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Abstract
Discovery of novel antigens associated with infectious diseases is fundamental to the development
of serodiagnostic tests and protein subunit vaccines against existing and emerging pathogens.
Efforts to predict antigenicity have relied on a few computational algorithms predicting signal
peptide sequences (SignalP), transmembrane domains, or subcellular localization (pSort). An
empirical protein microarray approach was developed to scan the entire proteome of any
infectious microorganism and empirically determine immunoglobulin reactivity against all the
antigens from a microorganism in infected individuals. The current database from this activity
contains quantitative antibody reactivity data against 35,000 proteins derived from 25 infectious
microorganisms and more than 30 million data points derived from 15,000 patient sera.
Interrogation of these data sets has revealed ten proteomic features that are associated with
antigenicity, allowing an in silico protein sequence and functional annotation based approach to
triage the least likely antigenic proteins from those that are more likely to be antigenic. The first
iteration of this approach applied to Brucella melitensis predicted 37% of the bacterial proteome
containing 91% of the antigens empirically identified by probing proteome microarrays. In this
study, we describe a naïve Bayes classification approach that can be used to assign a relative score
to the likelihood that an antigen will be immunoreactive and serodiagnostic in a bacterial
proteome. This algorithm predicted 20% of the B. melitensis proteome including 91% of the
serodiagnostic antigens, a nearly twofold improvement in specificity of the predictor. These
results give us confidence that further development of this approach will lead to further
improvements in the sensitivity and specificity of this in silico predictive algorithm.

Introduction
Our lab has developed an approach to construct and probe protein microarrays on a genome-
wide scale. We have applied this approach to more than 25 medically important infectious
microorganisms, including Mycobacterium tuberculosis [1], Plasmodium falciparum [2– 4],
Plasmodium vivax, Brucella melitensis [5], Chlamydia trachomatis [6], Francisella
tularensis [7] [8], Burkholderia pseudomallei [9] [10], Coxiella burnetii [11] [12], Borrelia
burgdorferi [13], Salmonella enterica serovar Typhi, Rickettsia prowazekii, Rickettsia
rickettsii, Orientia tsutsugamushi, Bartonella henselae [14], Leptospira interrogans,
Toxoplasma gondii [15], Candida albicans [16], and Schistosoma mansoni [17], and viruses,
including vaccinia [18 – 21], monkeypox, herpes type 1 and 2, varicella zoster, human
papillomavirus (HPV) [22], HIV, dengue, influenza, West Nile, and Chikungunya. In total,
we have now made more than 35,000 plasmids, printed the encoded proteins on 25,000
microarrays, and probed the arrays with 15,000 serum specimens, to determine disease-
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associated antibody profiles in people infected with each agent. The individual proteins
printed on these arrays capture antibodies present in serum from infected individuals and the
amount of captured antibody can be quantified using fluorescent secondary antibody. In this
way, a comprehensive profile of antibodies resulting after infection or exposure can be
determined that is characteristic of the type of infection and the stage of disease [13] [20]
[21]. The goals of this research are to develop a more detailed understanding of how the
immune system responds to infection and to identify serodiagnostic and subunit vaccine
antigens.

Another application for this empirical data is to train an algorithm to predict reactive
antigens in silico, and several articles from our group apply enrichment analyses to identify
proteomic features that tend to be seen more frequently in the immunodominant and
serodiagnostic antigen sets [7] [14]. The antigens were classified according to annotated
functional features (e.g., clusters of orthologous groups of proteins (COGs)),
computationally predicted features (e.g., subcellular localization, physical properties), and
protein expression estimated by mass spectrometry (MS); we found that membrane antigens
and virulence factors and proteins expressed at high levels tend to be recognized more
frequently by the immune system than the rest of the proteome, and this type of analysis
predicted ca. 37% of the protein containing as much as 91% of the serodiagnostic antigens.
More recently, an article from our group described a sequence-based approach called
AntigenPro for predicting protective antigens that have ca. 75% prediction accuracy [23].

