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Abstract
High-throughput microscopic screening instruments can generate huge collections of images of
live cells incubated with combinatorial libraries of fluorescent molecules. Organizing and
visualizing these images to discern biologically important patterns that link back to chemical
structure is a challenge. We present an analysis and visualization methodology - Cheminformatic
Assisted Image Array (CAIA) - that greatly facilitates data mining efforts. For illustration, we
considered a collection of microscopic images acquired from cells incubated with each member of
a combinatorial library of styryl molecules being screened for candidate bioimaging probes. By
sorting CAIAs based on quantitative image features, the relative contribution of each
combinatorial building block on probe intracellular distribution could be visually discerned. The
results revealed trends hidden in the dataset: most interestingly, the building blocks of the styryl
molecules appeared to behave as chemical address tags, additively and independently encoding
spatial patterns of intracellular fluorescence. Translated into practice, CAIA facilitated discovery
of several outstanding styryl molecules for live cell nuclear imaging applications.
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Introduction
Styryl molecules are cell-permeant and fluorescent, and are a good prospective source of
live cell imaging probes1. Small variations in their chemical structures often lead to large
differences in subcellular localization1-4. Each styryl molecule is made of two basic building
blocks conjugated to each other (Figure 1A). Because of this simple structure, building
blocks at one side of the central carbon-carbon double bond can exert a constant, additive
effect on properties conferred by the building block at the opposite side, and vice versa.
Accordingly, the subcellular localization of styryl probes depends on their chemical
structure in a manner that can be quantitatively linked back to the building blocks of the
molecules4, providing useful information to elucidate structure-localization relationship5-14.
With image-based, “high content” screening instruments15-18, it has become possible to use
automated microscopes to acquire large amounts of microscopic image data from large
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collections of styryl molecules. Because of the large number of images that can be acquired,
image analysis and cheminformatic tools to help manage, visualize and analyze quantitative
structure-localization relationships are greatly needed, to enable prospecting for outstanding,
live cell imaging probes.

For this purpose, we present an image visualization tool that arranges images into arrays
reflecting both the combinatorial nature of probe chemical structure as well as a quantitative
image feature of interest. To demonstrate this, a combinatorial library of 1500 styryl
molecules was synthesized and screened with a microscopic, high content screening
instrument. Using a DNA-specific nuclear dye as a reference marker, machine vision
techniques were used to extract three basic features associated with the cellular fluorescence
signal captured by the images: total intracellular intensity; nuclear to cytoplasmic ratio; and,
coefficient of variation of the pixel intensities within the nuclear region of each cell.
Statistical regression analysis was used to calculate the partial contributions of both building
blocks of each molecule to these quantitative visual features. Based on the calculated scores
for each building block, the images were sorted and assembled into CAIAs, which organizes
the image sets in a way that maps out directly to the combinatorial structure of the probes
and their relative contributions to subcellular localization (Figure 1C). In this manner,
relationships between combinatorial structure and intracellular visual features spanning over
1000 images became readily apparent to the human eye. This way, a highly valuable class of
bioimaging probes for studying spatiotemporal RNA dynamics in the nucleoli of living cells
was discovered3.

Results
A. Overview of Experimental System

The styryl library was synthesized by a condensation reaction of eight different pyridinium
derivative groups (building block I) with 167 different aromatic aldehydes (building block
II)1, 3. A variety of functional groups were included in the collection of building block II
such as higher conjugation, electron withdrawing and donating groups, acidic and basic
groups, multiple functional groups, heterocyclic structure, even polyaromatic structures. The
condensation reactions were accelerated by microwave irradiation for three minutes
catalyzed by pyrrolidine.

Many styryl molecules possess excitation and emission spectra orthogonal to common
nuclear counterstains, allowing two images to be acquired: a Hoechst image to capture the
position of each nucleus, and a styryl image1, 4. Prior to image acquisition, live Hela cells
growing in 96 well plates were incubated with the fluorescent probes during which time they
reach steady state distribution. For image acquisition, the plate was transferred into the
environmental control chamber of a Cellomics KineticScan high content screening
instrument (Cellomics, Inc.; Pittsburgh, PA), and images were acquired in the presence of
extracellular dye. Afterwards, the dye was removed from the extracellular medium and the
plate was scanned once more so as to be able to compare the intracellular probe distribution
in steady state and efflux conditions, based on the presence and absence of extracellular dye.

