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Abstract
Obesity is an inflammatory disorder characterized by heightened activity of the innate immune
system. Innate immune activation is central to the development of obesity-related insulin
resistance; it also plays an important role in obesity-related tissue damage, such as that seen in
atherosclerosis. Recent research has implicated the innate immune system in the pathophysiology
of obesity-related liver disease. This review summarizes how innate immune processes, occurring
both within and outside the liver, cause not only insulin resistance but also end-organ damage in
the form of nonalcoholic fatty liver disease. (HEPATOLOGY 2008;48:670-678.)

Obesity is the direct result of an imbalance between nutritional intake and energy
expenditure, which leads to the storage of excess fuel as fat. Although adipose tissue
represents the body's principal lipid storage reservoir, fat can accumulate ectopically in other
organs such as muscle and liver. Regardless of its location (even in adipose tissue), excess
fat can provoke abnormalities in tissue structure and function that result in end-organ
damage. A growing body of evidence supports the concept that end-organ damage in obesity
is an inflammatory condition.1 Consequences of this systemic inflammation include type 2
diabetes mellitus, atherosclerosis, and nonalcoholic fatty liver disease (NAFLD).1 With
respect to the liver, immune pathways can adversely affect hepatic lipid metabolism and
lead to serious outcomes such as hepatic injury, inflammation, and fibrosis. These processes
are likely at play in the 72 million obese adults in the United States (www.cdc.gov/nchs/
pressroom/07newsreleases/obesity.htm), 75% of whom have fatty livers.2

The leukocytes, receptors, and soluble mediators involved in obesity-related inflammatory
sequences are all part of the innate immune system. The evolutionary purpose of innate
immunity is to defend against pathogens or foreign substances. In the setting of obesity,
however, dietary fats or fatty acids may be perceived as foreign substances that modulate
inflammation and its metabolic effects. Although a number of immune responses to fat can
occur locally in target tissues, recent studies suggest a novel paradigm in which
inflammation in adipose tissue is a master regulator of metabolic and immune dysfunction in
other organs. In this context, an important question for the hepatologist is whether immune
activation in adipose tissue is a prerequisite for the development of nonalcoholic
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steatohepatitis (NASH). Although data are currently incomplete, there is compelling
evidence that adipose tissue inflammation exacerbates hepatic steatosis and can heighten
innate inflammatory responses within the liver.3,4 In this review, we will summarize
evidence that innate immune pathways are activated in obesity and describe the involvement
or proposed involvement of these pathways in the pathogenesis of NASH.

Fat-Induced Activation of Proinflammatory Pathways Causes Insulin
Resistance

Fat can cause insulin resistance by prompting the activation of select serine kinases within a
variety of insulin-sensitive cells. Singly or in combination, these enzymes phosphorylate
regulatory serine residues on the insulin receptor substrates IRS-1 and IRS-2, leading to the
down-modulation of normal insulin-stimulated tyrosine phosphorylation and interfering with
physiologic insulin responses. A causal connection between fat-related activation of serine
kinases and insulin resistance has been demonstrated in adipose tissue5 and muscle6,7 as
well as liver.8-11 It occurs quite rapidly in vivo in response to both intravenous fat
infusion6,8 and high-fat feeding.9,10 Saturated as well as unsaturated fatty acids are capable
of activating the serine kinases that lead to insulin resistance.5,6,8,9,11,12 In the liver, long-
chain saturated fatty acids appear to be the most potent species.11,12

