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Abstract
Characterizing genetic diversity within and between populations has broad applications in studies
of human disease and evolution. We propose a new approach, spatial ancestry analysis, for the
modeling of genotypes in two- or three-dimensional space. In spatial ancestry analysis (SPA), we
explicitly model the spatial distribution of each SNP by assigning an allele frequency as a
continuous function in geographic space. We show that the explicit modeling of the allele
frequency allows individuals to be localized on the map on the basis of their genetic information
alone. We apply our SPA method to a European and a worldwide population genetic variation data
set and identify SNPs showing large gradients in allele frequency, and we suggest these as
candidate regions under selection. These regions include SNPs in the well-characterized LCT
region, as well as at loci including FOXP2, OCA2 and LRP1B.

Understanding how genetic diversity of individuals varies across populations has many
important applications in modern population genomics. In particular, measures of population
structure are used to correct for population stratification in genome-wide association
studies1, to identify associations of genetic variants to disease in the context of admixture
mapping2, to detect regions that have undergone recent positive selection3–5 and to
illuminate interesting aspects of human population history6,7.

© 2012 Nature America, Inc. All rights reserved.

Correspondence should be addressed to E.E. (eeskin@cs.ucla.edu)..
8These authors contributed equally to this work.

AUTHOR CONTRIBUTIONS
W.-Y.Y., J.N., E.E. and E.H. designed the methods and experiments. W.-Y.Y. implemented the methods. W.-Y.Y., J.N., E.E. and E.H.
jointly performed the analysis. All authors discussed the results and contributed to the writing of the manuscript.

URLs. SPA software, http://genetics.cs.ucla.edu/spa.

Note: Supplementary information is available in the online version of the paper.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

NIH Public Access
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2013 June 01.

Published in final edited form as:
Nat Genet. ; 44(6): 725–731. doi:10.1038/ng.2285.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://genetics.cs.ucla.edu/spa


Studies analyzing SNP data sets have been able to extract a considerable amount of
information on an individual's ancestral origin. Multiple empirical SNP surveys have shown
how an individual's geographic ancestry can be inferred using the first two principal
components of the genotype matrix (for example, see refs. 8,9). This relationship between
principal components and geographic origin is expected when the underlying genetic
variation is spatially structured10,11, that is, when genetic similarity decays with the
geographic distance between the origins of the individuals. Spatial structure is widespread in
human populations due to histories of spatial expansion and spatially restricted mating.
Although principal-component analysis (PCA) can capture the spatial structure of the data, it
is not based on an explicit probabilistic model for spatial genetic structure and, as a result, is
less amenable to extensions to other applications compared to model-based approaches.

In this paper, we report the development of a probabilistic model for the spatial structure of
genetic variation, with which we explicitly model how the allele frequency of each SNP
changes as a function of the location of the individual in geographic space (where the allele
frequency is a function of the x and y coordinates of an individual on a map). Then, each
individual's genotypes are assumed to follow Hardy-Weinberg proportions, with allele
frequencies defined by the individual's location. The family of functions we use to model
allele frequency over space is deliberately simple but leads to tractable inference algorithms
with several applications.

If the geographic origins of the individuals are known, we can use this information to infer
their allele frequency functions at each SNP. However, if locations are not known, our
model can infer geographic origins for individuals using only their genetic data, in a manner
similar in spirit to PCA-based approaches for spatial assignment. This ability provides
evidence that our modeling of allele frequencies, albeit simple, is sensitive and captures the
information about spatial location that is inherent to most variants. As our approach is model
based, the model can predict the geographic origins of an individual, even in the case where
the individual is of mixed ancestry. This is not possible in other approaches, such as PCA,
which is based on a linear combination of genotypes and, therefore, for example, leads to an
individual with an Italian parent and a Swedish parent being assigned to Central Europe.
Instead, the approach taken here can identify the disparate parental origins. We also show
how our approach can be extended to model spatial structure over a sphere to predict the
spatial structure of worldwide populations.