B. CAIA assembly based on total intracellular signal
Because each building block I is combined to every building block II, a quantitative image
feature obtained from the microscopic images can be related to the individual building
blocks, using a statistical regression approach4. The goal is to identify a simple additive
contribution from each building block to a given image feature. We found that, to a
significant extent, building blocks I and II additively encode the total cell-associated pixel
intensity of the styryl probes within each cell. The correlation coefficient between the
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empirically determined structure scores (the sum of scores for the two building blocks in a
particular molecule) and log transformed total cellular intensity (LTCI) was 0.64 for steady
state and 0.60 for efflux. In 300 random permutations of LTCI, the average correlation
between structure scores and randomized LTCI was 0.5 (steady state) and 0.49 (efflux), and
none of the 300 randomizations yielded correlations as high as the observed values of 0.64
and 0.60. A CAIA was constructed with a set of representative building blocks, sorting
individual images according to the quantitative contribution of each building block. The
expected trend in LTCI can be observed, from the brightest cells at one corner to darkest
cells at the opposite (Figure 2). In this CAIA, images at the top-left correspond to styryl
molecules whose building blocks are much more strongly associated with intracellular probe
fluorescence compared to the others. We note that images excluded from the regression,
based on complete lack of measurable fluorescence or signal saturation, are accurately
predicted by the regression scores (Figure 2).

C. CAIA assembly based on nuclear/cytoplasmic signal
Next, spatial analysis of subcellular fluorescence localization focused on discriminating
signal localization in the cell nucleus vs. cytoplasm19. In the CAIA framework, this analysis
succeeds to the extent that relative pixel intensity in the cell nucleus compared to the
cytoplasm is additively encoded by building blocks I or II. Using the CAIA approach, the
contribution of each building block I and II to the log transformed nuclear/cytoplasmic
fluorescence ratio (LNCR) was calculated across the entire library. The correlation
coefficient between the optimal structure scores and LNCR was 0.68 for steady state and
0.65 for efflux. In 300 random permutations of LNCR, the average correlation between
structure scores and randomized LNCR was 0.5 (steady state) and 0.49 (efflux), and none of
the 300 randomizations yielded correlations as high as the observed values of 0.68 and 0.65.
Assembling the CAIA based on the LNCR feature reveals the expected trend, with the cells
harboring the brightest nuclei (high N/C ratio) at the upper left hand corner, and cells
harboring the darkest nuclei (low N/C ratio) at the bottom right (Figure 3). Upon close
examination, at least four images of the top row of the LNCR CAIA show cells bright in the
center (nucleus) relative to the periphery, while at least four images on the two bottom rows
of the CAIA show cells with a dark center (nucleus) and a bright cytoplasmic ring at the
periphery.

By visual inspection, cells that have high nuclear fluorescence in the presence of
extracellular dye appeared to lack nuclear fluorescence when extracellular dye was removed.
Thus, there are two components to styryl localization in nucleus vs. cytoplasm: a steady
state component that favors localization to the cell nucleus in the presence of extracellular
dye, and a non-steady state component that favors retention in the cytosol but efflux from
the cell nucleus in the absence of extracellular dye. Thus, the additivity in the N/C ratio
mostly reflects the nuclear localization component observed in the presence of extracellular
dye.

D. CAIA assembly based on the heterogeneity of the nuclear signal
To determine signal localization to specific intranuclear features such as nucleoli, we used
the coefficient of variation19 of pixels in the nucleus as a measure of the degree of spatial
variability associated with the nuclear signal. Presumably, images showing bright and dark
spots of fluorescence within the nucleus are indicative of localization of probe at discrete
sites, yielding a high coefficient of variation measurement over the nuclear region of the
images. Conversely, images showing diffuse fluorescence signal throughout the nucleus
reflect probes that are homogeneously distributed throughout the nucleus.
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Using the CAIA framework, the correlation between the fitted structure score and log
transformed nuclear CV (LNCV) was 0.66 under steady state conditions and 0.53 under
efflux conditions. In 300 random permutations of LNCV, the average correlation between
structure scores and randomized LNCV was 0.5 (steady state) and 0.49 (efflux). None of the
300 randomizations yielded correlations as high as the actual steady state correlation, but 23
of the 300 randomizations of efflux data yielded correlations exceeding 0.53 Evidently, CV
additivity is lost if cells are placed in efflux conditions, consistent with the decrease in
nuclear staining described above. The trend in CV is readily apparent when the sorted CAIA
was visually inspected (Figure 4). For example, the top three rows and three left-most
columns of the CAIA have at least six images in which the center of the cell (the nucleus) is
flat and grey. On the other hand, the rows and columns at the bottom right quartile of the
CAIA reveal localized fluorescence hotspots over the central, nuclear region of each cell.

