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Abstract

Numerical simulations play an important role in solving complex engineering problems and have
the potential to revolutionize medical decision making and treatment strategies. In this paper, we
combine the rapid model-based design, control systems and powerful numerical method strengths
of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim
by developing a new interface between the two software tools. OpenSim is integrated with
Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both
open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink
to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the
unique feature of feedback control to OpenSim, which is necessary for most human movement
simulations. An arm model example was successfully used in both open-loop and closed-loop
cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward
Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle
and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time
required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB).
For the closed-loop case, a proportional-integral—derivative controller was used to successfully
balance a pole on model’s hand despite random force disturbances on the pole. The new interface
presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also
will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and
generate new solutions as treatments for musculoskeletal conditions.
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1. Introduction

Musculoskeletal conditions cost the US economy over $849 billion annually and place great
demands on health care systems worldwide (Jacobs et al., 2008). Study and treatment of
these conditions could greatly benefit from combined software tools that offer better insights
into neuromuscular biomechanics, and predictive capabilities for optimal surgical and
rehabilitation treatment planning.
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Two general categories of software packages (engineering and musculoskeletal) have been
used for modeling and simulation of biomechanical systems. These systems have been
studied using engineering software packages such as ANSYS (Otoole et al., 1995), ADAMS
(Lemay and Crago, 1996), SD-FAST (Andrews et al., 1998) and MATLAB (Barker et al.,
1997). However, it is difficult to use built-in mechanical and electrical elements in these
packages to model biomechanical systems. To address this issue, commercial
musculoskeletal software packages such as SIMM (MusculoGraphics, Inc.), Visual 3-D (C-
Motion, Inc.), and AnyBody (AnyBody Technology) were developed to study different
biomechanical systems such as lower limbs (Delp et al., 1990; Kepple et al., 1997), upper
limbs (Holzbaur et al., 2005; Damsgaard et al., 2006), and the cervical and lumbar spine
(Vasavada et al., 1998; de Zee et al., 2007). Unfortunately, these packages do not share
model standards or support data exchange as the engineering packages do. Moreover,
neither engineering nor musculoskeletal software packages provide access to, or
customization of source code, which makes it difficult for researchers to extend software
capabilities.

Currently, there is no freely available, open-source computational tool providing an interface
between software packages for modeling and simulation of biomechanical systems with
robust design and control. We aimed to develop such an interface based on the popular
musculoskeletal and engineering software packages of OpenSim (Delp et al., 2007) and
MATLAB/Simulink. OpenSim, a freely available modeling and simulation platform, was
developed as an extension to the commercial musculoskeletal software package SIMM
(Delp et al., 1990; Delp and Loan, 1995). OpenSim has been successfully used to model
musculoskeletal movements such as walking (Thelen and Anderson, 2006; Fox and Delp,
2010), running (Hamner et al., 2010) and predicting surgical outcomes (Fox et al., 2009;
Reinbolt et al., 2009). Although users can extend OpenSim by writing their own plug-ins in
C++, this software lacks the robust design and control components which are needed for
real-time changes to input controls. On the contrary, MATLAB/Simulink (The Math Works,
Inc., Natick, MA) as a powerful mathematical computing and control software is a natural
choice to complement OpenSim, but it has limited resources (e.g., muscle moment arms) for
simulations of biomechanical systems (Hohne, 2000; Lim et al., 2003). Our goal was to
develop and disseminate a free interface between OpenSim and MATLAB/Simulink that
combines their relevant strengths, such as rapid model-based design, control systems,
numerical simulation, and human movement dynamics and simulation.

2. Methods

We start by defining the basic elements of a forward dynamics simulation of a
musculoskeletal model and describe how it works in OpenSim. We then explain the basic
concepts underlying the new S-function (system function) interface between OpenSim and
MATLAB/Simulink. Finally, we demonstrate its application in both open-loop and closed-
loop control systems using a model of a human arm.

2.1. Forward dynamics simulation of a musculoskeletal model

A forward dynamics simulation is the integration of the differential equations that define the
dynamics of a musculoskeletal model. In forward dynamics, a mathematical model of the
system describes how model states (positions, velocities, muscle activations, and fiber
lengths) change due to model inputs (muscle excitations, torque actuators, and external
forces) according to Newton’s second law (Thelen et al., 2003).

The OpenSim Forward Dynamics Tool (Fig. 1) uses a neural command from an input
controls file (e.g., controls.xml) to generate an output states file (e.g., states.sto). Using
musculotendon dynamics, the forces actuating the model are computed; next, using
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musculoskeletal geometry, the joint moments are computed; then, using multibody
dynamics, accelerations and other state derivatives are computed. Finally, state derivatives
are numerically integrated to determine the model’s new states, including the observed
motion.

