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Abstract
The role of angiogenesis in the growth of lymphomas and survival of patients with leukemias and other hematological
malignancies has become evident since 1994. Angiogenic factors, such as vascular endothelial growth factor and
its receptors together with other tumor microenvironment components, including myelo-monocytic cell, mast cells,
endothelial progenitor cells, and circulating endothelial cells, have been shown to be important in the progression and
maintenance of lymphoproliferative disorders. In this review article, we present an overview of the literature focusing
on the relationship between angiogenesis and disease progression and the recent advantages in the antiangiogenic
treatment in human non-Hodgkin lymphomas.
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Introduction
In the evolution of tumor growth, the avascular phase is followed by a
vascular one [1]. Assuming that such growth is dependent on angio-
genesis and that this depends on the release of angiogenic factors,
the acquisition of an angiogenic ability can be seen as an expression
of progression from neoplastic transformation to tumor growth and
metastasis. All solid tumors, including those of the colon, lung, breast,
cervix, bladder, prostate, and pancreas, progress through these two
phases [2]. The role of angiogenesis in the growth and survival of
leukemias and other hematological malignancies has become evident
since 1994 [3] in a series of demonstrations that the progression is
clearly related to their degree of angiogenesis.
Lymphomas constitute a large group of more than 40 lympho-

proliferative disorders, classified on the basis of morphologic, immuno-
logic, genetic, and clinical criteria. The importance of angiogenesis in
lymphoproliferative disorders has been studied in relation to their im-
pact on the prognosis of patients, suggesting high relevance in different
types of lymphomas [4–6]. Non-Hodgkin lymphomas (NHLs) are a
heterogeneous group of lymphoproliferative malignancies with dif-
ferent patterns of behavior responses to treatment. B cell lymphomas
represent approximately 88%, and T and natural killer (NK) cell lym-
phomas 12%, respectively, of all NHLs. Among B cell lymphomas, the
incidence of diffuse large B cell lymphomas (DLBCLs) is 30%, of fol-
licular lymphoma (FL) 25%, of extranodal marginal zone lymphoma of
mucosa-associated lymphatic tissue 7%, of chronic lymphocytic leukemia
(CLL) 7%, and of mantle cell lymphoma (MCL) 5%.

Lymphoid tumors are generally divided into one of two categories,
namely, indolent lymphomas versus aggressive lymphomas, based
on the characteristics of the disease at the time of presentation and
the patients’ life expectancy if the disease is left untreated. Generally,
T cell lymphomas have a more aggressive clinical behavior than B cell
lymphomas of comparable histology and patients with MCLs or
anaplastic large lymphomas have a 5-year survival rate of approxi-
mately 30% and 80%, respectively [7].



232 The Role of Angiogenesis in NHL Ribatti et al. Neoplasia Vol. 15, No. 3, 2013
In this review article, we present an overview of the literature fo-
cusing on the relationship between angiogenesis and disease pro-
gression and the recent advantages in the antiangiogenic treatment in
human NHL.

In Vitro and Vivo Experimental Models
Conditioned media of lymphoma cells induced a five-fold increased
proliferation of cultured endothelial cells, suggesting the release of
a soluble proangiogenic factor [8]. Human lymphoid tumor cells
constitutively produce significant amounts of the extracellular
matrix degrading enzymes matrix metalloproteinase-2 (MMP-2) and
MMP-9, as demonstrated by sodium dodecyl sulfate–polyacrylamide
gel electrophoresis gelatin zymography and in situ hybridization [9].
Moreover, human lymphoid tumor cells are able to interact with
extracellular matrix components vitronectin and fibronectin and this
interaction it is mediated by αvβ3 integrin, allowing them to adhere
to the substratum and enhancing their proliferation and protease
secretion [10].

Lymphoma cells are able to induce an angiogenic response when
tested in vivo in the hamster check pouch model [11]. Similarly,
lymphoma bioptic specimens, when implanted on the chick embryo
chorioallantoic membrane (CAM), evoked a strong angiogenic re-
sponse [12]. The angiogenic response did not correlate with either
the malignancy grade or the immunologic phenotype of the tumors.
Different human Burkitt’s lymphoma cells when inoculated onto the
CAM formed solid tumors [13]. However, Epstein-Barr virus–positive
cells induced massive recruitment of chick leukocytes at the tumor
border and the development of granulation tissue with large number
of blood and lymphatic vessels, although all cell lines tested have almost
identical vascular endothelial growth factor (VEGF) and VEGF recep-
tor (VEGFR) expression [13].

