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Abstract
Survival of altricial infants depends on attachment to the caregiver – a process that requires infants
to identify, learn, remember, and approach their attachment figure. Here we review the
neurobiology of attachment in infant rats where learning about the caregiver is supported by a
specialized attachment neural circuitry to promote the infant-caregiver relationship. Specifically,
the attachment circuit relies on infants acquiring learned preferences to the maternal odor, and this
behavior is supported by the hyper-functioning locus coeruleus and generous amounts of
norepinephrine to produce experience-induced changes in the olfactory bulb and anterior piriform
cortex. Infants also possess a reduced ability to acquire learned aversions or fear, and this behavior
is facilitated through attenuated amygdala plasticity to block fear learning. Presumably, this
attachment circuitry constrains the infant animal to express only learned preferences regardless of
the quality of care received. As pups mature, and begin to travel in and out of the nest, the
specialized attachment learning becomes contextually confined to when pups are with the mother.
Thus, when outside the nest, these older pups show learning more typical of adult learning,
presumably to prepare for independent life outside the nest. The quality of attachment can alter
this circuitry, with early life stress prematurely terminating the pups’ access to the attachment
system through premature functional activation of the amygdala. Overall, the attachment circuit
appears to have a dual function: keeping pups close to the caregiver but also to shape pups’
behavior to match the environment and define long-term emotion and cognition.
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INTRODUCTION
“Hidden within the observable interactions of parent and offspring are
sensorimotor, thermal, and nutrient-based events which have unexpected and
widespread regulatory effects on infant behavior and physiology. … These
regulatory processes also appear to mediate long-term shaping effects exerted by
early relationships.” (Hofer, 1994)

Attachment, the enduring bond between individual animals or humans [1], has a wide
phylogenetic representation. Attachment also occurs throughout the lifespan and includes
the mother attaching to her offspring, the offspring attaching to the caregiver, and mates
attaching to one another. Considerable work has begun to document how the human brain
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forms attachment, with focus primarily limited to adult pair bonding and romantic love
[2-9]. In other species, attachment research has focused on both infant and adults, with
decades of research characterizing its neural basis at molecular, cellular, and systems levels
[10-16]. In this review, we focus on infant attachment and integrate neurobiological
attachment research in infant mammalian species.

Human infants exhibit attachment behaviors to their caregiver within minutes of birth. This
occurs despite the birth process and transitioning from the familiar rhythmic and warm
intrauterine environment to a world filled with new sensory experiences. This appears to be
a daunting process since infants are required to identify their caregiver, form a memory
about the experience with the caregiver, and continuously seek closeness to their caregiver
for survival. Indeed, it seems that evolution has shaped the infant’s social and emotional
behavior to learn about and maintain proximity to the caregiver through this attachment
process. The caregiver becomes the target for social behaviors and proximity-seeking
behaviors and provides the food, protection, and warmth necessary for survival. Pre-
programmed behaviors that are practiced in utero together with prenatal learning of the
caregiver’s smells and sounds greatly facilitate this transition and attachment. This is
combined with the infant’s exceptional postnatal learning, where other features of the
mother and other caregivers are rapidly learned. For instance, within hours of birth,
newborns orient towards and prefer their mother’s voice, which is due to both prenatal and
postnatal experience with the mother’s voice [17]. Similar prenatal and postnatal experience
seems to underlie newborns response to maternal odor. Indeed, at birth, an infant placed on
the mother’s ventrum will crawl to a breast scented with amniotic fluid in preference to the
untreated breast [18]. Importantly, maternal diet, which scents the amniotic fluid, directly
influences this preferential response [19-21]. This odor also influences the infant’s response
to the mother, as expressed by orienting to the odor source and the odor’s ability to attenuate
crying [21,22]. Together, these studies illustrate that complex attachment behaviors of
human attachment and bonding can be analyzed at the sensory system level to provide
insight into how sensory stimuli can regulate behavior and physiology [23,24].

Due to the limitation in the assessment of the neurobiology of attachment in humans, most
of our understanding of the neurobiology of early life learning is based on animal research.
Similar to humans, this survival-dependent learning is realized by exceptional learning
processes early in life in other animal species. Early life attachment learning known as
“imprinting” is temporally limited to a window of time as first demonstrated following
hatching in chicks [23, 26-30]. The rapid learning and some of its neural support has been
identified in mammals [12,13]. Importantly, while this animal work provides understanding
and insights into human attachment, children show far more flexibility in forming
attachment, including attachment to multiple caregivers throughout development [30] with
continual learning occurring during awake and sleep [31].

