97.5 87.76
Feature SC� zG 1 78.9 98.8 89.36
Feature SC/tot_bp 1 0 100 0
Feature SC/Len 1 0 100 0
Feature SC/NonBP_A 1 68.5 98.4 82.09
Feature SC/NonBP_C 1 0 100 0
Feature SC/NonBP_G 1 0 100 0
Feature SC/NonBP_U 1 48.8 98.4 69.29

Sn=Sensitivity, Sp=Specificity and Gm=Geometric mean.
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features and increasing the classifier performance by using
only informative features. The 20 selected features by the
CFS+GA are the following features: Prob, MFEI1, zG,
zP, zQ, dH/Loop, Tm/Loop, AU/L, Avg_BP_loop,
MFEI5, SC, SC�dP, SC�MFE/Mean_dG, SC� dP/
(1� dP), SC/nonBP_A, Non_BPP, A(((, G(.., C . . . and
ProbPair4, which were used later in further experiments.

Model selection for an efficient ensemble

To select algorithms for construction of an efficient
ensemble, various classification algorithms—NB, SVM,
kNN, MLP, J48, RIPPER, RBFNets and RF—which
have been commonly applied in Bioinformatics, were
investigated and compared. Performance of eight different
algorithms on the task of pre-miRNA hairpin classifica-
tion is summarized in Table 4 as the average 10� 5-fold
CV. Among the eight algorithms, SVM, kNN and RF
models showed their superior performance in different
evaluation metrics. The SVM algorithm gave the highest
AUC score on CV. This is likely due to the fact that the
algorithm used support vectors that provide a hyperplane
with a maximal separation between positive and negative
samples, giving the best optimization performance among
the eight classifiers. The kNN algorithm yielded the
highest specificity and precision measurements of 99.2
and 96.7%, respectively, implying that it performed
better in correctly identifying the negative class (false
miRNA hairpin sequences) and produced the lowest
FPR. The kNN algorithm classified the sample based on
the ‘k’ nearest neighbor samples. It produced a satisfac-
tory result for negative data, possibly because negative
data have features that are more locally clustered by a

closer distance. On the other hand, RF performed most
accurately in identifying the positive class (real miRNA
hairpin sequences) by yielding the highest sensitivity of
86.7%, similar to previous findings in MiPred (10). This
is possibly due to RF, which combined multiple decision
trees with multiple discriminative rules that can cover the
heterogeneity of characteristics in pre-miRNAs.

Consistent with the No Free Lunch (NFL) theorem
(19), this result strongly suggested that there is no single
best algorithm that is superior to all performance metrics.
Based on the evaluation, SVM, RF and kNN algorithms
were chosen as ensemble members because of their best
performances in different metrics: AUC, sensitivity and
specificity performance. These three algorithms are differ-
ent in the way they learn from data. Selecting diverse al-
gorithms will not only combine the strengths of multiple
algorithms, but will also make individual classifiers in
ensembles disagree with each other. This disagreement
among classifiers is utilized by voting to give a reliable
final prediction.

Class-balance and FS enhancing the ensemble performance

In the training data set, pre-miRNA is considered to be a
minority class, with the ratio of class distribution being
�1:5 (miRNA:non-miRNA). It has been shown that the
imbalance of pre-miRNAs training data can affect the
accuracy of classifiers (11). We performed 10 run of
5-fold CV and investigated the performance of our three
different ensemble models in Table 5. Vote1 is the
ensemble of three models (SVM, kNN, RF) using all
features trained on class imbalance data (original data
without performing the resampling techniques). The

Figure 2. The SC-base pair composite features of Human_miRNA, Plant_miRNA, Other ncRNAs and Pseudo hairpins in our training dataset.
(A) Original SC feature. (B) Feature SC�dP. (C) Feature SC/(1�dP). (D) Feature SC�dP/(1� dP).
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main difference between Vote1 and Vote2 is the number of
features for building models; Vote2 uses 20 features
selected from the FS method. Performance can be
improved using only relevant and informative features.
The ensemble classifiers with the set of selected feature
(Vote2) produced better results than the ensemble classi-
fiers with full feature sets (Vote1). By applying FS, we
significantly improved the performance of our ensemble
from 95.48 to 95.81% in terms of accuracy, and from
0.973 to 0.976 in terms of AUC.