Angiogenesis in Normal Lymph Nodes
The lymph node microvasculature consists of arterioles, metarteri-
oles, anastomosing capillaries, small venules, and high endothelial
post-capillary venules. Dense plexuses of capillaries arise from arterioles
in the medullary cords, in the periphery of the deep cortex units, and
in the outermost stratum of the extrafollicular zone of the peripheral
cortex. In contrast, the folliculo-nodules and center of the deep
cortex units are little vascularized by a loose capillary network, while
no vessels occur in the subsinus layer [14–16]. When tissue frag-
ments from normal lymph nodes are grafted in vivo on the chick
embryo CAM, stereomicroscopic observation of the area around
the implant revealed little hyperemia and a small number of growing
vessels [12].

Angiogenesis in Benign Lymphadenopathies
In both reactive lymph nodes and lymph nodes with FLs, micro-
vascular density (MVD) is higher in the paracortex than in the
follicles and that there is no difference in MVD between reactive
germinal centers and neoplastic follicles [17]. Moreover, MVD in
the paracortex in reactive lymph nodes is higher than in diffuse large
lymphomas [17]. In FL, several studies have recognized an increase
in MVD in reactive parts of affected lymph nodes outside the folli-
cles, compared to the neoplastic follicles [18–21].

Other authors [22] have shown that MVD is higher in lymphomas
than in reactive lymph nodes and in aggressive than indolent lympho-
mas or that MVD in reactive lymph nodes is comparable to that
observed in lymphomas [21].
Angiogenesis in NHLs
As concerns the morphologic features of tumor blood vessels, two
patterns of laminin and type IV collagen expression are recognizable
in the perivascular stroma of B-NHL, classified accordingly to the
working formulation in low-, intermediate- and high-grade tumors
[22]. A granular, speckled, and low-intensity staining was expressed
by laminin and more frequently associated with the intermediate-
and high-grade tumors. A linear continuous staining was co-expressed
by laminin and type IV collagen and was more frequently associated
with low-grade tumors. The granular and linear patterns may corre-
spond to different steps in the basement membrane deposition: the
granular pattern to the first one, when endothelial proliferation takes
place; the linear pattern to the second stage, when basement mem-
brane is completely differentiated [23]. This hypothesis is in agree-
ment with the evidence that endothelial sprouting is associated with
a higher concentration of laminin than type IV collagen around the
outgrowing capillaries [24].

Moreover, the expression of tenascin in the stroma of B-NHL has
been investigated and related to histologic malignancy and angiogenesis
[25]. It is well known that tenascin stimulates angiogenesis, and because
it forms a long reticulum with long extensions directly from vessels, it
could also provide a pathway that favors migration of endothelial cells
[26]. The presence of an increased number of immature vessels in
DLBCL compared with FL, classified accordingly to the World Health
Organization (WHO) classification, has also been demonstrated [17].

At ultrastructural level, the presence of immature capillaries in the
stroma of diffuse intermediate-grade and high-grade B-NHLs has
been shown [22]. These capillaries lack the basement membrane and
generally consisted of two endothelial cells arranged in parallel, with
thickened cytoplasm, resulting in slit-like lumen. On the contrary, in
follicular intermediate-grade and low-grade B-NHLs, differentiated
fenestrated capillaries surrounded by a continuous basement membrane
were recognizable. Moreover, a morphologic heterogeneity of tumor
blood vessels between histologic subtypes of lymphomas has been
shown together with different patterns of neovascularization in both
low-grade and high-grade B-NHLs [27,28]. In low-grade B-NHL,
the vessel lumen is formed either by endothelial cell body curving or,
more frequently, by the fusion of intracellular vacuoles in poorly differ-
entiated endothelial cells. In high-grade B-NHL, however, the preva-
lent neoangiogenic pattern is the formation of a slit-like lumen [27,28].
Both low-grade and high-grade tumors exhibited development of trans-
luminal bridges, expression of intussusceptive microvascular growth,
and alternative mode of tumor vessel growth [29].