Using this framework, we also can identify loci showing extreme patterns of spatial
differentiation, for instance, as a result of recent positive natural selection and/or allele
surfing12,13. When we applied our SPA approach to genetic data from human populations,
we observed that some of the outlier regions detected by SPA have been found with
previous methods designed to detect recent positive selection, such as iHS14, FST (refs. 3,15)
and the method presented by Coop et al.16, including, for example, the LCT region and
human leukocyte antigen (HLA) regions. In contrast to previous methods, our method is
unique in being especially sensitive to strong spatial patterns and works at the level of the
individual rather than partitioning individuals into populations. The SPA method is
particularly sensitive to SNPs that have steep geographic gradients in allele frequency,
whereas FST-based approaches simply highlight loci that have large variation in allele
frequency.

RESULTS
Model implementation

The first assumption of our approach is that the population allele frequency of each SNP can
be modeled as a continuous two-dimensional function on a map. In other words, when
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sampling a chromosome of an individual from a position (x,y) on the map, the probability of
observing the minor allele at SNP j on the chromosome can be formulated as fj(x,y), where
fj is a continuous function that describes allele frequency behavior as a function of
geographic positioning (Online Methods). We then make the simplifying assumption that
this function is an instance of a logistic function

where x is a vector of variables indicating geographic locations and a and b are function
coefficients. We refer to each of these fj functions as the slope function of SNP j. This
function encodes the steepness of the slope by the norm of a, assuming that the offset
parameter b is fixed. Moreover, slope directionality is encoded in the value of vector a. In
detail, θj = arctan(aj(1) / aj(2)) can be taken as angle degree for SNP j, where aj(1) and aj(2)
are the first and second elements in a. Examples of these functions are shown where the
parameter a is set to [0.1,–0.1], [1,–1] or [30,–30] and parameter b is set to be zero in all
three slopes (Fig. 1).

These functions clearly do not capture cases for which SNPs have complicated functions
over geographic space, with, for example, multiple modes or peaks in the allele frequency
surface; however, these functions should capture general trends in allele frequency where
they exist. For spatial assignment applications, as we show, this behavior is not problematic
—a substantial amount of information for assignment arises from SNP loci that show
gradients across geographic space. Further, when we use our method for detecting extremely
differentiated loci, this assumption implies that the method will only detect loci that are
extreme in the sense of having steep gradients in allele frequencies.

The advantage of these functions is that they lend themselves to tractable formulations of the
likelihood of genotype data, and we were able to implement efficient Newton's- and pseudo-
Newton's–based methods for maximizing the likelihood function for various applications
(Online Methods). Using other classes of functions is certainly possible in this framework
but might lead to very challenging optimization problems.

Mapping using spatial ancestry analysis
As a first application of our approach, we considered a situation similar to that encountered
when performing PCA on a set of individuals with unknown spatial coordinates to infer their
spatial origins. For the SPA method, a challenge of this type of analysis is that neither the
spatial coordinates of the individuals nor the slope function for each SNP is given, and both
must be inferred from the genotypes. The ability to jointly estimate both the allele frequency
gradients and the spatial positions of individuals only from the genotype data provides
evidence that our model captures spatial genetic structure.

We used a maximum likelihood approach to estimate simultaneously the fj functions for
every SNP j and the spatial positioning of each of the individuals (Online Methods). We
started by placing the individuals in random positions, and we then iteratively used these
positions for the estimation of the slope functions, then using the slope functions to update
the individual positions.

We applied SPA to the Population Reference Sample (POPRES)17. The individuals of
European descent in this data set were previously analyzed9. The data set contains 3,192
individuals who were genotyped at 500,568 SNPs using the Affymetrix 500K SNP chip. For
many of the individuals participating in the study, the ancestry of all four of their
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grandparents is known; we only considered individuals for whom all reported grandparents
had the same ancestry.

Both SPA and PCA results on the POPRES samples are shown (Fig. 2). The SPA method
was able to converge to the true geographic position of the individuals from a random
starting point (Fig. 2a–d). A map of Europe is labeled with the included populations for
reference (Fig. 2f). Of note, even though we started the optimization from a set of random
positions, after a small number of iterations (~10), the positions of the individuals highly
resembled the map of Europe (with only two exceptions, Slovakia and Russia, which did not
converge to true geographic position). The results of PCA are shown for comparison (Fig.
2e). The maps (Fig. 2a–e) are rotated counterclockwise by 16 degrees (similarly to the
procedure performed in ref. 9) to more closely resemble the map of Europe. The x and y
axes are drawn to equal scale; thus, no distortion is involved. The correlation coefficient
between the two maps was 0.99, and, thus, the two methods provided similar positioning of
the individuals up to an affine transformation. One noticeable difference was that SPA
separated individuals from Spain and Portugal more clearly from those from France than the
PCA map. Moreover, the five outlier Italians in the PCA map were positioned closer to Italy
by SPA.