Here, we will review the literature on the neurobiology of rodent infant attachment learning
and how it is reorganized during development to presumably meet the changing needs of the
infant as it transitions to independence. Such developmental transitions in behavior include a
complex interplay between experience, learning, and neural changes and are thought to
represent periods of vulnerability [32-35] although this process becomes the foundation for
normal brain and behavior [36-39].

Rodent attachment learning
Attachment learning has been identified across many species, including rats [40-45], rabbits
[46-49], mice [50-52], and non-human primates [53-56]. During this time of dependency
upon the mother, the infants’ behaviors are focused on keeping physical contact with the
mother. The sensory stimuli controlling this attachment vary with each species, but in the
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infant rat, this behavior is guided and controlled by maternal odor [57,58]. Specifically,
maternal odor controls infants’ approach responses to the mother. Once pups make contact
with the mother’s ventrum, perioral somatosensory cues combined with maternal odor
become the proximal maternal stimuli essential for nipple attachment [59,60].

Infant rat pups, born blind and deaf, orient toward mother’s odor naturally within the nest,
and decades of research have now shown the maternal odor is not a pheromone, as originally
proposed, but is learned [57-70]. The maternal odor elicits approach, physical contact with
the mother, and nipple attachment, and without the maternal odor, pups show greatly
diminished contact with the mother, failure to nipple attach, and exhibit low survival rates
[71,72]. This has been demonstrated in naturalistic paradigms with the specific sensory
qualities of the attachment figure (scent, texture, color, sound) during infant-caregiver
interaction [15,26,43,44,52]. Any neutral odor can become the maternal odor simply by
placing a novel odor (i.e. peppermint or citral) on the mother during mother-infant
interactions or in the amniotic fluid during the last days of gestation [41,57,65,73-76],
although sensitive period olfactory learning also occurs in controlled classical conditioning
experiments performed outside the nest without the mother [64,77-84]. Indeed, pairing a
novel odor with a reward is sufficient to produce both learned odor preferences
(demonstrated by an approach to the odor) and nipple attachment. However, perhaps the
most striking feature of this early learning is the variety of stimuli that have been shown to
function as a reward for young pups. Indeed, pairing a novel odor with milk, warmth,
nursing, and tactile stimulation or stroking to mimic grooming all support odor learning
[41,63,64,70,73,76,82-88]. As will be discussed below, painful stimuli can also support this
odor attachment learning. Finally, the maternal odor continues to be learned repetitively
throughout the early postnatal period, presumably to accommodate the changes induced in
the maternal odor by the mother’s diet.

Somatosensory input is a component of early approach behaviors in rat pups and supports
early learning. Manipulations of somatosensory input from the first day of life throughout
development have now been done to examine the role of early somatosensory inputs,
specifically involving the perioral area and whiskers, in infant attachment behavior. For
example, sectioning of the infraorbital nerve, the sensory nerve that innervates the whiskers,
was found to result in increased infant mortality due to inability of pups to nipple attach
normally, by disrupting nipple searching behaviors such as sweeping the snout over the
ventrum just prior to grasping the nipple [89]. Furthermore, de-whiskering throughout
development, which affects tactile learning and whisker behavior in adulthood [90], delays
pups’ nipple attachment in early life [91]. The importance of perioral somatosensory
information to pups is also evident in pups’ early life somatosensory learning. Specifically,
passive whisker stimulation paired with reward results in stimulation-evoked head and
oromotor activity in pups as early as 1 day old, which is similar to the behavioral activation
required for nipple attachment [92]. The most dramatic effects of early life whisker
deafferentation occur when whiskers begin to move (whisking) at postnatal day (PN) 12 just
prior to eye and ear opening. Specifically, upon examination of early exploratory behaviors,
studies showed that deafferentation of the infant whiskers results in abnormal head turns in
pups, latencies to explore and contact novel objects using the whiskers, increased contact
with other sensory surfaces during tactile exploration such as paws and mouth, and delayed
whisking emergence and development [93, 94].