The clinical significance of increased MVD is not clear and difficult
to establish because most of the studies describe heterogeneous popu-
lations including a wide variety of histologic subtypes of NHL and dif-
ferent treatment regimens.

As concerns the evaluation of MVD in bioptic specimens, a
correlation between MVD and histologic subtype in NHL has
not been established [30], or differences in MVD in patients with
chemotherapy-resistant DLBCL and those with chemosensitive lym-
phomas has not been found [31]. Other studies in NHL and in
DLBCL found no correlation between MVD and VEGF expression
[32–34]. On the contrary, an increased vascularity pretreatment pre-
dicted favorable outcome in terms of progression-free and overall sur-
vival in patients with FL who received chemotherapy in association
with interferon-α2b [18], or in FL, a high MVD predicted progressive
disease and overall survival and correlated with transformation to
DLBCL [32].
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MVD is highest in aggressive subtypes including Burkitt’s lym-
phoma and peripheral T cell lymphoma, compared with intermediate
in DLBCL and lower in indolent FL [22]. In DLBCL, the average
MVD correlates with the intensity of VEGF tumor cell immunore-
activity [35]. On the contrary, another study of the same group on
patients affected by DLBCL treated with anthracycline-based chemo-
therapy showed no correlation between increased MVD and lymphoma
cell VEGF expression [36]. In cutaneous T cell and B cell lymphomas,
MVD is higher than in normal skin of a benign cutaneous lympho-
proliferative disorder [37–39].
Several studies have demonstrated that high levels of VEGF in

lymphoma samples correlate with advanced tumor stage and higher
risk for relapsed/refractory disease after standard chemotherapy.
In NHL, high pretreatment levels of serum VEGF was a prognostic

factor for survival in multivariate analysis [40]. In both T and B cell
lymphomas, a negative correlation between the overall survival rate,
respectively, 5-year disease-free survival and the pretreatment serum
level of VEGF has been established [41], while in patients with
DLBCL treated with cyclophosphamide, doxorubicin, vincristine,
and prednisolone, high serum level of VEGF was associated with
adverse outcome, having lower values in survivors than in non-
survivors [42].
VEGF expression was also demonstrated in peripheral T cell lym-

phoma, DLBCL, MCL, primary effusion lymphoma, and CLL/small
lymphocytic lymphoma [43–46]. An adverse outcome associated
with an increased VEGF tissue expression in aggressive and indolent
lymphomas of B cell and T cell origin [47] has been demonstrated.
In angioimmunoblastic T cell lymphoma, VEGF-A gene is over-
expressed in both tumor and endothelial cells in comparison with
reactive lymph nodes in association with a short survival time [48],
and a high expression of VEGF-A in aggressive T cell lymphomas
compared to indolent B cell lymphomas has been found [44]. In
contrast, only a minority of indolent FLs show variable expression
of VEGF-A [18,32], and transformation from indolent B cell lym-
phoma to aggressive DLBCL and poor prognostic subgroups within
DLBCL are associated with increased VEGF expression [49].
In primary diffuse central nervous system lymphomas (PCNSLs),

VEGF expression is correlated to MVD and VEGF expression is
associated with a longer survival and blood-brain barrier alteration
[50]. In 24 human diffuse large B cell PCNSL studied by means
of immunocytochemistry and confocal laser microscopy, it has been
demonstrated that 1) Aquaporin 4 (AQP4) expression was directly
correlated with Ki-67 index, while AQP4 expression was low in tumor
areas with a low Ki-67 index. 2) Different cells participated to vessel
formation: CD20+ tumor cells and factor VIII+ endothelial cells;
AQP4+ tumor cells and CD31+ endothelial cells; CD20+ and
AQP4+ tumor cells; glial fibrillary acidic protein positive endothelial
cells surrounded by glial fibrillary acidic protein positive tumor cells.
Overall, these data suggest the importance of AQP4 in PCNSL due to
its involvement in pathogenesis and resolution of cerebral edema.
AQP4 is also involved in migration of tumor cells. It was also docu-
mented that tumor microvasculature in PCNSL is extremely heter-
ogeneous, confirming the importance of neoangiogenesis in their
pathogenesis [51].
The degree of VEGF expression correlated with the expression level