E. Discovery of RNA-binding nucleolar staining dyes
Inside the nucleus there are three major macromolecular components: DNA, RNA and
protein. Unlike the cytoplasm, nuclei are devoid of internal membranes. Furthermore,
because nuclei are labeled with the DNA-specific Hoechst dye, it is possible to distinguish a
DNA-binding from an RNA- or protein-binding dye. Zooming into the images, it appeared
as if the high signal intensity, high N/C ratio and high nuclear CV reflected localization to
nucleoli. This was supported by the expected cell-cycle dependent pattern of nucleolar
organization, apparent in some of the images (Figure 5). Following up on this discovery,
several styryl molecules were independently validated as RNA-binding, live cell nucleolar
imaging probes3.

Discussion
CAIA is a data visualization and analysis method that enables rapid perception of
relationships between chemical structures of styryl molecules and spatial patterns of
subcellular fluorescence distribution. These patterns could not realistically be appreciated by
serially viewing the thousands of microscopic images in an unorganized sequence. In the
present example, CAIAs sort the images along two axes based on the differential
contribution of each member of the two families of building blocks to the intracellular
staining patterns. CAIAs allow images to be organized in an intuitive manner that directly
maps out the chemical structure of the fluorescent molecules, so relationships between
chemical structure and subcellular distribution can be readily visualized. The observed
relationships are suggestive of specific interactions between probe structure and subcellular
organelles, which can be validated in subsequent, biochemical and higher resolution imaging
studies. CAIAs can be integrated with fully automated platforms for acquiring and analyzing
image data.

Previously, quantitative-structure localization relationships were discovered in the styryl
library by applying statistical regression approach to elucidate predictive relationships
between chemical structure of small molecules and visual calls made by a human observer4.
Yet, quantitative spatial analysis algorithms for detecting subcellular localization patterns
from microscopic image data are scalable, adaptable and generally more accurate, objective,
reproducible and less cumbersome than visual calls20-27. To assist manual screening by
expert human observers, CAIAs display the images in an intuitive manner, and reveal trends
occurring across large data sets that may not be so obvious to the naked eye. CAIAs
interface cutting-edge robotic, machine vision, cheminformatic analysis with human
intelligence – a formidable data mining tool. Also, we note that the CAIA framework could
easily be used to organize a set of microscopic images along any pair of axes derived from
the chemical structures. For example, two different physicochemical properties derived from
the styryl molecules could be used. This would be especially useful to reduce the
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dimensionality of the combinatorial library, as well as to elucidate quantitative relationships
between physicochemical properties and the patterns of intracellular fluorescence.

In conclusion, CAIAs facilitate cheminformatic analysis of large datasets of images obtained
from fluorescent small molecules localizing to different subcellular compartments. CAIAs
have proved useful for discovering highly valuable live cell nucleolar imaging probes, and
should be readily adaptable for discovering other different types of bioimaging molecules.

Methods
Chemical Library Synthesis and Screening

Styryl library synthesis was already reported1, 3 A total of 167 aldehydes were used for
building block II and 8 pyridinium derivatives were used for building block I. Live cell
imaging experiments19 were performed on HeLa cells growing on plastic bottom 96 well
plates (Falcon). Cells were plated overnight at a density of 5,000 to 10,000 cells per well, in
Phenol Red-free RPMI 1640 plus 10% fetal bovine serum (cell culture medium). Cells were
incubated with 1 μl of 10 mg/ml DMSO-dye stock diluted in 100 μl culture medium.
Hoechst 33342 (2 μM) was used as a nuclear counterstain for all the experiments. Images
were acquired with the 20X objective of the KineticScan instrument. Plates were scanned
using the hardware autofocus device to minimize exposing the cells to damaging
light100, 101. To keep cells alive and healthy, the instrument’s environmental chamber was
kept at 37C, 5%CO2. Microscopic images were acquired with the DAPI (<50 millisec
exposure), FITC (100 and 1000 millisec exposure), TRITC (100 and 1000 millisec
exposure), and Cy5 (1000 millisec exposure).