Unlike Vote1 and Vote2, Vote3 is an ensemble model
with 12 classifiers (4 SVM, 4 kNN and 4 RF) trained on

class-balanced data, i.e. the SVM, kNN and RF trained
on 4 balanced training data subsets (3� 4 =12). Most ML
methods assume the balance between positive and
negative classes in data sets and usually perform poorly
on imbalanced data sets because it will maximize the
overall prediction accuracy by a bias toward the
majority class (52,54,55). Therefore, it will misclassify
the minority class, in our case, which is the class of
interest. To reduce the risk of the model performing
poorly on the minority class (pre-miRNA), we solved
the class imbalance problem at both data and algorithm
levels by combining the SMOTE over-sampling method
with the under-sampling method, and integrating them
into the ensemble model. Various resampling methods
have their own strengths and drawbacks. It was previously
reported that under-sampling the majority class poten-
tially removes certain important samples, resulting in
loss of useful information. On the other hand, randomly
over-sampling the minority class can lead to over-fitting
on multiple copies of minority class examples (50,52,54).
To avoid the problem of over-fitting, the technique called
SMOTE was utilized to generate synthetic examples along
the line segments joining any of the k minority class to
their nearest neighbors; this broadened the decision
boundaries for the minority class to spread further into
the majority class space. At the algorithm level, our model
is an ensemble of classifiers, one way to deal with the data
imbalanced problem. Comparison of the effectiveness of
several ensemble-based techniques in learning from
imbalanced noisy data has shown that bagging techniques
generally outperform boosting in most cases—bagging
improved over individual classifiers is more consistent on
various data sets than boosting (30,56). Moreover, the
positive synergy between resampling techniques and
bagging algorithms has been observed when comparing
various ensemble-based rebalancing techniques. The
hybrid approaches of SMOTE and under-sampling in
the bagging-based algorithm, called SMOTEbagging, out-
performed others (57). The technique is similar to our
imbalance-tackle method, except the SMOTE resampling
rate. We set the SMOTE resampling rate at the constant
rate of 50% (the synthetic data were generated for 50% of
the original data in the minority class) to reduce compu-
tational time and the amount of synthetic samples that
could possibly degrade the performance of classifiers.
Using modified-SMOTEbagging, we combined the
strength of the individual methods while lessening the
drawbacks. The SMOTE method also increased the per-
formance of ensembles by establishing diversity, one
factor necessary in building efficient ensembles.
Comparing Vote2 (imbalanced) and Vote3 (balanced),
the sensitivity of Vote3 increased by 10% (from 85.1 to
94.8%), which is significantly higher than that of Vote2,
whereas the specificity of Vote3 is slightly decreased
(<1%) from that of imbalanced class data.
By applying rebalancing techniques to handle the

imbalanced-class in the training data, we significantly
improved the performance of our ensemble from 95.81
to 96.54% in terms of accuracy, and from 0.976 to 0.996
in terms of AUC. Vote3 ensemble model with selected
features and trained on class-balanced data yielded the

Table 4. Comparison of the performance of different methods on

training data using 20 selected features

Algorithms Performance measurement

ACC Sn Sp PPV FPR AUC

K-nearest neighbors
(kNN)

95.511 83.3 99.2 96.7 0.8 0.966

Support vector machine
(SVM)

95.528 85.1 98.6 94.8 1.4 0.972

Artificial neural network
(MLP)

95.283 86.5 97.9 92.4 2.1 0.964

Decision tree (J48) 94.581 84.4 97.6 91.3 2.4 0.920
RBF networks (RBFNets) 94.352 86.4 96.7 88.7 3.3 0.968
Rule based (RIPPER) 94.809 84.0 98.0 92.6 2.0 0.923
Naı̈ve bayes (NB) 93.585 85.5 96.0 86.4 4.0 0.955
Random forest (RF) 95.283 86.7 97.8 92.1 2.2 0.965

Sn=Sensitivity, Sp=Specificity, PPV=Positive predictive value,
ACC=Accuracy, FPR=False positive rate and AUC=Area under
ROC curve. The highest values are in bold.