of VEGFR-1 and VEGFR-2 in DLBCL lymphoma cells [35], and
VEGFR-1, VEGFR-2, and VEGFR-3 are expressed in CLL, suggesting
the possibility that VEGF acts as an autocrine/paracrine factor [52].
Moreover, VEGF prevents apoptosis and increases phosphorylation
of VEGFR-1 and VEGFR-2, further supporting the existence of
an autocrine prosurvival loop in CLL [53]. Blocking of VEGF and
VEGFRs, by using neutralizing antibodies or tyrosine kinase inhibi-
tors, resulted in decreased levels of p-STAT-3 and apoptosis of CLL
cells [54]. High VEGF and VEGFR-1 expression identified a subgroup
of patients affected by DLBCL with improved overall survival and
progression-free survival when treated with anthracycline-based chemo-
therapy, suggesting that the autocrine signaling through VEGFR-1 may
be susceptible to this therapeutic approach [36]. When immuno-
deficient mice engrafted with human DLBCL were treated with anti-
bodies against human or murine VEGFR-1 or VEGFR-2, a significant
tumor reduction of 50% was observed after treatment with human
anti–VEGFR-1 but not with murine anti–VEGFR-1. By contrast, in-
hibition of murine VEGFR-2 resulted in a similar tumor reduction, but
inhibition of human VEGFR-2 had no antitumor effect [55]. Anti–
VEGFR-2 antibody was as effective as rituximab, and when combined,
tumor volume was reduced even more to 75% [55]. A lesser expression
of hypoxia-inducible factor-1 and hypoxia-inducible factor-2 and
VEGF in indolent lymphomas, consisting mainly of FL, than in
aggressive lymphomas has been observed [56]. Accordingly, only a
minority of indolent lymphomas, showing histologic transformation
to aggressive lymphoma, expressed VEGF-A in contrast to aggressive
lymphomas [57].

Inhibition of autocrine or paracrine VEGFR-mediated loops with
receptor-specific antibodies suppresses the growth of lymphomas by
increasing tumor apoptosis and decreasing vascularization, respectively.
These results confirm the role of VEGF in lymphomagenesis and
support the targeting of VEGFRs as a therapeutic approach for aggres-
sive lymphomas.

Other angiogenic growth factors may contribute to the angiogenic
process and tumor progression in NHL. Among these, fibroblast
growth factor-2 (FGF-2) is one of the best characterized proangiogenic
cytokines. Because of its pleiotropic activity that may affect both tumor
vasculature and tumor parenchyma, FGF-2 may contribute to cancer
progression by inducing neovascularization, as well as by acting directly
on tumor cells.

Various lymphoblastoid cell lines secrete FGF-2 [58]. Pazgal et al.
[59] measured FGF-2 serum concentration in patients with NHL be-
fore and after treatment, conducted an immunohistochemical study
to determine the expression of FGF-2 and FGF receptor-1 (FGFR-1)
and MVD, and evaluated the prognostic significance of FGF-2 and
FGFR-1 expression. They demonstrated that FGF-2 expression was
correlated with poor survival and progression-free survival, while
FGFR-1 expression was correlated with decreased rate of achievement
of complete remission. Moreover, they did not detect a significant
change in serum FGF-2 levels after two to three cycles of chemo-
therapy, nor they did find a correlation between MVD and NHL
histology or grade or between MVD and prognosis. Moreover, in
malignant lymphoma, high pretreatment levels of FGF-2 were a prog-
nostic factor for survival in multivariate analysis, independently of
other risk factors, including serum lactate dehydrogenase and number
of extranodal sites [40]. Soluble VEGF, FGF-2, and platelet-derived
growth factor-β levels decline after radiotherapy in NHL, suggesting
that may have predictive significance for response to treatment and
recurrence [60].

The Role of Myelo-monocytic Cells
At least three categories of proangiogenic bone marrow–derived circu-
lating cells have been implicated in tumor angiogenesis: 1) cells that
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contribute directly to the structural components of angiogenesis, in-
cluding endothelial progenitor cells (EPCs) and pericyte progenitors;
2) myeloid progenitor subsets that can differentiate into endothelial-
like cells and incorporate into the tumor neovessels; 3) a large heterog-
eneous group of cells of monocytic lineage that functions as vascular
modulators that are not physically part of the vasculature [61].