In this study, a naïve Bayes classification approach was applied to assign a relative
numerical score to each antigen in the Brucella melitensis proteome. This score reflects the
relative likelihood that a protein will be reactive based on its functionally annotated or
computationally predicted features. Our analyses indicate that i) over 90% of serodiagnostic
antigens are predictable from the top 20% of genome ranked by this naïve Bayes
classification approach and ii) the antigens with enriched features in the top 20% of the
genome account for 100% of serodiagnostic antigens with these features. This approach
greatly enhances the predictive efficiency, compared to previous studies, provides a basis for
targeted screens of entire proteomes based on likelihood of seroreactivity, and helps
determine trends in the humoral immune response to Gram-negative bacteria.

Results
A data set from empirically determined proteome-wide serological analysis of B. melitensis
was examined in the context of naturally acquired human infections, using protein
microarrays for B. melitensis [5] [24]. The microarray contained 3046 proteins,
corresponding to 95% of the proteome. The immunoproteome comprised 1464 antigens that
reacted with at least one culture-positive individual, accounting for 48% of the proteome.
Within this immunoproteome, 122 antigens were classified ‘seroreactive’ with mean
reactivity greater than 2.5 standard deviations above the mean of the negative controls.
Within this collection of 122 seroreactive antigens, there were 33 serodiagnostic antigens
that distinguished naturally infected Peruvian brucellosis patients and healthy subjects from
the same region with sensitivity and specificity >95%. The remaining 89 seroreactive
antigens were defined as cross-reactive, because they reacted similarly in both infected and
healthy individuals.

We classified the seroreactive and serodiagnostic antigens according to annotated functional
features (COGs), computationally predicted features, and protein expression estimated by
mass spectrometry (MS) [24]. Enrichment analyses indicated that ten features were
significantly enriched in seroreactive and serodiagnostic antigen sets (Table 1) [24]. These
enriching features are i) functionally annotated COGs U, M, N, and O, ii) computationally
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predicted features (TMHMM = 1, SignalP >0.7, pSort outer membrane, pSort periplasmic,
and pI < 5), and iii) MS evidence of expression. All together, these ten features accounted
for 37% of the proteome and included 91% of the serodiagnostic antigens.

As is important for diagnostic antigen discovery, we have been developing a better classifier
of protein-antigenicity prediction to increase the likelihood of identifying serodiagnostic
antigens and to apply it on a high-throughput scale to existing or new proteomes. To better
quantify the relationship between all of these features and the seroreactivity of the proteins,
here, we used a naïve Bayes classification scheme to rank all expression-confirmed proteins
in the B. melitensis proteome according to the probability of antigenicity [7] [25].

The naïve Bayes model makes the strong assumption that each feature is conditionally
independent of all other features. While this assumption is not always accurate, in practice,
this method often out-performs more sophisticated models. The likelihood ratio was
calculated using all the proteomic features for all proteins in B. melitensis, and the proteins
were ranked according to this calculation for seroreactive, serodiagnostic, or cross-reactive
antigens. To assess the ranking scheme, we examined where the seroreactive or
serodiagnostic hits were ranked. For example, by doing so, we would need to screen only
20% of the genome to be able to identify 63% of all seroreactive antigens, or 56% of cross-
reactive antigens, or even more importantly, 91% of serodiagnostic antigens (Tables 2 – 4).
As the list of proteins increased, more seroreactive and serodiagnostic antigens were
identified (Fig. 1). Precisely, 100% of serodiagnostic hits were among the top 44% of the
entire list, but 92% of the proteome had to be sampled to identify all 100% of cross-reactive
hits. We take this as evidence that antibody responses against the cross-reactive antigens are
derived from previous exposure to unrelated infections and not associated with the active
infection in the infected group.

To access the probability of prediction using these ten enriched proteomic features, we
looked at individual features among the ranked proteins (Table 5). Most features were
significantly more enriched in seroreactive antigens in the top 1% of the genome, and the
fold enrichment drops as the percentage of genome size increases. Of all these features,
COG U was most enriched in the top 1% of the genome. COG N, however, was not
identified at all in the top 2% of ranked proteins. Except pI < 5, all enriching features
remained at least twofold enriched as 100% of the genome size was reached.