The accuracy of individual placement by SPA was compared to that with PCA, following a
described evaluation procedure9 (Table 1). We computed the accuracy on the basis of
spatial assignment (Online Methods) that assigns each individual to a country of origin. The
results provided support for the notion that the simplified allele frequency functions are
capable of extracting the spatial information inherent in the allele frequency data, even when
individual spatial coordinates are not provided.

SPA can also be applied in the case where a subset of the individuals has known spatial
origins, and these coordinates can be used to infer the spatial origins of a subset of
individuals with unknown origins. In this case, known spatial origins were used for the
placement of the individuals, and these placements were then used to estimate the fj
functions for every SNP j. We then placed each individual with unknown origins using these
functions. We evaluated this approach using POPRES data by performing tenfold cross-
validation, where we used the positions of 90% of our individuals to infer the positions of
the remaining 10%. The result of SPA placement assuming known positions is shown
(Supplementary Fig. 1).

Global genetic spatial structure
Because SPA has explicit geographic coordinates, the approach can be extended to
incorporate coordinate systems beyond the two-dimensional plane. As a demonstration of
this, we extended SPA to analyze the spatial structure of global populations where a two-
dimensional map cannot accurately capture the structure. We mapped each individual to a
point on a globe in three-dimensional space. Accordingly, we used a three-dimensional
vector x (with the constraint ||x|| equal to a constant) to represent an individual position. We
also needed to extend the parameter a to the three-dimensional vector in the logistic
function. Examples of these functions with different parameters are shown, where the
parameter a is set to [0, 0, 0.1], [0, 0, 3] or [10, 0, 0], and the parameter b is set to be zero in
all three spheres (Supplementary Fig. 2). The sphere coordinates are drawn from a unit
sphere, where ||x|| = 1.

We applied our global genetic spatial structure method to data from the Human Genome
Diversity Panel (HGDP)7 in which 940 individuals from 52 populations worldwide were
genotyped across the genome using Illumina Infinium HumanHap550 BeadChips (Fig. 3).
Notably, even though we started from completely random geographical positioning
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(Supplementary Fig. 3), we observed that the resulting positioning strongly resembled the
world map. In particular, individuals from the same continent were clustered together, and
the continents were separated roughly as one would expect.

By aligning the map (Fig. 3), we computed the latitude and longitude for each individual
and compared these computations with the actual geographic positions of continents. The
SPA map distorted the distances between continents but correctly predicted the topology.
For example, the longitudinal span of the Eurasia continent was 92 degrees on the SPA
globe and approximately 150 degrees on the actual globe. The longitudinal distance between
Europe and North America was 167 degrees on the SPA globe and approximately 90
degrees on the actual globe. The summary of these comparisons is given (Supplementary
Table 1).

Mapping of individuals of mixed ancestry
Using a PCA-based approach, one can infer the localization of an individual with an average
error of a few hundred kilometers9. However, PCA-based methods are not designed for
ancestral origin inference, and, particularly if an individual is of mixed ancestry, the PCA
map will place the individual at the midpoint between the coordinates of his or her parents.

Because SPA is a model-based approach, it is possible to extend the method to handle
individuals of admixed ancestry. As a result, SPA is able to identify which individuals have
admixed ancestry and to predict the origin of each of the parents by computing the
maximum likelihood estimates of the origin of the father and the mother simultaneously,
under the assumption that the slope functions are given (Online Methods). To test this
approach, we generated 5,000 admixed individuals by randomly selecting their parents from
the POPRES data set. Each of the parents has four grandparents with the same geographic
origin, but the four paternal grandparents and four maternal grandparents of the simulated
admixed individuals were different. Also, we ignored genders, as we only used autosomal
SNPs. The offspring's genotype was simulated using Mendelian segregation considering
each locus independently.

We then applied SPA to predict the country of origin of the parents (Table 2), where the
slope functions were estimated on the set of non-admixed individuals. We could not
compare the performance of PCA on this simulation, as it would only predict one origin for
the individual at the midpoint of the true parental origins. Unexpectedly, the accuracy for
placing the parents of admixed individuals was comparable to the accuracy in placing non-
admixed individuals, as shown (Tables 1 and 2).