2.2. Interface between OpenSim and MATLAB/Simulink

We developed a new interface to combine the relevant strengths of OpenSim and MATLAB/
Simulink to enable a user to perform musculoskeletal simulations directly in a model-based
design and control system environment. The interface uses the well-documented S-function
API (application programming interface) to interact with the Simulink engine (Fig. 2). An S-
function is a computer language description of a Simulink block written in MATLAB,
FORTRAN, C, or C++ language (we chose C++ to have easy access to all OpenSim C++
methods and dynamically linked libraries) and compiled as a MEX-file, a dynamically
linked subroutine automatically loaded and executed by MATLAB/Simulink. This
interaction is very similar to the interaction that takes place between the engine and built-in
Simulink blocks.

The S-function interface uses OpenSim’s underlying Simbody dynamics engine and
MATLAB integrators to generate the forward dynamics simulation of an OpenSim model
(Fig. 1, red dotted rectangle). The user can easily change Simulink configuration parameters
(e.g., integration solver, error tolerance) to suit the requirements of the problem at hand.

2.3. Open-loop model application

We created a generic open-loop Simulink model (Fig. 3a) that loads and executes the
OpenSim-based S-function described above. The interface works with any OpenSim model
by defining block parameters for a particular simulation (Fig. 3b).

To demonstrate the open-loop characteristics and compare how well the S-function in
MATLAB/Simulink agrees with the Forward Dynamics Tool in OpenSim, we used a simple
human arm model with 2 degrees of freedom (shoulder elevation and elbow flexion) and 6
muscle-tendon actuators (triceps brachii long head, triceps brachii lateral head, triceps
brachii medial head, biceps brachii long head, biceps brachii short head, and brachialis) to
simulate an elbow flexion movement over 1 s. The motions resulting from the OpenSim and
Simulink simulations of elbow flexion were directly compared.

2.4. Closed-loop model application

We extended the open-loop model by adding a proportional-integral-derivative (PID)
controller with feedback (Fig. 4). The open-loop model is limited to using predefined input
controls that cannot be changed; however, many human movement applications require
closed-loop control systems that update input controls to generate a desired output.

To demonstrate the closed-loop characteristics, we used a human arm model balancing a
pole. The pole was modeled in OpenSim as a cylinder with mass of 10 kg, height of 30 cm,
and base radius of 2.5 cm. This biomechanical system had 3 degrees of freedom (shoulder
elevation, elbow flexion and pole rotation), 6 muscle-tendon actuators, and a constraint on
the hand to move along the horizontal direction. We distributed the PID controller output
based on a muscles gain matrix signed to implement the pole angle correction by the
muscles and normalized by muscle maximum isometric force, effectively, minimizing
muscle activations required for the correction. The PID controller gains were tuned using the
Simulink Control Design Toolbox. The initial controls, computed from static optimization,
were used to maintain the arm position before a control correction was necessary. Random
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force disturbances were added to the pole to cause an imbalance and the pole angle error
was observed.

The new interface between OpenSim and MATLAB/Simulink allows rapid model-based
design and numerical simulation of human movement using both open-loop (Fig. 3) and
closed-loop (Figs. 4 and 5) control systems.

For the open-loop case, the Simulink generated shoulder angle matched the OpenSim
generated angle within a 0.03° root mean square (RMS) difference. The RMS difference for
the elbow flexion angle was 0.06°. Using the OpenSim integrator error tolerance of 1e-3, the
computation time was 7.1 s (computational speed was assessed on a 3.2 GHz Intel® Xeon®
workstation with 3.00 GB of RAM). However, it took 2.9 s to generate the same forward
dynamics simulation of the arm model using the new interface.

For the closed-loop case, the PID controller successfully rejected random force disturbances
ranging between £30 N (Fig. 5b) and balanced the pole with a maximum pole angle error
from vertical of 1.19° (Fig. 5¢). Using the MATLAB integrator with the same error
tolerance as the open-loop case, the computation time for the closed-loop system was 5.9 s.

4. Discussion

The new S-function interface combines the numerical simulation and human movement
dynamics strengths of OpenSim with the robust design, powerful math, and control system
strengths of MATLAB. This integrated platform has promise for better understanding
movement control and the potential to improve treatment planning.

The S-function interface and control systems software developed in this study had some
limitations. First, the compatible versions of OpenSim (v2.3.1), MATLAB (v7.13.0), and
Simulink (v7.7) were based on those available at the time of the S-function interface
development. Thus, generating the newer versions of the interface may be needed as future
versions of these software packages may improve computational efficiency and add new
features. However, the current version of the interface, which is compatible with all versions
of OpenSim (v1.9-v2.3.1), seems to be sufficient as it contains all of the previous OpenSim
features and the new contact modeling capability. Second, the PID control was a simple,
classical approach among the many available closed-loop control systems. However, by
applying the muscle gain in our closed-loop controller which was designed based on the
muscle maximum isometric force, we made the control signal or muscle excitation to act
analogous (but not identical) to the human neural command minimizes muscular effort.
Whereas the controller development is not a focus of this study, the new interface allows
custom, complex controllers to be developed, tested, and refined.