Together, this research indicates that the maternal odor is used for early attachment but is
experienced among an array of sensory stimuli in the nest. Learning within any sensory
system is likely a continuous and reciprocal process as pups mature and maternal behavior
decreases. That is, as we place these behavioral learning results into the natural environment
of pups, it is important to consider the myriad of sensory stimuli that are activated as pups
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interact with the mother and that learning likely co-occurs in all sensory systems.
Specifically, as pups experience the maternal odor, it is accompanied by touch and warmth
(somatosensory system) and the taste of milk (gustatory system), which are likely combined
by pups as the maternal representation. These maternal stimuli each have a role in
facilitating interactions with the mother: the odor orients pups to the mother, but at the
nipple it is a combined signal of maternal odor plus stimulation of the perioral area (snout,
whiskers) induced by pup’s own motor responses (lateral head movements along the
ventrum) that permit nipple location and grasping for nursing. Moreover, pups are likely to
be simultaneously learning about the mother, siblings, and nest. Passive stimulation of the
whiskers, for instance, may be a sensory cue that is used within the context of the nest while
the pup is huddling with siblings or competing for access to a nipple.

Neurobiology of infant attachment
As illustrated in Figure 1, this robust olfactory-based attachment learning system in rats is
supported by a unique learning neural circuitry: infants’ noradrenergic locus coeruleus (LC)
and its abundant release of norepinephrine (NE) into the olfactory bulb induces the plasticity
required for learning. Indeed, neural plasticity within the olfactory bulb is the critical site for
physiological and anatomical changes within the brain to support the maternal odor learning
[95-107]. Learning-induced plasticity has been well documented in naturalistic learning
experiments [24,80], and in conditioning experiments conducted outside the nest [79, 80,
97-107]. The maternal odor, whether natural or artificial (placed on the mother or ingested),
as well as odors learned through controlled classical conditioning studies all produce a
similar enhancement of olfactory bulb neural responding. Neural assessments have been
done using a variety of techniques including 2-deoxyglucose (2-DG) uptake, c-Fos
immunohistochemistry, electrophysiology, CREB phosphorylation (pCREB), and optical
imaging, and the effects observed with these techniques are all confined to early life.

Norepinephrine (NE) appears to be both necessary and sufficient for the learning-induced
behavioral and neural changes seen in pups. NE-dependent olfactory bulb learning-induced
changes are dependent upon NE released from the LC [108-118]. NE appears to evoke
olfactory bulb plasticity by preventing the olfactory bulb’s primary output neurons (mitral
cells) from habituating to continual olfactory stimulation [100]. At the molecular level, NE
also increases pCREB via cyclic AMP stimulation that likely underlies transcription of
immediate-early and late-response genes involved in synapse formation, neurogenesis, and
learning [110]. Thus far, it seems that rat pups use the same intracellular cascades used in
adult learning and memory [119-123].

One unique feature of infant learning is that the infant LC releases substantially more NE
into the olfactory bulb during the sensitive period than during adulthood [118]. This appears
due to pups’ lack of the recurrent collateral inhibition from α-2 inhibitory autoreceptors,
which in adults and older pups inhibits LC firing and NE release into the olfactory bulb
[124-127]. The LC α-2 receptors’ autoinhibition becomes functional around 10 days of age
[123,127], which changes the LC’s stimulus-induced responding and greatly reduces the
amount of NE release. Indeed, the functional emergence of the LC’s α-2 inhibitory
autoreceptors signals the end of the pups’ sensitive period of heightened ability to learn
odors. At this point, NE begins to play a more modulatory role (versus the necessary and
sufficient role), which has been repeatedly demonstrated in adult learning [128,129].

Thus far we have discussed the experience-induced changes in the olfactory bulb and LC
that are responsible for early-life learned-odor associations. While cellular and physiological
changes in the olfactory bulb play a prominent role in the early learning process, the
olfactory piriform cortex (part of the olfactory cortex) appears to have an important role in
assigning the hedonic value to a learned odor. Primary sensory axons of mitral cells of the
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olfactory bulb directly project to the piriform cortex [130,131]. The piriform cortex can be
divided, both anatomically and physiologically, into two distinct structures: 1) the anterior
piriform cortex, which is influenced by direct olfactory bulb input; and 2) the posterior
piriform cortex, which is more influenced by input from limbic structures and intracortical
connections [132-134]. Early-life learned odor preferences engage the anterior piriform
cortex (with no detectable activity in the posterior piriform), while learned odor aversions in
older pups and adults support posterior piriform cortical activity [80].