The three serine kinases implicated most strongly in the pathogenesis of fat-induced insulin
resistance are Jun N-terminal kinase (JNK), inhibitor of nuclear factor κB (NF-κB) kinase
(IKK), and novel isoforms of protein kinase C (PKC).13-15 Among these, JNK and IKK are
particularly noteworthy proinflammatory signaling molecules. In the setting of obesity,
activation of these kinases likely arises through several mechanisms as outlined in Fig. 1. In
one scenario, PKC is activated by diacylglycerol formed during the intracellular metabolism
of lipids,14 with JNK and IKK being activated downstream of PKC as part of a signaling
cascade.5 In a second pathway, intracellular fat activates these kinases independently of
PKC as part of an endoplasmic reticulum (ER) stress response.16,17 A third pathway points
to reactive oxygen species, which can be generated during fatty acid oxidation, as inducers
of JNK and IKK18 Fourth, extracellular fatty acids, by virtue of their resemblance to the
lipid moieties of bacterial lipopolysaccharides, can activate IKK by engaging Toll-like
receptors (TLRs).19 The fact that all four of these pathways converge at the level of JNK
and IKK points to the close interconnection between insulin resistance and inflammation in
the setting of obesity. The complexity of the relationship is enhanced even further when one
considers that inflammatory cytokines, induced by JNK and IKK, can contribute to a feed-
forward amplification of insulin resistance and inflammatory signaling (see below). The
pivotal role of inflammatory pathways in the pathogenesis of insulin resistance has been
proven by experiments showing that pharmacologic or genetic suppression of inflammatory
signaling improves insulin sensitivity.20-22 The role of inflammatory pathways in NAFLD
are also under active study, with available data indicating that inflammation plays an
etiologic role in hepatic insulin resistance as well as hepatic steatosis and steatohepatitis.

Fat-Induced Inflammatory Signals in the Liver and Their Relation to NAFLD
Fatty acids12,23,24 and high-fat feeding9,21,25 can directly induce inflammatory signaling in
the liver even in the absence of obesity or systemic insulin resistance.9 Excess fat activates
JNK and IKK in hepatocytes, which can induce hepatic insulin resistance, inflammatory
cytokine expression, and in some instances cell death.12,20,21,24,26,27 JNK and IKK both
have the ability to stimulate the transcription of inflammatory target genes through their
activation of activator protein-1 (AP-1) and NF-κB, respectively. Indeed, high-fat feeding in
mice induces a hepatic profile of inflammatory gene expression closely mimicking that of
mice expressing a hepatocyte-specific IKK transgene,20,21,28 and conversely, mice with a
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targeted disruption of either IKK or JNK are resistant to diet-induced insulin resistance and
hepatic steatosis.20,21,25,27,29 Activation of JNK and IKK in hepatocytes has broad
consequences. Directly or indirectly, both kinases promote the expression of lipogenic genes
within the liver.25,28,30 Similarly, fat-related activation of IKK/NF-κB and JNK in
hepatocytes stimulates the expression of cytokines and cell-adhesion molecules,20,21,27,29

features that likely contribute to steatohepatitis. Indeed, in the methionine-choline-deficient
(MCD) model of murine steatohepatitis, blockade of either IKK or the JNK-1 isoform of
JNK significantly limits liver injury and inflammation.27,31 Studies indicate that JNK is also
an important mediator of “lipotoxicity” in the liver, based on its involvement in saturated
fatty acid–induced apoptosis of hepatocytes in in vivo and in vitro mouse models.12,27,32

Taken together, these myriad effects assign an important role to hepatocyte-derived IKK and
JNK in inflammatory and cytotoxic pathways in obesity-related NAFLD.

In addition to activating inflammatory signaling directly in hepatocytes, fat stimulates innate
immune processes locally within the liver that can result in organ damage. One is the up-
regulation of the death receptor Fas, an alteration that correlates directly with disease
severity in NAFLD.26,33 Hepatic steatosis not only increases Fas expression by hepatocytes
but also enhances the vulnerability of hepatocytes to Fas-mediated apoptosis34,35 by
perturbing cell-surface expression of the hepatocyte growth factor receptor cMet, a
competitive inhibitor of Fas-Fas ligand (FasL) interactions.35,36 Furthermore, fat-laden
hepatocytes themselves express high levels of FasL,35 creating an environment favoring
hepatocellular suicide. The importance of Fas in the pathogenesis of murine NASH was
recently demonstrated using a cMet peptide as a synthetic inhibitor of Fas-FasL interactions.
This peptide reduced cell death and hepatic inflammation in both leptin-deficient and MCD-
fed mice, and in MCD mice it even inhibited hepatic fibrosis.35 These results point to cell
death as a pivotal stimulus to NASH, echoing similar observations in other liver diseases
such as viral hepatitis and obstructive cholestasis.37,38