As we looked into enriching features in each combined category, we also observed the
highest probability of predicting seroreactive and serodiagnostic antigens in the top 1% of
ranked genome (Tables 6 and 7). Of 15 antigens predicted to have COGs U, M, N, and O, 6
were identified to be seroreactive, leading to a prediction rate of 40% for seroreactive
antigens (Table 6). The probability of prediction on seroreactive antigens is 23% for
computationally predicted features, 19% for MS evidence of expression, and 23% for
proteins with all ten features (Table 6). In the top 1% of the ranked genome, serodiagnostic
antigens were found in 29% of proteins with COGs U, M, N, O features, 17% of proteins
with computationally predicted features, 17% of proteins with MS evidence of expression,
and 17% of proteins with all these ten features (Table 7). These prediction rates were
significantly higher compared to an expected prediction with no applied selection criteria.
Indeed, we would expect the prediction rates on seroreactive antigens by chance to be 11,
10, 12, and 9% and the prediction rates on serodiagnostic antigens by chance to be 3, 3, 6,
and 3% for these four categories of proteins, respectively. With the attempt to identify a
larger percentage of the seroreactive or serodiagnostic proteins, the overall prediction rate
decreased.
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These categorized enriched proteomic features predicted up to 91% of serodiagnostic hits in
the top ranked 20% of the proteome. The COGs, the computationally predicted features, and
the MS positive proteins accounted for 30, 61, and 61% of the serodiagnostic hits,
respectively. Combining the pool of computationally predicted and MS positive proteins
predicted 88% of the hits. All together, the three categories accounted for 91% of the
serodiagnostic antigens (Table 8). Interestingly, the naïve Bayes classification successfully
ranked the antigens in an efficient way, so that 91% of serodiagnostic antigens with enriched
features were within the top 20% of the ranked genome (Fig. 2,b and c, and Table 8), and
72% of seroreactive antigens with enriched features were within the top 25% of the ranked
genome (Fig. 2, a, and Table 6).

Discussion
The humoral immune response is essential for host defense against bacterial pathogens.
However, high-throughput tools for understanding the extent and quality of the immune
response against pathogens on a genome-wide scale are limited, and understanding of the
immune response on a systems biology level has developed very slowly. Emerging efforts
include application of reverse vaccinology to discover new subunit vaccine candidates [26–
28], or developing of sequence-based prediction models [23]. This emergence has been
driven by the rapid accumulation of whole genome sequencing data from thousands of
microorganisms [29]. Here, we have been taking a protein microarray approach to profile
the humoral immune response to numerous infectious agents and to identify the complete
antibody repertoire associated with each disease, attempting to be as complete and accurate
as possible.

Protein microarrays have become a powerful method enabling profiling of pathogen-specific
antibody responses generated upon exposure to infectious agents. No other existing
approach can provide such a detailed understanding of the humoral immune response to
infection.

Protein microarrays can be used to efficiently probe the entire proteome of a given pathogen
against large numbers of patient sera samples, which allows for statistically significant
identification of the serodiagnostic antigens. In addition to the identification of potential
biomarkers for diagnostics and subunit vaccine candidates, protein microarray studies can
also provide the basis for a comprehensive and quantitative determination of basic biological
characteristics of the entire set of the serodominant and serodiagnostic antigens on a
genomic level.

Protein microarrays enable enrichment analyses to identify proteomic features that are
enriched in the immunodominant antigen set and predict antigenicity based on annotated and
computationally predicted proteomic features. The predictor can be used on a high-
throughput scale on existing or new proteomes to identify key antigenic proteins that may
have serodiagnostic or protective qualities and may be used in diagnostic tests and in
vaccines. We have classified the reactive immunodominant antigens for numerous agents
and found features that consistently predict antigenicity.