Since naturalistic early attachment learning likely produces simultaneous learning in
multiple sensory systems, we also questioned whether the NE was important for pup
learning within the somatosensory system. Indeed, the noradrenergic LC innervates the
somatosensory system along the ascending somatosensory pathway [135]. We found that
NE is necessary and sufficient to induce early associative learning during the first days of
life. Specifically, newborn rat pups can be conditioned to whisker stimulation paired with
increased systemic NE [135]. We were unable to detect learning-associated changes in the
immature barrel cortex [91, 92]. Thus, NE is implicated in plasticity within the whisker
system in adulthood [136] and during development [137] and compliments the role of NE in
the olfactory system discussed above. This suggests that NE-associated early classical
conditioning may represent a common principle across sensory system development.

Neurobiology of pain-associated attachment
Another unusual feature of pup attachment learning is that it persists regardless of the
quality of care that is received. That is, pups with an abusive mother also form a strong
attachment [24,80]. This pain-related attachment could be mimicked outside the nest, where
pups can learn a new maternal odor, even when that odor is paired with a 0.5mA shock or
tailpinch [69,70]. This paradoxical attachment learning suggests that there is suppression of
avoidance and fear learning, perhaps to protect pups from learning to fear the mother. Since
the conceptualization of attachment theory, the attenuation of fear and avoidance is known
to be a critically important characteristic of attachment learning [1,23-24]. Early imprinting
studies demonstrated that shocking young chicks in the presence of the surrogate caregiver
elicits an approach response to the caregiver rather than an aversion [27-28]. Abusive
caregiving also elicits attachment in non-human primates [138-141].

The ability of young pups to learn an attachment to an abusive caregiver is likely related to
the suppression of learning systems that would enable pups to fear or avoid their caregiver.
For example, fear of predators, cued-fear conditioning, inhibitory conditioning, and passive
avoidance do not functionally emerge until after the sensitive period has terminated at PN10
[69,77-80,142-154]. For example, the fear-conditioning paradigm of odor-shock (0.5mA
shock) conditioning produces a paradoxical odor preference in young rat pups (less than 10
days of age, i.e. sensitive period) despite an apparent pain response [45,147-151]. The same
paradigm produces an odor aversion in pups older than PN10 signaling the end of the
sensitive period for attachment learning and the emergence of adult-like fear learning
[45,69,79,148].

Evidence suggests that the absence of amygdala plasticity is responsible for the paradoxical
response to aversive stimuli during the sensitive period [15,45,79,148,153,154]. In adult
animals, the amygdala is the brain area responsible for fear learning in both conditioning and
natural fear paradigms [155-168]. In contrast, the amygdala does not exhibit learning
associated plasticity during laboratory or natural fear paradigms in infants rat pups less than
PN10 [79,80,153,169,170]. In these sensitive-period pups, odor-0.5mA shock conditioning
supporting odor preference learning is unaltered by pharmacological suppression of the
amygdala and initially suggested to us that the amygdala may simply be too immature to
support fear learning. Indeed, peak neurogenesis in the amygdala begins in the first week of
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life, yet the functional development of the amygdala extends into adolescence [171-179].
Synaptic development begins around PN5, with a protracted increase between PN10-20, and
an adult-like synaptic profile is not reached until early adolescence [163,171]. Long-term
synaptic plasticity (LTP) induced in the adult basolateral amygdala does not emerge until the
end of the attachment learning sensitive period [180].

Thus, infant odor-shock conditioning activates the same brain circuitry as appetitive learning
paradigms using milk, warmth, or stroke (olfactory bulb, anterior piriform cortex, LC), and
requires the absence of amygdala plasticity, unlike in the adult. These data suggest that
instead of being an immature adult prototype, the unique infant learning circuitry has been
conserved by evolution to support attachment to the caregiver. Many animals including
humans form attachments to abusive caregivers at all costs in order to survive [181,182].