TLRs, which are present on all resident cells in the liver,39-43 act as innate immune sensors
of foreign or abnormal structures. Select pattern recognition receptors figure prominently in
the pathogenesis of NASH because of their potential for activation by saturated fatty acids19

and because of their interaction with bacterial products such as Gram-negative endotoxin,
which is found in the circulation of animals with obesity and fatty liver.44,45 High-fat and
MCD feeding induce hepatic expression of TLR2 and TLR4 as well as the TLR4
coreceptors CD14 and MD2.21, 45 Steatosis also sensitizes the liver to challenge by TLR4
ligands.45-47 Signaling through these receptors can promote NASH by inducing hepatic
expression of a host of proinflammatory mediators.43 In human beings, NAFLD has been
associated with small intestinal bacterial overgrowth, although not necessarily through
bacterial interactions with TLRs.48 Likewise, the intestinal microbiome has recently been
reported to play a central role in the development of obesity and fatty liver disease, not
because of effects on innate immunity but instead because of direct effects on nutrient and
energy metabolism.49,50 Even so, probiotics, which reportedly suppress TLR-related
responses by altering intestinal flora,51,52 improve liver injury and inflammation in animals
and humans with fatty livers,53,54 and dietary n-3 polyunsaturated fatty acids, which are
known inhibitors of TLR signaling,55 suppress necroinflammation and fibrosis in
experimental fatty liver disease.56 The therapeutic success of these molecules suggests that
the composition of the intestinal flora can influence innate immune processes leading to
NAFLD.

Innate immune responses activated within fatty livers have great potential for amplification
through cellular and humoral cross-talk. For example, hepatocyte apoptosis stimulates
chemokine production57 and induces Kupffer cells to produce FasL and cytokines,58 which
can augment cell death and promote hepatic inflammation. Hepatocytes, Kupffer cells, and
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possibly other resident liver cells can also be stimulated to produce cytokines and
chemokines through intracellular activation of IKK and JNK (see above) or extracellular
activation of TLRs.20,21,31,45 These compounds can then act in an autocrine or paracrine
fashion to induce cell death, stimulate production of reactive oxygen species and recruit
leukocytes from the circulation. A number of proinflammatory cytokines and chemokines
(TNFα, interleukin-1 [IL-1], IL-6, IL-8, IL-12, IL-18, TNF, and macrophage inflammatory
pro-tein-2) are up-regulated in fatty livers.21,23,26,44,59-63 TNFα has been extensively
studied as a putative mediator of NASH, albeit with mixed results.31,53,59,64-66 More
recently, attention has turned to the overall profile of proinflammatory cytokines in fatty
livers, which is typical of that seen in T helper-1 (Th1) lymphocyte responses. Although
NASH is not classically considered a Th1-polar-ized disease, data from several recent
reports suggest that an imbalance resulting from a relative excess in proinflammatory Th1
cytokines such as interferon-γ and a relative deficiency of anti-inflammatory cytokines such
as IL-4 and IL-10 can influence fatty liver disease.60,67 Natural killer T (NKT) cells are
regulatory T lymphocytes that are activated by specific glycolipids presented by the major
histocompatibility class I–like molecule CD1d. T cells are typically considered components
of adaptive immunity, but NKT cells are preactivated in situ by endogenous (self)
glycolipids and are considered to be innate immune effectors.68 They likely play a role in
the innate or intrinsic propensity of an individual to mount either Th1 or Th2 cytokine
responses. Th2-skewed IL-4–producing NKT cells are diminished in number in mice with
leptin-defi-ciency60 or diet-induced obesity.61 The severity of liver injury in these animals is
inversely proportional to NKT cell number. The reason for this reduction appears
multifactorial, involving activation-induced death of NKT cells in response to Kupffer cell–
derived IL-1261 as well as decreased NKT survival due to reduced exposure to CD1d on the
hepatocyte surface.69 Notably, adoptive transfer of IL-4–producing NKT cells results in
amelioration of steatosis and diminished hepatic levels of the Th1-like cytokine IL-12 in
Kupffer cells.67,70 These experiments suggest that NKT cell– derived cytokines such as IL-4
play a protective role in diet-induced NAFLD, and they intimate that polarized Th1
cytokines play pathophysiologic roles in fat-induced inflammation and steatosis.