Table 5. The 10� 5 fold CV generalization performance of balanced

and imbalanced ensembles with selected features

Algorithms Performance measurement

ACC Sn Sp FPR Gm AUC

Vote 1 (Imbalanced,
all features)

95.48 84.1 98.7 1.3 91.2 0.973

Vote 2 (Imbalanced,
20 selected features)

95.81 85.1 99.1 0.9 91.4 0.976

Vote 3 (Balanced,
20 selected features)

96.54 94.8 98.3 1.7 96.5 0.996

ACC=Accuracy, Sn=Sensitivity, Sp=Specificity, FPR=False
positive rate, Gm=Geometric mean and AUC=Area under the
ROC curve.

Table 3. The average performance by different feature selection algo-

rithms on our training data

Feature subsets No. of
features

Sn (%) Sp (%) Gm (%)

All features (No FS) 125 84.0 98.3 90.86
microPred features (J–M) (10) 21 83.0 97.9 90.14
FS1: ReliefF 50 84.9 98.4 91.40
FS2: InfoGain 75 84.9 98.3 91.35
FS3: CFS+GA 20 84.9 98.6 91.49
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highest accuracy and balance between sensitivity and spe-
cificity value by the voting of 12 diverse and accurate clas-
sifiers. The results suggest that obtaining discriminatory
features by the FS method and rebalancing data distribu-
tion by resampling method are essential pre-processing
steps for yielding accurate prediction. Thus, the model
Vote3 would be further used in comparing the perform-
ance to other existing methods.

Comparison of predictive performance of our ensemble
with other methods

We compared the performance of our ensemble algorithm
with those of the other existing methods (8–9,12,13), each
of which has published results testing on the same data
available to download (the 1st testing data set). The results
of the comparison with existing methods are given in
Table 6. Our ensemble outperformed other methods on
three data sets: TE-H, IE-NC and IE-M. For the
IE-NH, the miPred was slightly better than our method.
However, miPred gave the lowest performance in term of
specificity or it did not perform well in filtering out the
negative testing data (the IE-NC and IE-M). Specificity is
the performance that the method can identify and filter for
the negative class. The specificity and FPR are correlated:
when the method has high specificity, the FPR will be
lower (%FDR=100�%Sp). Our method efficiently
lowered false positives with an FPR of 16.7% compared
with other methods with the FPR between 17.25–31.32%
in IE-NC testing data.
We also used the TE-CS data set (as reported in

8,12,15) for comparison—this was composed of 581
pre-miRNAs. This data set allows us to evaluate and
compare the sensitivity of our method with Triplet-
SVM, yasMir and PmirP, trained on human miRNA
hairpin data. As shown in Supplementary Table S3,
among the human miRNA hairpin-trained method, our
method had the highest accuracy (98.1%) when
compared with the other four methods. yasMir was the
second best with sensitivity of 95.3% followed by PmirP,
mirExplorer and Triplet-SVM with accuracy of 94.0, 92.4
and 90.9%, respectively.
In order to compare various ML techniques, we used

the ‘Common Test’ data set from mirExplorer (58) which
allowed our method to compare with SVM, RF and
boosting-based algorithms. As shown in Table 7, our
bagging based algorithm performed better in both sensi-
tivity and specificity value than SVM and RF algorithm
based method. Both sensitivity and specificity of our
method is comparable to mirExplorer, a boosting based
method. However, our ensemble performed the best in
identifying the 437 multi-loop pre-miRNAs. Moreover,
the performances of our method and MirExplorer in
classifying across species miRNA, 16 species ranging
from animals to virus, were reported in Supplementary
Table S4.
Besides, it has been known that the plant pre-miRNA is