It may be important to mention that infants can learn aversions under some circumstances.
Infant rats are able to learn to avoid odors if paired with malaise, such as that produced by a
lithium chloride (LiCl) injection or 1.2 mA shock [183-204]. Interestingly, while in adult
and pre-weaning rats the amygdala responds to odor-malaise conditioning [205], but in
infants, odor-malaise uses a non-amygdala neural circuit for odor aversion learning
[200,201]. Another remarkable constraint exists on aversion learning during infancy: if
neonatal rats are nursing during odor/taste-LiCl conditioning, this produces a learned odor
preference or blocks taste learning [200,201,206-208].

In summary, data indicate that infants do not readily learn aversions, and we attribute this to
unique neural circuitry optimized to facilitate attachment to the caregiver. In Figure 1, we
illustrate our current understanding of this early social attachment circuit. Next, we review
how this circuitry changes to transition the developing animal from attachment learning to
learning that can accommodate both learned preferences and aversions. Indeed, as will be
discussed in the next sections, the sensitive period can be altered to support fear learning
simply by elevating corticosterone (CORT), and older pups can have their sensitive period
learning reinstated by lowering CORT, which can be done naturalistically dependent upon
the mother’s presence or absence.

CORT controls the age limits for the sensitive period for attachment learning
The emergence of fear learning signals the end of the attachment sensitive period and
coincides with delayed stress-induced CORT release in infants. Before we describe the role
of CORT in pup attachment learning, some unique features of their stress system will be
described. Early in the rat pups’ life CORT basal levels are relatively low and most stressors
do not induce CORT release, a development period known as the stress hyporesponsive
period (SHRP) [209-218]. Maternal sensory stimulation during nursing or grooming
maintains pups’ low CORT levels [39,219-222]. In fact, maternal separation (greater than a
few hours) deprives the pup of the regulating sensory stimuli from the mother and increases
CORT levels, while return of maternal stimulation is able to return pups CORT to normal
low levels. As pups’ SHRP ends around PN10, stressful stimuli increase pups’ CORT levels,
although the presence of the mother can greatly attenuate CORT levels. This attenuation of
CORT levels by maternal presence is referred to as ‘social buffering’ and occurs in many
different animal species, including humans [52-56,221,222]. This reduced stress reactivity is
hypothesized to protect the developing organism from stress hormones’ negative effects
[223-229]. Indeed, high levels of CORT administered to the neonatal rat affects growth,
brain size, neuroendocrine function, and cellular structure and formation.

CORT plays a modulatory role in adult fear and avoidance conditioning by increasing or
decreasing learning strength [229-230]. However, CORT has a direct impact on infant
conditioning by switching whether infants will learn avoidance or attachment. Specifically,
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increasing CORT by systemic injections or by intra-amygdala infusions in pup during either
fear conditioning or presentation of a predator odor is sufficient to produce an amygdala-
dependent fear response, further indicating pain threshold is not a variable in pups’
emergence of fear learning [45,72,147-149,151,153,231]. At PN10, pups have a sufficient
endogenous level of stress-induced CORT to permit amygdala plasticity and fear. In these
older pups (PN10 to PN15), reducing CORT levels through social buffering (maternal
presence) or intra-amygdala receptor CORT blocker prevents fear learning and reinstates
attachment learning through prevention of the participation of the amygdala in learning
[105,148,200]. Since this effect of maternal presence lowering CORT to prevent fear
learning is only possible through PN15, this limit defines a transitional sensitive period that
follows the sensitive period for attachment learning [105]. Thus, the age range for increase
in CORT to terminate attachment learning in the infant rat pup is 6 through 15 days of age
[105]. We suggest that this age limit protects pups from learning an aversion to the maternal
odor while pups are dependent on maternal care and ends after weaning when survival
outside the nest is possible. We also suggest that 5 day old pups and younger do not have an
amygdala sufficiently mature to support avoidance learning [171-179].

As illustrated in Figure 2, the mechanism for the mother’s presence (social buffering) to
change pup learning appears to be at the level of the hypothalamic paraventricular nucleus
(PVN), a brain area critical for initiating the action of the Hypothalamic-Pituitary-Adrenal
(HPA) axis. Specifically, the PVN appears to coordinate the diverse neural input from
different types of stressors. While the PVN receives input from different neurotransmitters,
from different brain areas, NE is a major player in controlling this brain area [232-233].
Social buffering, at least in rats, results in attenuation of PVN neural activity and
suppression of PVN NE release. This was demonstrated in pups during the Transitional
Sensitive Period age (PN12-14) where suppression of PVN NE release blocked CORT to
promote attachment learning even during fear conditioning [45]. Additionally,
microinfusions of NE into the PVN initiates fear learning even in the presence of the mother
[45]. In an adult rat during stress, the main source of the NE in the PVN is derived from
ascending brain stem pathways (A1, A2, with smaller amounts from the LC), however we
do not yet have this information in infant rat pups. Together these data represent a
transitional period of pups’ continued dependence upon maternal presence inside the nest,
while enabling fear as an adaptive mechanism to transition to life outside the nest.