Inflammatory Signals in Adipose Tissue and Their Relation to NAFLD
Although the metabolic syndromes of atherosclerosis and NAFLD are clearly associated
with organ-specific inflammation, the discovery that adipose tissue itself is inflamed in
obesity was not made until 2003.71 At that time, macrophages were identified as the
principal effectors of adipose tissue inflammation, based on microarray studies showing that
obese mice exhibit markedly increased expression of macrophage-specific genes in white
adipose tissue, combined with immunohistochemical studies demonstrating significant and
selective infiltration of the adipose tissue by macrophages.72-74 This breakthrough is
relevant to NAFLD, because emerging data suggest that the inflammatory state of adipose
tissue controls lipid homeostasis in other organs, including the liver.3,4,75 The mechanisms
by which obesity causes macrophages to infiltrate adipose tissue are currently unknown.
Some suggest that excessive lipid loading causes adipocytes to undergo necrosis, which
activates resident macrophages and promotes macrophage recruitment from the circulation
(Fig. 2A).76 Others argue that obesity activates macrophages in the circulation77 and that
these cells are then recruited to adipose tissue by an obesity-related signal emanating from
adipocytes (Fig. 2B). In this regard, high-fat feeding induces adipocytes to express the
chemokine monocyte chemoattractant protein-1 (MCP-1), whose binding partner is C-C
chemokine receptor-2 (CCR2).3,4 Adipocyte-derived MCP-1 stimulates the recruitment of
CCR2-expressing macrophages into adipose tissue.3,4 Importantly, it also causes hepatic
insulin resistance and hepatic steatosis, and even affects behavior, enhancing food intake.
Conversely, mice deficient in either MCP-1 or CCR2 do not exhibit macrophage infiltration
into adipose tissue and are protected from diet-induced hepatic steatosis and insulin
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resistance.3,4 Blockade of the MCP-1/CCR2 axis reduces, but does not eliminate, high-fat
diet–induced infiltration of macrophages into adipose tissue, raising the possibility that other
inflammatory and chemotactic agents also contribute to this process. One candidate is C-X-
C chemokine ligand-14 (CXCL14), which is selectively induced in adipose tissue of obese
mice.78,79 Like MCP-1–deficient mice, CXCL14-defi-cient mice exhibit diminished adipose
tissue macrophage recruitment, improved insulin responsiveness, and reduced liver weight
in comparison to wild-type mice in response to high-fat feeding.78 Macrophage recruitment
to adipose tissue may also involve the proinflammatory cytokine osteopontin.80 Evidence
for this comes from osteopontin-deficient mice, which exhibit impaired macrophage
recruitment into adipose tissue upon high-fat feeding as well as attenuated systemic
inflammation and improved insulin resistance.81