different from animal pre-miRNA in several aspects,
mainly in hairpin loop structure and size, with size
ranging from 60 to 500 nt and containing short loops
and long stems. In order to compare our ensemble

sensitivity with other existing methods trained on
plants pre-miRNAs, we used the same testing data as
PlantMiRNAPred. The comparison of our classifier
performance with the results reported in (14) is given in
Table 8. As many plant pre-miRNAs contain multi-loop
(14), our method can classify them correctly with the
highest accuracy. This can be inferred that our method
is sensitive enough to identify pre-miRNAs with
multi-loop. These results suggested that our method
performs with the highest sensitivity across plant and
animal species, followed by the yasMir (12), which is the
second best when the 1st and 3rd testing data were tested.
As a consequence, the yasMir method was also included in
comparison in the next sections, in which we downloaded
the yasMir program and performed the test on our 2nd
and 4th testing data.

High sensitivity of our ensemble

We evaluated the predictive power of the ensemble by
applying it to predict all known pre-miRNA taken from
miRBase version 17 and up-to-date version 18 (the 2nd
testing set). This testing data is an across species
pre-miRNA containing all pre-miRNAs from animal,
plant and virus species. Our ensemble can achieve high
accuracy of 92.89, 97.38 and 94.17% when testing across
93 animal species, 52 plant species and 23 virus species,
respectively (Supplementary Table S5). Our methods—
trained using human, monocot plant and dicot plant
species—is applicable to animal, plant and virus species
with high accuracy. Although the miRBase is a main
miRNA repository, it contains published pre-miRNAs
from both experimental and computational results. In
order to test solely on experimentally verified
pre-miRNA, we retrieved pre-miRNAs from the
miRNAMap (59). The testing results on pre-miRNAs
from miRNAMap are given in Supplementary Table S6.
Our method achieved high accuracy of 97.29% when
testing on all experimentally verified pre-miRNA se-
quences from miRNAMap.

We compared the performance of our ensemble with its
individual classifiers of SVM, kNN and RF; the results are
shown in Supplementary Figure S3. We also included
another existing method called yasMir (12), which is a
SVM-based classifier, in the plot. As depicted in the
plot, the ensemble got better prediction results compared
with single SVM, kNN, RF and yasMir in most testing
cases. The ensemble model is a high-performance
approach, relatively, providing superior accuracy—
higher than single classifiers. This is due to the comple-
mentary role from each of the 12 classifier members in our
ensemble model. This result is consistent with the previous
findings (30,56) that the bagging-based classifier is almost
always more accurate than single individual classifiers in
most testing cases while the boosting-based classifier could
be less accurate than single individual classifiers in some
cases.

Not only does the algorithm affects performance of pre-
diction, but also our discriminative features, SC and its
derivatives, to improve the efficiency of our model. To
give the supported evidences that our novel features
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would significantly distinguish real pre-miRNAs from
other stem-loop sequences in the testing data, average
values of SC and its SC-base pair composite features,
across different groups of organisms in our testing data,
including those of negative data set are calculated and
presented in Supplementary Table S7. Average values of
MFE, a well-known feature, across different groups of
organisms were also given. The MFE values of small
ncRNAs fall into the range of �33.16±24.17 similar to
those of animal pre-miRNAs. In addition, we observed
high MFE and high variation in MFE distribution of
plant pre-miRNAs. This shows that MFE can be used
to distinguish pre-miRNAs from random pseudo
hairpins, but cannot differentiate the real pre-miRNAs
from other small stem-loop forming ncRNAs. Consistent
with the training data, the average values of SC and three
SC-base pair composite features of all pre-miRNAs in
testing data were significantly higher than those of other
negative hairpin sequences. The distributions of MFE, SC
and SC derivative values for the testing data were plotted
as shown in Supplementary Figure S4. In contrast to the
MFE, well separations between positive and negative data
were found in SC and SC-base pair composite features.
The SC and our three SC-base pair composite features are
useful for distinguishing real pre-miRNA hairpins, both
plant and animal, from pseudo hairpin and other ncRNA
sequences effectively. Moreover, the viral pre-miRNAs,
known to evolve rapidly from plant and animal
pre-miRNAs (60) also show a similar trend in SC and
SC-base pair composite features to plant and animal
pre-miRNAs. This confirmed that the pre-miRNAs

possess unique functional structure that distinguishes
them from other hairpin structures.