We also evaluated our method on self-reported admixed individuals from the POPRES data
set. We considered individuals who had self-reported maternal origins from one country and
paternal origins from a different country. We used PCA to evaluate the accuracy of the self-
reported ancestry. PCA should localize an individual of mixed ancestry at the middle point
between the parents’ locations. However, out of a total of 190 individuals with mixed
ancestry in the data set, only 12 behaved as simple admixtures and were placed by PCA near
the midpoint (<200 km away) of the origins of their parents. The remainder were placed at a
greater distance from the midpoint between the reported parental origins—perhaps
suggesting more complex ancestry. By applying SPA to the individuals who were placed at
the midpoint by PCA, we were able to successfully infer the locations of both parents 58.3%
of the time, which is comparable to the rate achieved in the simulated results.
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Loci under selection
The detection of genomic regions under natural selection sheds light on the functionality of
these regions and provides insights on human history and evolution. A number of methods
have been suggested for the detection of selection using genetic variation data, and one
particularly common approach leverages the variation in allele frequency between
populations through the FST statistic3,15. The FST approach essentially leverages the insight
that variation in allele frequencies across populations should follow a background neutral
distribution determined by levels of gene flow and divergence and that any regions clearly
departing from this distribution are regions that putatively have experienced adaptive
differentiation or balancing selection in the recent past.

A disadvantage of FST-based selection detection is that the individual genotypes have to be
partitioned into discrete populations. As can be observed (Table 1), the definition of a
population, for example, in Europe, is rather subjective. Different groupings of the
individuals into populations may result in different results, and, thus, the interpretation of
the results is again not straightforward, and particularly important signals of selection may
be missed. In addition, FST is not sensitive to whether allele frequency variation is spatially
organized into a steep allele frequency gradient or shows a spatially incoherent pattern.

SPA can be used to identify loci showing extreme frequency gradients, which does not
require grouping individuals into populations. We used SPA to identify SNPs that show
steep slopes of allele frequency change, with the consideration that some of these might
show extreme gradients because of the impact of recent positive selection. We developed a
new score statistic measuring the slope of each SNP, where large score values correspond to
potential regions under selection.

We analyzed the POPRES data set by applying SPA and extracting SNPs with extreme
frequency gradients (Online Methods). The distributions of the frequency gradients along
with a subset of the SNPs are reported (Fig. 4). We compared the SNPs found by SPA to
those identified in the following methods, where (i) we computed FST using two types of
population partitions, by country and by geographic regions, as defined9; (ii) we compared
SPA scores to the widely used iHS method14, which searches for SNPs with signatures of
partial selective sweeps on the basis of haplotype homozygosity, as originally suggested18;
and (iii) we compared SPA to Bayenv16, which identifies alleles that correlate strongly with
an environmental variable, perhaps due to natural selection. For Bayenv16, we used
geographic coordinates as the environmental variable (as if one were searching for
latitudinal clines, for example). We obtained outlier signals using latitude, longitude and the
individual coordinates corresponding to the first five principal components as the
environmental variables.

We compared the top results of the four methods applied to chromosomes 2 and 7 (Fig. 5).
Note that SPA resulted in a defined cluster of extreme values in 135–138 Mb of
chromosome 2, which contains the lactase gene LCT. This region is widely noted as a target
of strong selection19, and it was found by all methods. On chromosome 7, SPA detected a
strong signal in the FOXP2 region, whereas all other methods did not.

Overall, the different scores provided by these four methods were moderately correlated (r2

< 0.4; Supplementary Fig. 4 and Supplementary Table 2), even though they each measure
unique aspects of genetic variation. Most signals found by SPA analysis were also found by
the FST method and by Bayenv. However, some of the strong signals that were found by
SPA analysis were found by iHS and were not found by FST or by Bayenv, suggesting that
our SPA method captures loci in some regions with iHS signals, which are outliers with
respect to allele frequency gradient (SPA) but not with respect to overall allele frequency
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variation (as would be detected by FST or Bayenv16). In addition, there were, as expected,
signals that were found using SPA but not using iHS (Supplementary Table 3). We note
that the SNPs found by FST and not by other methods were mostly rare SNPs with one or
two occurrences of the minor allele in populations with small sample size.