Additional studies demonstrate that obesity affects not only macrophage recruitment to, but
also macrophage phenotype within, adipose tissue. Plasticity and functional polarization are
characteristics of macrophages; these cells can be induced to express features typical of
either inflammatory or noninflammatory (resident) macrophages, depending on their
exposure to divergent stimuli. Macrophage phenotype has been defined across at least two
separate polarization states, termed M1 and M2.82 M1 or “classically activated”
macrophages are induced by proinflammatory mediators such as lipopolysaccharide and
interferon-γ. They are characterized by a high capacity to present antigen, robust IL-12,
IL-6, TNF-α and IL-23 production,83 and consequent activation of polarized Th1 responses.
M1 macrophages also produce reactive oxygen species such as nitric oxide (NO) via
activation of inducible nitric oxide synthase (iNOS). The term M2 or “alternatively
activated” macrophages has been applied to macrophages generated in response to IL-4 and
IL-13, which can promote Th2 responses.82 These cells have low proinflammatory cytokine
expression, and instead express high levels of the anti-inflammatory cytokine IL-10 and the
IL-1 decoy receptor. Another property of M2 macrophages is that they have elevated levels
of arginase, which competes with iNOS for the substrate L-arginine. Whereas iNOS utilizes
L-arginine to generate reactive NO species with microbicidal and proinflammatory M1
effects, arginase hydrolyzes arginine and promotes anti-inflammatory M2 effects.84, 85

Recently published data revealed that adipose tissue macrophages from lean mice express
many genes characteristic of M2 or “alternatively activated” cells, whereas macrophages
from mice with diet-induced obesity express fewer M2 genes and more genes such as TNFα
and iNOS, which are characteristic of the M1 phenotype.86

A further link between M1 polarization of macrophages and NAFLD comes from studies of
the peroxisome proliferator-activated receptor-γ (PPARγ). PPARγ, a genetic sensor of
unsaturated fatty acids, serves as a ligand for the RXR nuclear receptor where it classically
regulates processes related to fatty acid and glucose metabolism. In addition, PPARγ has a
profound influence on inflammatory responses in macrophages. PPARγ agonists inhibit
macrophage cytokine production by antagonizing the activity of the proinflammatory
transcription factors AP-1, signal transducer and activator of transcription (STAT), and NF-
κB.87, 88 One recent report indicated that PPARγ is also required for the complete
polarization of macrophages toward the noninflammatory, reparative M2 phenotype.89

Moreover, pharmacologic PPARγ agonists are able to convert inflammatory M1
macrophages to “alternatively activated” noninflammatory M2 macrophages.90 Together
these data indicate that PPARγ agonists play a key role in the regulation of macrophage
phenotype and function. In the context of NASH, this information offers a potentially unique
explanation for the therapeutic benefit of PPARy agonists (thiazolidinediones).91-93 It
suggests that the immunomodulatory capabilities of these agents are paramount to their
efficacy in controlling the inflammatory and perhaps even the metabolic abnormalities that
accompany NASH. In support of this theory, mice lacking PPARγ in macrophages exhibit
enhanced activation of inflammatory signals in the liver at baseline and develop pronounced
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hepatic insulin resistance in response to high-fat feeding.94 Moreover, patients with insulin
resistance who are treated with rosiglitazone show reduced parameters of inflammation even
before they exhibit any improvement in insulin sensitivity.95 Also pertinent is that IL-4, a
Th2 cytokine produced by NKT cells, is a potent inducer of endogenous PPARγ ligands.96

This raises the intriguing possibility that in the liver, NKT cells suppress the Th1/M1
environment characteristic of NAFLD through IL-4–mediated production of anti-
inflammatory PPARγ agonists.

When viewed in aggregate, these new and compelling findings suggest that obesity-
associated steatohepatitis may be more closely linked to adipose tissue macrophage
activation than to the metabolic effects of excess fat stores. Indeed, obesity-induced NAFLD
goes hand in hand with adipose tissue macrophage activation, but not always with adiposity,
as shown in MCP-1–deficient or CCR2-defi-cient mice that are protected from diet-induced
hepatic steatosis even though they still become obese. Collectively, these studies support a
paradigm in which adipose tissue macrophages play a major role in the systemic metabolic
syndromes of insulin resistance and NAFLD. For the moment, the exact role of adipose
tissue macrophages in the pathogenesis of NASH remains uncertain, because investigators
focusing on inflammatory adipose tissue have not uniformly extended their work to include
a careful examination of liver injury or inflammation. Still, the available data indicate that
M1-polarized inflammatory adipose tissue macrophages are central to the development of
obesity-associated hepatic steatosis and insulin resistance.3,4 Macrophage infiltration of
adipose tissue promotes hepatic steatosis and insulin resistance even in the absence of any
evidence of simultaneous macrophage influx into the liver.3,73 This suggests that at least
some features of NAFLD, and perhaps even NASH, arise through endocrine interactions
with fat. It is possible that classically activated M1 macrophages or inflamed adipocytes
secrete a systemic inflammatory mediator that triggers inflammation at remote sites. Some
have touted TNFα as such a factor, given its landmark association with insulin resistance,97