High specificity of our ensemble

The ability to reduce FPR is essential in the computational
identification of pre-miRNA sequences. To assess the
FPR of our ensemble, we compared our method with
yasMir, the second best performance in terms of sensitiv-
ity, on the 4th testing data set. The results showed that the
ensemble had the FPR of 6.26% for classifying miRNA
from pseudo-hairpins, 11.65% for classifying miRNA
from shuffle sequences, and 16.78% for classifying
miRNA from other functional ncRNA (Table 9). This
suggested that the method had a low FPR (11.56%),
which was relatively low for scanning pre-miRNA se-
quences in genomes compared with the yasMir algorithm.
We also applied our method in a more realistic situation as
a computational pipeline for pre-miRNA scanning on the
genome scale as reported in Supplementary Method S5.
The ensemble, the voting of multi-expert classifiers, is
known as an effective way of increasing specificity
through voting and of giving lower false positive results
than a single classifier. Our ab-initio ensemble based
method has proved in this and previous sections that it
can predict pre-miRNAs with high sensitivity and
specificity.
The accuracy of the method can be affected by the re-

liability of the training data. A recent study (61)
demonstrated that commonly used positive and negative
control data may be unreliable, and provided a new set of
control data: high confidence positive control data with
functional evidences and negative control data with no
evidence of processing by Dicer. Our method was also
tested with these novel control data. It yielded accuracy
of 100% for positive control and accuracy of 98.09% for
negative data. As given in Supplementary Method S6, our
method predicted almost all positive control (127 out of
129) as pre-miRNA with the highest probability of 1.0,
whereas 2 of 129 were predicted as pre-miRNA with
high probability of 0.75. This result again confirmed that
our discriminative features and algorithm work well in
identifying bona fide functional pre-miRNAs.

CONCLUSION

Various ML algorithms—including NB, MLP, J48, SVM,
kNN, RBFNets, RIPPER and RF—were applied to
discriminate real microRNA precursors from pseudo-
hairpin sequences and other ncRNAs. The comparison

Table 7. Comparison of our method to other method on ‘Common test’ testing data set of mirExplorer

Method Balance method CV SE SP Gm ACC(%) Multiloop

Triplet-SVM (SVM) – – 88.40 83.50 0.859 N/A
MiPred (random forest) – – 84.34 93.56 0.888 N/A
microPred (SVM) SMOTE outer 5cv 90.50 66.43 0.775 54.23
mirExplorer (AdaBoost) SMOTE+undersampling outer 10cv 94.32 97.11 0.957 92.68
Our method (ensemble) Modified-SMOTEBagging 10x5cv 95.11 97.91 0.965 97.25

SE, SP and ACC represent sensitivity, specificity and accuracy, respectively.

Table 6. The prediction performance of the automated classifier,

yasMir, miPred, tripletSVM and our method evaluated the same

testing data set

Test sets Automated
classifier (11)

yasMiR (10) miPred (7) Triplet
SVM (6)