The relationship between the mother and pup is reciprocal and the pups can also influence
the mother’s CORT level, although in the opposite direction [234-236]. That is, the mother
has a robust stress response with the pups and a stress hyporesponsive state while away from
her pups. The ability of social stimuli to control CORT is similar in both the mother and
infant via modulation of NE in the PVN. The robust stress response mounted by the mother
presumably enables the mother to protect her pups, such as occurs with maternal aggression.

To summarize, during the early attachment period or in older pups with maternal presence,
pups do not mount a CORT response to pain (i.e., shock), which prevents amygdala
plasticity, and ultimately prevents the pups learning fear. The ability of CORT levels to turn
on and off the pups’ fear system may inhibit fear when in the nest, but permit fear when
pups are old enough to explore outside the nest. Indeed, crawling transitions to walking just
at the age pups begin to mount a CORT response (PN10).

Long-term consequences of early-life environment
Learning during early life is important to subsequent behavior in the adult rat. For example,
the learned maternal odor leaves a lasting trace throughout the lifespan, although the role of
the conditioned odor in modifying behavior changes from that used during infancy
(attachment to the mother) to that used during adulthood (adult mate preference and
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parenting) [95,237,238]. Furthermore, recent work from our lab suggests that similar
enduring, depressive-like effects and social behavior deficits are produced by repeated odor-
shock conditioning and by rearing pups with a maltreating mother, although these effects are
most pronounced in adulthood [24,72,237]. The conditioned odors (the odor used in odor-
shock conditioning) also evoke enhanced neural responses in the olfactory bulb and
attenuated amygdala activation in the adult, which are aspects of pups’ unique neural
response to the maternal odor [237,238].

This early life learning compliments the more general effects of the early environment in the
regulation of behavior throughout the lifespan, which has long been recognized in clinical
and experimental studies [239-251]. Indeed, sensory stimulation from the mother during
development is a necessary component in shaping healthy adult cognition and emotion in
rodents, nonhuman primates, and humans [36-40,140,141]. More recent studies, including
our own, which involve manipulations of the early environment are providing a clear
understanding of how early stress and trauma may have a lasting effect on adult behavior.
For example, the maternal deprivation or maternal separation paradigm, which is a model of
infant neglect, removes pups from the nest for an extended period of time (3 to 24 hours)
either once or multiple times during the first and second postnatal weeks. The maternal
separation procedure - also viewed as deprivation of multiple sensory stimuli from the
mother - has been shown to regulate pups’ CORT, although it has ubiquitous effects. Rat
pups’ initial behavioral responses to maternal separation consist of increased behavioral
activity and vocalizations, including ultrasonic vocalization and increased activity, which
likely attract the mother [252-254]. The initial responses can be greatly attenuated if pups
are provided with adequate warmth and a source of maternal odor. However, within a few
hours of separation, the HPA axis is engaged and CORT increases as a result of increases in
adrenocorticotropic hormone (ACTH) that control the stress response at the level of the
pituitary, although there are additional ubiquitous effects throughout the brain. This
disruption in the HPA axis and its immediate and enduring effects on the brain and behavior
has clearly indicated the important role of stress hormones in organizing emotional and
cognitive development, although there are likely multiple ways of altering normal brain
development. Specifically, maternal separation effects gene expression, glucocorticoid
receptors, neural function (i.e., LTP), and the long-term susceptibility to stress-related
diseases [239-251]. Thus, research using naturalistic environmental stimuli has greatly
expanded our understanding of the potential CORT related mechanisms using different
levels of analysis and has provided a stronger link between clinical and basic research.