Notably, we observed that the FST and Bayenv scores were sensitive to the manner in which
individuals were partitioned into populations. In particular, defining populations on the basis
of country of origin led to a different set of genes compared to defining populations on the
basis of general geographic regions. In contrast, the analysis performed using SPA was
oblivious to the partitioning of individuals into populations, as the approach treats ancestry
as a continuous variable and not as a categorical variable.

We provide a list of genes that were detected by our SPA method but were not detected by
iHS, FST or Bayenv methods (Supplementary Table 3) and a full list of loci with extreme
frequency gradients that were identified in the SPA analysis (Supplementary Table 4).
Among the loci with the most extreme gradients were the HLA, LCT and OCA2 regions,
which are widely known to have undergone recent positive selection and show
differentiation among populations. Of note, SPA analysis also indicated an extreme gradient
for SNPs in the FOXP2 gene; FOXP2 is associated with speech, and the FOXP2 protein was
suggested to have had important aminoacid changes in early human evolution20. In addition,
LRP1B21, a gene associated with lipid function that is relevant to cancer, was found to have
an extreme allele frequency gradient. The above loci are a few examples out of a longer list
of genes that the SPA method highlighted as having strong gradients in allele frequency
across space (Supplementary Fig. 5 and Supplementary Table 4).

DISCUSSION
In this paper, we present spatial ancestry analysis (SPA), a new method for modeling the
spatial structure of genetic variation. Unlike previous methods that use PCA to model spatial
structure, our approach explicitly models allele frequency in space and uses this model to
place individuals on a two-dimensional map or three-dimensional sphere. We show that our
method for localization of samples in space is slightly more accurate than PCA and, notably,
can be used to localize individuals of mixed ancestry in space, which is not the case for
PCA.

Accurate spatial localization of individuals on the basis of genetic data is important in many
applications in genetics, including population stratification in genome-wide association
studies, admixture mapping and personalized genomics. We show that a model-based
approach has additional applications, as it characterizes the spatial behavior of each of the
SNPs separately. In particular, we show that the modeling can be used to identify SNPs with
rapidly changing allele frequencies across geographic space.

We note that our proposed model for slope functions is only one choice for such a model,
and there may be other natural choices. The fact that our algorithm converges to a map that
is highly similar to the map of Europe suggests that our choice is sensible but not necessarily
optimal. In particular, some loci under selection might in principle have a spatial structure,
where the maximum allele frequency occurs in the middle of the region under study and
decays in all directions. Such patterns of spatial structure would not be detected by SPA.
Further exploration of other choices of slope functions may potentially provide better
characterization of each SNP's spatial behavior, yielding a better localization of samples to
space and enhanced ability to identify SNPs with unique and interesting spatial distributions.
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ONLINE METHODS
Data sets

We applied our methods to a data set collected from European populations, which was
assembled and genotyped as part of the larger POPRES project17. A total of 3,192 European
individuals were genotyped at 500,568 loci using the Affymetrix 500K SNP chip. After
removing SNPs with low-quality scores, the same stringency criteria as in a previous study9

were applied to avoid sampling individuals from outside of Europe, to create more even
sample sizes across Europe and to remove individuals whose grandparents had different
geographic origins. When available, we used identical geographic origins of the
grandparents as the geographic origin for each individual. Otherwise, we used self-reported
country of birth. As a result, we focused our analysis on genotype data from 447,245
autosomal loci in 1,385 individuals from 36 populations.

For three-dimensional globe mapping, we used HGDP data7 consisting of 56 populations
from Europe, Africa, the Middle East, central Asia, east Asia, Oceania and America.
American samples are from both native North American and South American populations.
In our experiments, we used genotypes at 572,139 autosomal SNPs in 940 individuals.

Genetic spatial structure model
We assume we are given genotypes at L SNPs from N unrelated individuals drawn from
different populations distributed across the geographic regio uder consideration. We assume
that the allele frequency of a SNP j is a function

(1)

where aj and bj depend on the SNP j and x is the K-dimensional vector of coordinates
describing the spatial positioning of an individual. Typically, K = 2 for geographic position.
This function has a range [0,1] that can be interpreted as a probability, and, thus, the
likelihood of the data can be easily expressed as a function of the values of a, b and x.