Despite these limitations, the interface allows users to access any OpenSim model within
MATLAB/Simulink and perform forward dynamics simulations. OpenSim-required input
data files such as controls, initial states, and external forces can be provided by a Simulink
signal, a MATLAB workspace variable, or a data file. This flexibility adds the unique ability
of real-time changes to input controls (feedback control) which is necessary to study
musculoskeletal conditions. For example, gait abnormalities commonly observed in children
with cerebral palsy are typically treated by surgically altering muscle functions.
Unfortunately, this treatment strategy does not consistently result in improved outcomes.
Patient-specific simulations using feedback control have utility to determine the potential
efficacy of surgical correction.
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Although our interface shares some similarities with other interfaces, this work is
fundamentally different from previous work focused on functional electrical stimulation
(Davoodi and Loeb, 2002) and finite element analysis (Rasmussen and Ozen, 2007). Others
linked their simulation software (MSMS) with MATLAB (Davoodi et al., 2007; Hauschild
et al., 2007); however, their package uses the SimMechanics toolbox for simulating
musculoskeletal dynamics. In our case, we built on the freely available Simbody dynamics
engine and OpenSim software. The users also should not confuse the developed interface
with OpenSim’s built-in capability of running the OpenSim Forward Dynamics Tool using
the MATLAB command line feature, which only runs OpenSim tool from the system
command line using the OpenSim integrator. On the contrary, our tool uses Simbody
dynamics engine and MATLAB integrators to create a new platform for forward dynamics
as a Simulink block and to add the potential of extending the tool and applying it in closed-
loop control systems.

The potential to use OpenSim and MATLAB/Simulink to study and improve treatments for
musculoskeletal conditions is exciting. This project not only integrates software tools, but
also allows integration of neuroscientists, biomechanists, and physical therapists to adapt
and generate new solutions as treatments for musculoskeletal conditions. All of the source
code, Simulink model examples, and user documentation related to this work will be
available on a SiImTK.org project dedicated to the interface (https://simtk.org/home/
opensim_matlab).
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Fig. 1.

Flowchart illustrating components of forward dynamics in OpenSim and MATLAB/
Simulink. Simulink (/arge blue rectangle) is used instead of the OpenSim Forward
Dynamics Tool. The OpenSim transformations (orange rounded rectangles) between a
neural command and state derivatives (e.g., joint accelerations) involve musculotendon
dynamics, musculoskeletal geometry, and multibody dynamics. Input files (green diagonal
corner rectangles) are required by OpenSim for the model, controls (if applicable), initial
states, and external loads. The new S-function interface (red dotted rectangle) takes a
controls file or Simulink input signal and uses OpenSim to computes state derivatives
subsequently integrated by MATLAB integrators instead of OpenSim integrators. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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model->getNumControls () Block's characteristics
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outputs, states)
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model->setup ()

initial = new ge (initialStatesFileName)
controlSet = new ControlSet(controlsFileName)

tool = new ForwardTool ()
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model ->g Yy ine () . conver: di (63
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Overview of the new S-function interface: (a) The interface links the rapid model-based
design and control systems strengths of MATLAB/Simulink with the numerical simulation
and human movement dynamics strengths of OpenSim. (b) Flowchart illustrating stages for
each Simulink simulation. (c) OpenSim v1.9 (higher versions not showri) methods called

during each simulation stage.
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Fig. 3.

Overview of an open-loop model application for arm flexion. (a) The Simulink graphical
editor window shows input controls (), the new S-function interface (midd/e), and the
output states (Y). (b) The custom Simulink block parameter dialog box shows every input
parameter required (or optional) by the OpenSim Forward Dynamics Tool to perform a
simulation. The parameter names are identical to those implemented in OpenSim to enable a
straightforward transition to the new interface. (c) The output states may be displayed using
a State Selector and Scope within the graphical editor or they may be loaded as a motion file
in OpenSim to visualize the simulated movement.
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Scope

Example closed-loop Simulink model extending the open-loop case with control of a human
arm balancing a pole. The desired pole angle was zero and used to compute a pole angle
error. The proportional-integral-derivative (PID) controller, along with the muscle gain
matrix was used to compute control correction signals for each of the six muscles to balance

the pole, despite random force disturbances exerted on the pole.
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Closed-loop simulation of balancing a pole despite random force disturbances. (a) A PID
controlled human arm model balancing a pole (five time frame series from 0.25st0 0.55 s

shown). (b) Random force disturbances were exerted on the pole. (c) The pole angle

measured from vertical remained small.
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