but it is noteworthy that TNF receptor 1–deficient mice can still develop diet-induced
NASH.31,59 Alternatively, adipose tissue-derived MCP-1 itself, which circulates at high
levels in obese animals, could serve as an endocrine mediator of NAFLD through an indirect
mechanism, because hepatocytes are not known to express CCR2. It is also possible that
instead of stimulating the synthesis of a proinflammatory factor, inflamed macrophages
within adipose tissue inhibit the elaboration of a systemic anti-inflammatory mediator from
adipocytes. A leading candidate molecule is adiponectin, which is normally secreted by lean,
but not obese, adipose tissue.98,99 Adiponectin appears to have anti-inflammatory properties
and is sharply lowered in the serum of obese mice. Intriguingly, adiponectin is present in
high levels in obese CCR2-deficient mice, which have neither inflamed adipose tissue nor
hepatic steatosis.4 The importance of adiponectin to the development of diet-induced
metabolic changes was highlighted by a recent study in which leptin-deficient obese mice
were genetically engineered to produce high levels of adiponectin.75 Adiponectin
overexpression resulted in a reduction in adipose tissue macrophage infiltration and a
reduction of circulating IL-6 and TNFα, despite a massive expansion of adipose tissue fat.
In addition, adipose tissue macrophages from obese adiponectin transgenic mice possessed
an alternatively activated M2 phenotype, rather than the typical obesity-induced M1
macrophage phenotype. These data underscore the powerful anti-inflammatory function of
adiponectin, which may underlie its protective effects against hepatic steatosis.100 Yet
another means by which adipose tissue could contribute to an inflammatory phenotype in
liver is for macrophages to become activated within fat and then traffic to the liver,
triggering inflammation. Although there are no data to support this notion, peripheral blood
macrophages in obese mice appear to be skewed toward the M1 phenotype,77 and resident
liver macrophages (Kupffer cells) have an inflammatory phenotype with a predominant
expression of the M1 cytokines TNFα and IL-12.60,61
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Conclusion
As research into the pathophysiology of NAFLD expands, it is becoming clear that the
disease involves a number of innate immune processes both within and outside the liver. It is
also becoming evident that steatosis and inflammation actively influence each other by
multiple mechanisms, even across organs, as shown in the case of inflamed adipose tissue
affecting the metabolic status of the liver. These findings support a theme already common
among those who research the metabolic syndrome—that the distinction between
metabolism and inflammation has blurred.1,15,71,101 Hotamisligil1 recently noted that the
close interconnection between metabolism and inflammation creates a “chicken and egg”
dilemma in which it is difficult to tell which process (nutrient excess or inflammation)
actually initiates the metabolic syndrome. The available data support a model in which lipids
are the primary stimulus to innate immune activation, with the resulting inflammatory milieu
then causing metabolic dysregulation (insulin resistance and further fat deposition) and
setting into motion a vicious cycle that culminates in end-organ dysfunction.

With regard to innate immunity in NAFLD, yet to be reconciled is whether fatty liver
disease is an organ-autonomous process or absolutely requires a contribution from inflamed
adipose tissue. Although some studies suggest that features of NAFLD are inducible by
events occurring solely within the liver,9,20 others clearly show that inflamed fat worsens
these abnormalities.3,4 Still others argue that NASH occurs in patients with lipodystrophy,
who have no adipose tissue and thus no adipose tissue inflammation.102 Although the last
observation would seem to support a liver-autonomous view of NAFLD pathogenesis, it is
important to recall that normal adipose tissue produces adiponectin and other adipokines
whose functions are to promote lipid homeostasis and suppress inflammation.103 Metabolic
and immune interplay between liver and adipose tissue, therefore, is likely operative in both
health and disease, and both organs must be taken into consideration to obtain a complete
and accurate picture of NASH pathogenesis.