We have classified reactive antigens according to annotated functional features (COGs),
computationally predicted features (e.g., subcellular localization and physical properties),
and protein expression estimated by MS. Enrichment analysis identified ten features that
were significantly enriched in seroreactive antigens. Combining all proteins with these
enriching features would constitute 37% of the B. melitensis genome and reveal 91% of
serodiagnostic antigens and 78% of seroreactive antigens. However, the accuracy of this
prediction is low, because the immune system develops significant antibody titers against
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only 10% of the proteins with these enriching features, and 90% of the predicted antigens
are false positives. To increase the accuracy of prediction of seroreactive and serodiagnostic
antigens over the entire proteome, we used this information in a naïve Bayes classification
approach to rank the entire proteome for increased likelihood of seroreactivity. By doing so,
we were able to segregate 63% of all seroreactive proteins and 91% of all serodiagnostic
proteins within 20% of the proteome. Within the top 30% of the ranked genome, we were
able to predict 79% of seroreactive antigens and 97% of serodiagnostic antigens. The
prediction is highest among the serodiagnostic antigens, which are the most relevant for
diagnostics and subunit vaccines. The naïve Bayes classification successfully ranked the
antigens in an efficient way, so that 82% of serodiagnostic antigens with enriched features
were within the top 10% of the ranked genome, and up to 72% of seroreactive antigens with
enriched features were within the top 25% of ranked genome.

This approach is important and necessary for studies that aim to identify a subset of the
proteome that most likely contains seroreactive or serodiagnostic antigens, making the
development of vaccines and serodiagnostic tests more effective and efficient. Ultimately, it
could be applied toward construction of a universal bacterial proteome array containing the
top ranked predicted serodiagnostic antigens from thousands of bacterial genomes. This
universal pathogen array could be applied to help identify microorganisms that are the cause
of emerging infectious diseases, outbreaks, and bioterrorism attacks.

Conclusions
Naïve Bayes classification has shown to be a convenient and efficient approach to account
for a large number of proteomic features and to classify the immune-reactive proteome
determined by protein microarray. These results will provide useful insight toward
understanding the humoral immune response to B. melitensis infection and provide a
systems biology foundation for comparing antigenicity of other Gram-negative bacterial
infections.

Experimental Part
Protein microarray data were obtained from our recently published results [24]. The ‘vsn’
package of the Bioconductor suite [30] in the R statistical environment [31] was used to
calculate the signal intensity. In addition to the variance correction, this method calculates
maximum-likelihood shifting and scaling calibration parameters for each array, such that
control probe variance is minimized. This calibration has been shown to minimize
experimental effects [32]. Differential analysis of the normalized signals was then
performed using a Bayes-regularized t-test adapted from Cyber-T for protein arrays [33]
[34]. Benjamini–Hochberg p-value adjustments were applied to account for multiple test
conditions [35]. A p value < 0.05 was regarded as significant.

The following software was used: TMHMM v2.0 software [36] for the computational
prediction of transmembrane domains, SignalP v3.0 software [37] for the signal-peptide
prediction, and PSORTb v2.0.4 software [38] [39] for the cellular-location prediction. The
PI/MW tool from the Swiss Institute of Bioinformatics was used to determine isolectric
points [40]. The COG information utilized can be found at the National Center for
Biotechnology Information (NCBI) [41]. Enrichment statistical analysis was performed in
the R statistical environment, using Fisher’s exact test. A combined naïve Bayes classifier
approach [25], originally applied by us to classify antigens from the Francisella tularensis
proteome [7], was used here to rank all B. melitensis proteins.
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Fig. 1. Combined naïve Bayes classifier on ranking of seroreactive, serodiagnostic, or cross-
reactive antigens
Genome was ranked by naïve Bayes classifier based on seroreactive, serodiagnostic, or
cross-reactive antigens features. As the size of the genome increases, the prediction rate also
increases.
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Fig. 2. Categorized enriching features on prediction of seroreactive or serodiagnostic antigens
based on naïve Bayes ranking
a) Prediction of categorized enriching features on seroreactive antigens. Within the top 30%
of the ranked genome, COGs (COG U, M, N, and O), computationally predicted features,
the MS positive feature, and the ten enriching features altogether could predict 30, 52, 34,
and 78% of all seroreactive hits, respectively. b) Prediction of categorized enriching features
on serodiagnostic antigens. Within the top 20% of the ranked genome, COGs (COG U, M,
N, and O), computationally predicted features, the MS positive feature, and the ten enriching
features altogether could predict 30, 61, 61, and 91% of all serodiagnostic hits, respectively.
c) Prediction of paired categorized enriching features on serodiagnostic antigens. Pairing
two of the categories of the enriching features significantly enhanced the prediction on
serodiagnostic antigens compared to prediction from an individual category of enriching
features.
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