Clinical implications of early attachment learning
The clinical literature suggests that the infant’s relationship to the caregiver is important in
shaping human behavior and the trajectory of brain development. The individual that
experiences early abuse or neglect has a greater probability of psychopathological disorders,
although access to at least one strong positive figure has been shown to dramatically
decrease this risk [1,255]. For example, the Bucharest Early Intervention Project provides a
long-term study on the effects of institutionalization on cognitive abilities and brain function
in young children and the benefits of early intervention (less than 2 years old). These studies
have highlighted a sensitive period for attachment in early life and the unique window of
opportunity to repair early life effects of a deprived, harsh environment [255-260]. These
results greatly enhance our understanding of clinical and basic research studies, although the
effects of social deprivation and abuse within the attachment dyad and non-attachment
related trauma may have different clinical outcomes [261]. The long-term effects of these
clinical studies have been highlighted with brain imaging research showing that these early
adverse events are correlated with aberrant adult brain functioning, most notably in the
limbic system, frontal cortex, and cerebellum [262-271]. Although the neurobiological
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effects of abuse from the caregiver are still not well understood, especially with respect to
neural circuitry, overall the clinical work suggests that both mental and physical health
during childhood are affected with strong convergence of data across species and studies,
and this pattern continues through adolescence into adulthood.

In this review, we have outlined some neural and behavioral properties of infant attachment
that go beyond its support of proximity-seeking and attachment behaviors. These unique
features suggest that the infant rat’s attachment circuit is not simply due to the absence or
immaturity of neural structures but rather to its unique characteristics, producing an infant
brain that has optimized attachment to the caregiver. There is some evidence that an
attachment circuit may exist in the child’s brain, which was originally discussed by Bowlby
[1] but this may be difficult to identify and test in children. Bowlby’s original attachment
theory was strongly based on a vast integration of clinical observations and pioneering
research on mother-infant relations in animals and imprinting [25-27,138,272-274]. It should
be noted that the paradigm shifting work in the Bucharest Early Intervention Project
[255-260] and its use of rigorous controls, has provided evidence of a sensitive period for
attachment ranging from the first to third year of life depending on the behavioral neural
system being studied and the age measured. While the details of the neural circuitry and
timing of attachment are still unclear in human children, the rat pup model system may
provide a greater understanding of the neurobiology of attachment and secure a foundation
for the exploration of unique qualities of neural structures during early life. Additionally, the
rat pup model of attachment can be used to identify the critical role of social interactions in
infancy for the ability to test normal processing of sensory stimuli and learning at the earliest
moments of postnatal life.
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Figure 1.
Young infant rat pups very rapidly learn a new maternal odor. This learning is supported by
a wide range of stimuli functioning as a reward that when paired with an odor results in the
acquisition of a new maternal odor. For example, a novel odor paired with either tactile
stimulation (mimics maternal licking), a mildly painful 0.5 mA shock/tailpinch (mimic
mother stepping on pups/handling them roughly), or maternal care produces a new maternal
odor. This learning is supported by a simplistic neural circuit (blue arrows) that requires the
pairing of the novel odor with increased locus coeruleus (LC) norepinephrine (NE) release
into the olfactory bulb (OB). Learning induced changes are found in the OB and anterior
piriform cortex (Prf Ctx). At around PN (postnatal day) 10, functional emergence of the LC
recurrent collaterals stimulate alpha-2 postsynaptic receptors, which terminate LC firing and
provide insufficient levels of NE to the olfactory bulb to support the plasticity required for
learning the new maternal odor [64,65,79-81,85,100-118,148].
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Figure 2.
As pups mature and begin to make brief trips outside the nest, attachment learning only
occurs if the mother is present. Pups appear to use the same attachment learning circuitry
used during the sensitive period when with the mother. Away from the mother, the more
adult-like amygdala-dependent (AMG) fear learning system emerges. Pups’ ability to switch
between these two learning systems is due to emerging systems: 1) shock begins to induce
increased release of the stress hormone corticosterone (CORT) at around PN10, which
supports aversion/fear learning and 2) maternal presence blocks this shock-induced CORT
release, which prevents amygdala plasticity and reinstates the attachment learning. Maternal
presence (anesthetized) blocks adrenal gland CORT release by blocking NE into the
paraventricular nucleus (PVN). By 16 days old, maternal presence does not block amygdala-
dependent fear learning. The attachment neural circuitry is illustrated in blue and the
aversion/fear learning circuitry is illustrated in red
[15,24,45,79,137,148,169,153,180,200,201].
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