From a translational perspective, research on innate immune activation in NAFLD has led to
several diagnostic and therapeutic advances. For example, high serum levels of MCP-1 and
low serum levels of adiponectin are being exploited as markers of disease severity.93,104,105

Similarly, hepatocyte apoptosis in fatty livers, much of which is likely Fas-mediated, forms
the basis for using cytokeratin-18 as an independent serum marker of NAFLD.106,107 One
rationale for using fish oil to prevent or treat NASH comes from scientific evidence that n-3
polyunsaturated fatty acids suppress proinflammatory signaling through TLRs.108

Furthermore, the anti-inflammatory properties of PPARγ agonists offer an explanation for
their efficacy in NASH in spite of persistent adiposity.109 As understanding of the complex
relationship between metabolism and inflammation grows, there will undoubtedly be more
opportunities to apply knowledge of innate immunity to the management and ultimately the
prevention of fatty liver disease.
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CCR2 C-C chemokine receptor-2

ER endoplasmic reticulum

IKK inhibitor of NF-κB kinase

IL interleukin

iNOS inducible nitric oxide synthase

IRS insulin receptor substrate

JNK Jun N-terminal kinase

MCD methionine-choline-deficient
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MCP-1 monocyte chemoattractant protein-1

NAFLD nonalcoholic fatty liver disease

NASH nonalcoholic steatohepatitis

NF-κB nuclear factor κB

NKT natural killer T cell

PKC protein kinase C

PPARγ peroxisome proliferator-activated receptor-γ

TLR Toll-like receptor
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Fig. 1.
Activation of inflammatory signaling pathways by fat. Excess fat or fatty acids (FA) can
activate a number of intracellular signaling pathways that lead to inflammation through IKK
and JNK IKK and JNK cause inflammation by promoting formation of the transcription
factors AP-1 and NF-κB, which activate transcription of a host of proinflammatory genes
including cytokines, chemokines, and cell adhesion molecules. PKC, IKK and JNK can also
cause insulin resistance by promoting aberrant serine phosphorylation of IRS-1 and IRS-2.
(1) The lipid intermediate diacylglycerol (DAG), formed during the synthesis or hydrolysis
of triacylglycerol (TAG), can activate PKC, which causes downstream activation of IKK
and JNK. (2) Fatty acid oxidation yields reactive oxygen species (ROS), which can directly
activate IKK and JNK. (3) Excess fat can promote ER stress, which activates IKK and JNK
through the intermediate kinases IRE-1 and PERK. (4) Extracellular fatty acids can act as
ligands for TLR, which signal through IKK and JNK.
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Fig. 2.
Proposed mechanisms of adipose tissue macrophage activation and their contribution to
NAFLD. (A) Normal adipose tissue contains a small number of resident macrophages with
an M2 (anti-inflammatory) phenotype. Expansion of adipocytes with fat in obesity can
provoke adipocyte necrosis, with the released cellular debris and free fatty acids (FFA)
activating resident macrophages and signaling the recruitment of M1 (proinflammatory)
macrophages from the circulation. The resulting inflamed fat produces high levels of TNFα
and MCP-1 and low levels of adiponectin, which can contribute to NAFLD. TNFα and
MCP-1 can derive from both adipocytes and macrophages, whereas adiponectin is produced
exclusively by adipocytes. (B) Obese adipocytes remain viable but are induced to secrete
MCP-1, CXCL14, and perhaps osteopontin. This attracts and activates macrophages to an
M1 phenotype. The end result is the same, with inflamed fat producing high levels of TNFα
and MCP-1 and low levels of adiponectin.

Maher et al. Page 16

Hepatology. Author manuscript; available in PMC 2013 March 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