Image Data Handling—CellomicStore database handled data during the acquisition phase
of the experiment and Cellomics Dataviewer was used to visually inspect the images for
artifacts during acquisition. For machine vision and cheminformatic analysis, all images
were transferred from CellomicsStore to a local hard drive. Analysis was performed offline,
using image analysis and visualizing scripts written in Python. Low level image analysis
routines from the Python Numaray and image library were used for object identification.

Selection of images for regression analysis—Images acquired from probes lacking a
detectable fluorescence signal were excluded from analysis. Probes with fluorescent signal
were detected by comparing the relative change in the background pixel intensities in the 1
sec and 200 millisec exposures in the presence and absence of fluorescent probes. For each
well, a nuclear mask was constructed by applying a threshold to the Hoechst channel so as to
define each nucleus. Next, a cell mask was constructed by dilating the nuclear mask five
pixels, and a background mask was constructed by taking the complement of the nuclear
mask dilated by 10 pixels. Least squares regression was then used to compare background
pixel intensities in the 1sec and 200 millisec exposures, using only pixels below 4000 units
in intensity. If the slope of 1 sec vs. 200 millisec pixel intensities for the regression was less
than or equal to the slope of negative control, unlabeled cells in a specific channel, the probe
was deemed non-fluorescent on that channel.

Next, images with cellular labeling at or below the extracellular background fluorescence, or
showing extensive saturation of pixel intensities, were also excluded from regression
analysis. Specifically, images with fewer than 100 pixels in both the cell and nuclear masks,
or with a ratio below 1.2 between the 75th percentile of pixels in the cell mask and the
median of pixels in the background mask were not analyzed. Last, Images with more than
5000 pixels with intensity greater than 4000 (extensive saturation) were not analyzed.
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Out of 13824 FITC and TRITC images obtained at 1s and 200 millisec exposure times, and
under steady state and efflux conditions, 2231 passed all the above filtering. The remaining
images were screened manually to identify various types of artifacts, such as dye
precipitates and out-of-focus errors. Lastly, we removed compounds whose building block II
in the combinatorial structure occurred in the image set in combination with less than 3
different building block I for the same experimental condition (either in the presence or
absence of extracellular dye). This left 488 1s exposure images acquired in the presence of
extracellular dye, and 540 efflux 1s exposure images acquired in the absence of extracellular
dye (including both FITC and TRITC channel images) for analysis.

Construction of basic image features—A cytoring region19 (comprising the
perinuclear region around each cell) was constructed by taking the intersection of the cell
mask with the complement of the nuclear mask. Distinct objects were identified, and the
number of topological holes covering more than 5 pixels within each cytoring was
calculated. Cytorings that did not have a single such hole and cytorings touching the edge of
the image were disregarded. A cytoring was also disregarded if the nuclear region contained
more than 500 or fewer than 100 pixels, if the cytoring area contained fewer than 100 pixels,
or if any pixel in the cytoring had intensity 4095 (the maximum possible value for a 12-bit
image).

Next the coefficient of variation and integrated intensity were calculated for each cytoring
and nuclear mask object. Integrated intensities were background adjusted by subtracting the
background median for the whole image times the number of pixels in the object, truncating
at zero. The ratio of the background corrected integrated nuclear and cytoring intensities was
then calculated, henceforth called “nuclear-to-cytoplasmic ratio” or N/C ratio (if the
background corrected cytoplasmic intensity was non-positive, the cell was disregarded).
Integrated cellular intensities were calculated by summing the background corrected total
intensities for the cytoring and nuclear regions of each cell. The median values for total
cellular intensity, nuclear CV, and N/C ratio were calculated across all objects in the image,
and used as the primary image-level features for analysis.