We let gij represent the observed number of minor alleles at SNP j of individual i and let fij
be a shorthand for fj(xi), where xi is the position of individual i. As the individuals are
independently sampled from the population, the log likelihood of the entire observed sample
can be calculated from the log likelihood for each genotype.

(2)

The parameter matrices X = {xik}, A = {ajk} and B = {bj} are N × K, L × K and L × 1
matrices, respectively. Specifically, each row of X contains the geographic location for each
individual. Each row of A and B contains the coefficient for each allele frequency function.

Maximum likelihood estimation
Given the above likelihood model and a set of genotypes, we are interested in the matrices
X, A and B that maximize the log likelihood. The above likelihood function is not concave,
and it is therefore hard to optimize. We note, however, that when X is fixed or when A and
B are fixed, the objective function (2) is concave. We therefore use alternative maximization
in conjunction with Newton's method. Furthermore, with fixed A and B, the objective
function in X can be decomposed into a series of unrelated parts, each of which corresponds
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to one row in X, and, therefore, the optimization problem in variable X can then be
decomposed into a series of much smaller problems, further simplifying optimization.

After simplification of the above alternative maximization and variable separations of the
function (2), we arrive at the following two unconstrained convex programming problems in
only K variables and K + 1 variables, respectively.

(3)

(4)

The smooth and continuous property of this problem allows us flexibility in the choice of
optimization method. We apply Newton's method, which is widely known for fast
convergence, as it utilizes the first and second order derivatives. Details of the algorithm are
given in the Supplementary Note.

An extended model for an admixed individual
Instead of identifying one origin for an admixed individual, our method can infer two
geographic origins for the parents. First, we let x and y denote the locations of the two
parents of a given admixed individual, and two shorthands pj = fj(x) and mj = fj(y) denote
the allele frequency of those two parents at marker j, where the function fj(.) is defined in
equation (1).

Therefore, again under the assumption of independent NPs, the genotype of the admixed
individual is drawn from the following distribution.

This distribution assumes that the two alleles of admixture individuals are drawn from the
parents independently. Finally, we can infer the location of the parents by maximizing the
log-likelihood function.

(5)

This likelihood function is not concave. Thus, instead of directly using Newton's method
that would cause numerical problems, we use Pseudo-Newton's method to optimize this
function in x and y. Details of the algorithm are given in the Supplementary Note.

Globe mapping
For globe mapping, we have to extend the two-dimensional vector x to three dimensions.
Then, by similar derivation as for two-dimensional mapping, we can obtain the log-
likelihood function in the same form as in equation (2) but in a different number of
dimensions. To guarantee the placement of individuals in a sphere, we need to enforce the
constraint ||x||2 = 1 while maximizing the log likelihood. However, this additional constraint
and its non-convexity do not allow us to use Newton's method. Instead, we turn to another
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widely known optimization technique called gradient projection22, which can handle simple
constraints in the optimization problem. Basically, this technique modifies the line search
step in the gradient descent method to ensure that the current solution is in the feasible
region. One key step is the projection from any point to the feasible region. The projection
to a sphere can be very efficiently computed by P(x) = x / ||x||2.

Evaluation of individual mapping
SPA can be applied in the case that the geographic origins of the individuals are known, as
well as in the case where the geographic origins are unknown. If the geographic origins are
known, the slope functions parameterized by aj and bj are estimated using these known
locations and will be concordant with actual geography. In this case, the output of individual
mapping is immediately latitude and longitude.

If the geographic origins are unknown to SPA, the mapping coordinates might be different
from real geography in latitude and longitude up to an affine transformation. In order to
perform spatial assignment, we follow the approach taken in ref. 9 and assume the following
model between mapping coordinates and geographic locations

where u and v are latitude and longitude, respectively. x = (x1,x2) are the coordinates from
our model. The parameters α and β can be estimated from a few individuals with known
mapping coordinates and geographic locations. The same model was used in ref. 9 in order
to estimate the accuracy of geographic assignments with PCA.