Our
method

TE-H 94.30 93.77 93.50 87.96 98.37

IE-NH 94.91 94.11 95.64 86.15 95.31

IE-NC 77.71 82.95 68.68 78.37 83.22

IE-M 96.77 100 87.09 0 100

TE-H (123 human pre-miRNA and 246 pseudo hairpins), IE-NH (1918
pre-miRNA across 40 non-human species and 3836 pseudo hairpins),
IE-NC (12 387 functional ncRNAs) and IE-M (31 mRNAs). The values
are percentages of correct prediction for each method on each data set.
The highest values are in bold.
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performance of each algorithm on the pre-miRNA classi-
fication task was performed. Since different learning algo-
rithms have different strengths and weaknesses, we
proposed to apply a heterogeneous ensemble to improve
miRNA hairpin classification. The heterogeneous
ensemble method has shown to improve the performance
in terms of sensitivity-specificity tradeoff. The method
contributes towards an improvement of miRNA hairpin
classification by the following reasons. Firstly, this vote of
multiple diverse classifiers could have better and more
reliable prediction than a single classifier since it can
reduce the chance of incorrect classification in single algo-
rithms. Secondly, the ensemble incorporated with the
modified-SMOTEbagging techniques is an effective way
to handle class-imbalanced problems occurring in
pre-miRNA data. Each base classifier in the ensemble is
trained on a well-balanced subset of the training data,
which makes our model better for classifying the
minority class (pre-miRNAs) than those of class-
imbalanced data. Thirdly, the ensemble can give an
optimized answer with respect to sensitivity, specificity
and accuracy by selected RF (one member that gives the
highest performance in identifying the positive class),
selected kNN (one member that gives the highest perform-
ance in filtering out the negative class) and selected SVM
(one algorithm in the ensemble that can give better
tradeoff between true positive and false positive), respect-
ively. The aggregation of these algorithms increased the
possibility that the ensemble truly represented the charac-
teristics of pre-miRNAs. Finally, our ensemble also
incorporated robust features, that is, our SC-base pair

composite features, proven to be the most informative
from the feature set that can efficiently discriminate true
pre-miRNA hairpins.

Unlike previous methods, ours was trained on the data
set containing human and plant pre-miRNAs. The overall
CV prediction accuracy was 96.54% for our ensemble,
which significantly outperformed all other learning
methods at 95% confidence level. We also tested the per-
formance of the ensemble on cross-species data taken
from miRBase18. The results demonstrated that the
method performs well across animal, plant and virus
species with accuracy of 92.89, 97.38 and 94.17%, respect-
ively. In conclusion, integrating the resampling techniques
and discriminative feature set to the miRNA heteroge-
neous ensemble classification algorithm can improve the
accuracy of miRNA hairpin classification.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–7, Supplementary Figures 1–4,
Supplementary Methods 1–6, Supplementary Data 1–2
and Supplementary References [62–73].
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Table 8. Sensitivity performance on plant specie pre-miRNAs

Species No. of
sequences

Accuracy (%) Our method

PlantMiRNA Pred (12) Triplet-SVM (6) microPred (9) yasMir (10)

ath 180 92.22 76.06 89.44 97.78 99.44
osa 397 94.21 75.54 90.43 96.72 100
ptc 233 91.85 75.21 84.98 93.99 96.99
ppt 211 92.42 71.49 89.57 98.10 98.57
mtr 106 100 80.18 95.28 100 100
sbi 131 98.47 69.51 94.66 95.42 100
zma 97 97.94 66.97 93.81 97.94 96.90
gma 83 98.31 74.12 86.75 96.38 98.79
updated aly 191 97.91 70.98 91.62 100 100
updated gma 118 98.31 79.66 93.22 100 100

All methods were tested on the testing data set of PlantMiRNAPred (14).

Table 9. Specificity of our ensemble when applied to the negative testing data, compared with yasMir (the 2nd best sensitivity from Table 8)

Negative data No. of
sequences

Our method yasMir

Correctly classified (%) FPR (%) Correctly classified (%) FPR (%)

Pseudo hairpin 4494 93.74 6.26 86.91 13.09
Shuffle 21 470 88.35 11.65 83.69 16.31
IE-NC (1238ncRNA) 12 387 83.22 16.78 82.95 17.05
Average 12 784 88.44 11.56 84.52 15.48

Correctly classified (%) is the percent of the correctly classified as not pre-miRNAs, FPR (%) is the false positive rate.
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