Identification of additive image features—To evaluate the additive effect of styryl
building blocks I and II on each image feature, we used linear regression. For a given image
feature Y (one of total cellular intensity, N/C ratio, nuclear CV), the linear model log(Y) =
α(i) + β(j) was fit, where i is the index of building block I and j is the index building block
II. The regression design matrix was reduced to an orthogonal matrix consisting of the left
singular vectors of the original design matrix having singular value greater than 0.1. This
had the effect of reducing the number of regressors from 189 (the total number of A and B
groups) to 173 for images acquired in the presence of extracellular dye and to 167 for
images acquired in the absence of extracellular dye.

Next, fitted values for log(Y) were calculated and the Pearson correlation coefficient
between the fitted and observed log-scale image feature was used to measure the quality of
the additive fit. Randomization was used to assess the whether the fit quality was better than
expected by chance. The image feature data was randomly permuted and the whole fitting
process was repeated 300 times for data acquired in the presence and absence of
extracellular dye, for each image feature. The proportion of the 300 randomized fits giving
greater correlation between observed and fitted values than the actual data was used as an
empirical p-value. The average of the fitted versus observed correlation coefficients for
randomized data were also recorded.

CAIA assembly—Regression coefficients from the reduced fit were mapped back to the
full design space to produce estimates of the α(i) and β(j) parameters for each image feature.
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Arranging the images into a two-dimensional array based on sorted α(i) and β(j) values
allowed for visual assessment of how the additive relationship between combinatorial
structure and quantitative image data was capturing the subcellular distribution of the
probes.

Representative images (Figure 2) or zoom in pictures of individual cells within each image
(Figure 3 and 4) where copied and pasted from the original raw image file into an 8 × 8
image CAIA, using Adobe Photoshop, after converting the 12-bit raw .dib KHCS output
files into standard 8-bit .tifs. For figure 2, raw, unscaled images were used, from TRITC
channel, 1 sec exposure acquistion. For figure 3 and 4, each representative cell image was
scaled one-at-a time, so that the minimium pixel intensity value is 0 (black) and the
maximum pixel intensity value is at pixel saturation (white). Images that were excluded
from regression analysis to calculate group scores (because of saturation, lack of signal, dye
precipitates or other artifacts) were included in the final CAIAs and flagged with an asterisk,
allowing visual assessment of the predictive power of the regression scores.
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Figure 1.
A 2-dimensional CAIA for visualizing hypothetical structure-localization relationships
encoded in the chemical structure of styryl molecules. A) Each styryl molecule contains a
pyridinium group (I) conjugated to a styryl group (II). B) A combinatorial library of styryl
molecules comprises different combinations of pyridinium and styryl building blocks; each
molecule is screened in individually. C) CAIAs constructed based on quantitative image
features, sorted according to calculated regression score of each building block. Building
blocks hypothetically behave as chemical address tags determining intracellular fluorescence
intensity and distribution. This is reflected in a diagonal visual trend across the CAIA, when
building blocks I and II are sorted based on their scores.

Shedden et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2013 March 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Intracellular fluorescence CAIA sorted by the contribution of each building block to the total
integrated intensity of pixels within each cell. Note that many flagged images excluded from
the regression score calculation are classified correctly.
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Figure 3.
Nuclear vs. cytoplasmic localization CAIA sorted by the contribution of each building block
to the ratio of integrated pixel intensities over nuclear and cytoplasmic compartments. Note
that many flagged images excluded from the regression score calculation are classified
correctly –including the top three images with the brightest nuclei.
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Figure 4.
Subnuclear localization CAIA sorted by the contribution of each building block to the
coefficient of variation of integrated pixel intensities within the nuclear region of each cell.
Note that many flagged images excluded from the regression score calculation are classified
correctly.
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Figure 5.
Zooming into cell cycle-dependent DNA-styryl probe localization patterns indicative of
nucleolar staining. The left panel is the Hoechst channel image reflecting DNA distribution,
and the right panel is the styryl image. Cells in different stages of the cell cycle are indicated
(p: prophase; M: metaphase; t: telophase). Unlabeled cells are in interface, and exhibit clear
nucleolar staining and diffuse cytoplasmic staining suggestive of a selective RNA-binding
probe. Interestingly, some interphase cells do not exhibit nucleolar staining (arrows),
suggesting cell to cell variations in nucleolar structure
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