The accuracy evaluations (Tables 1 and 2) are computed on the basis of spatial assignment.
We follow a similar leave-one-out strategy to the one used in ref. 9. First, we estimate the
coefficients α and β by performing a least-square regression from the mapping coordinates
to the true geographic location in latitude and longitude with a leave-one-out training set of
individuals. Then, for a test individual, we make a prediction of geographic location using
the obtained regression coefficients α and β. We also predict population origin by assigning
this individual to the nearest country center. The assignment accuracy for a given population
is calculated as the number of correct predictions divided by the total number of individuals
in that population.

Characterization of extreme allele frequency gradients
The outputs of the SPA model would be individual mapping coordinates X and coefficients
A and B for allele frequency slope functions. On the basis of these two outputs, all
individuals in the model will have allele frequencies fj = {fj(x1),fj(x2), ..., fj(xN)} organized
in a slope corresponding to each SNP j.

A straightforward statistic to quantify the steepness of allele frequency slope is as follows
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where  stands for the allele frequency for individual i at locus

j. This score is exactly proportional to the s.d. of fj by a constant .

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Examples of the allele frequency slope model. (a) Flat slope. A SNP with nearly constant
allele frequency in all regions of the map. (b) Medium slope. A SNP with gradual allele
frequency change. (c) Steep slope. A SNP with a sharp frequency change.
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Figure 2.
Model-based mapping convergence with random initialization. Colors represent the true
country of origin of the individual (also represented by country internet code). (a–d) A map
generated by SPA. Iteration 1 starts with random positioning of individuals (a). By iteration
4, the northern and southern populations are separated (b). By iteration 7, the positioning of
individuals is close to convergence (c). In iteration 10, individuals have reached their final
positions (d). (e) A map generated by PCA9. (f) Map of Europe.
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Figure 3.
Mapping spatial structure on a globe using HGDP data. Different colors represent different
continents. (a) Africa-Asia-Europe-Oceania view. (b) North Pole view. (c) Atlantic view.
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Figure 4.
The distribution of SPA scores representing allele frequency gradients. The marked
positions correspond to genes discussed in the text.
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Figure 5.
Selection results of six methods in two chromosomes. The SPA, FST and Bayenv methods
were run across the POPRES data set, and the iHS14 approach used HapMap Europe data.
The plot is for 2% of POPRES SNPs and 1% of HapMap Europe SNPs. (a,b) Results are
shown for chromosome 2 (a) and chromosome 7 (b).
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Table 1

Individual localization result summary

Geographic origin Number of individuals PCA accuracy SPA accuracy

Italy 219 0.70 ± 0.03 0.74 ± 0.03

UK 200 0.44 ± 0.04 0.53 ± 0.04

Spain 136 0.71 ± 0.04 0.69 ± 0.04

Portugal 128 0.20 ± 0.04 0.38 ± 0.04

Switzerland-French 125 0.26 ± 0.04 0.33 ± 0.04

France 89 0.70 ± 0.05 0.66 ± 0.05

Switzerland-German 84 0.23 ± 0.05 0.27 ± 0.05

Germany 71 0.25 ± 0.05 0.28 ± 0.05

Ireland 61 0.28 ± 0.06 0.28 ± 0.06

Yugoslavia 44 0.25 ± 0.07 0.30 ± 0.07

Mean 115.7 0.40 ± 0.05 0.45 ± 0.05

On the basis of a spatial assignment method, country origin was predicted for each individual (Online Methods). Accuracy ± s.d. is the proportion
of individuals from each country of origin correctly assigned to their true country of origin using a leave-one-out procedure.
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Table 2

Summary of results for the localization of admixed Individuals

Origin 1 Origin 2 Number of individuals SPA accuracy

Italy UK 250 0.49 ± 0.03

Italy Portugal 147 0.49 ± 0.04

Italy Spain 142 0.68 ± 0.04

Switzerland-French UK 138 0.21 ± 0.03

Portugal UK 137 0.41 ± 0.04

Spain UK 128 0.45 ± 0.04

Portugal Spain 104 0.78 ± 0.04

France Italy 101 0.57 ± 0.05

Germany Italy 69 0.43 ± 0.06

Germany Portugal 60 0.30 ± 0.06

Mean 127.6 0.48 ± 0.04

Using genotypes from the 5,000 simulated admixed individuals, SPA was used to predict the origin of each parent. Origins 1 and 2 represent the
countries of origin for each parent. Accuracy ± s.d. is the proportion of parents correctly assigned to their true country of origin.
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