It is well established that neoangiogenesis and growth of murine
lymphomas is dependent on the recruitment of bone marrow–derived
proangiogenic hematopoietic cells [62]. Increased hematopoietic infil-
tration by myeloid progenitors CD68+ and VEGFR-1+ and producing
VEGF-A has been correlated with histologic subtypes of lymphoma,
suggesting their involvement in the development of a proangiogenic
phenotype [19,34,63]. In aggressive subtypes of Burkitt’s lymphoma
and DLBCL, VEGF-A–producing CD68+ VEGFR1+ myelo-monocytic
cells are closely associated to new-formed blood vessels [34]. Genetic
depletion of this subpopulation of CD68+ VEGFR1+ myelo-monocytic
cells was sufficient to inhibit angiogenesis in various tumor experi-
mental models, including lymphoma [62].

The Role of Macrophages and Mast Cells
It is well known that, among inflammatory cells found in tumors,
tumor-associated macrophages and mast cells support tumor growth
and neovascularization by producing a wide array of angiogenic
cytokines. Tumor-associated macrophages have profound influence
on the regulation of tumor angiogenesis. In fact, the degree of macro-
phage infiltration is positively correlated with tumor stage and angio-
genesis in several human tumors in which a relationship betweenMVD
and tumor progression has been clearly demonstrated [64].

Angiogenesis extent and macrophage density increase simulta-
neously with pathologic progression in B cell NHL, suggesting that
an increase number of macrophages may be recruited and activated lo-
cally by malignant B cells and that angiogenesis associated with B-NHL
may be induced, at least, partly, by angiogenic factors secreted by
macrophages [19]. A high number of intratumoral macrophages corre-
late with poor prognosis in FL treated with chemotherapy alone, and
rituximab appears to circumvent the unfavorable prognosis associated
with high number of macrophages [65,66].

The extent of angiogenesis has been correlated with the number of
mast cells in B-NHL and both counts increase in step with the increase
of malignancy grade [64,67]. Tryptase together with other angiogenic
factors stored in mast cell secretory granules may contribute to angio-
genesis in B-NHL [64,67]. In an ultrastructural study of samples of
B cell NHL, the presence of a heterogeneous population of mast cells
characterized by the presence of granules with semilunar aspect and
containing scrolls has been demonstrated [28,68]. Semilunar granules
are the expression of a slow but progressive release of angiogenic factors
due to chronic and progressive stimulation of mast cell degranulation,
while, in the granules containing scrolls is stored tryptase, an angiogenic
factor [69]. In B cell CLL, there is a striking association between the
number of mast cells and MVD in bone marrow and both increase as
the disease progresses [70]. Moreover, the consistent decrease of
bone marrow angiogenesis after sequential fludarabine induction and
alemtuzumab consolidation therapy in advanced CLL parallels the
reduction of mast cells [71].

The Role of EPCs and Circulating Endothelial Cells
Circulating EPCs (CEPCs) have been detected within the blood flow
during tumor growth and several evidences indicate that bone marrow–
derived CEPCs contribute to tumor growth and tumor angiogenesis
[72]. An increased number of CD133+ CD34+ VEGFR-2+ CEPC
has been found in younger patients and those with aggressive NHL,
and the levels of CEPC decreased following complete response to treat-
ment [73]. Moreover, lymph node EPCs were detected in vascular
structure and in the stroma and correlated with an increased angio-
genesis in indolent lymphoma [73]. In angiogenesis-defective Id-
mutant mice, VEGFR-2+ EPCs constitute >90% of tumor vessels
following wild-type bone marrow rescue in a murine xenograft model
of aggressive B cell lymphoma [74].

Within immunodeficient mice engrafted with lymphoma cells, a
significant increase in the number of circulating endothelial cells
(CECs) was observed after a period of 21 days, they being correlated
with tumor size and serum level of VEGF [75]. An increase in CEC
in patients with lymphoma compared with the control cases has been
reported [76]. In those patients achieving complete remission after
chemotherapy, the number of CECs was similar to healthy controls
[76]. Accordingly, an increased number of CEC has been recognized
in younger patients and those with aggressive NHL and the levels of
CEC decreased following complete response to treatment [73].

Genetically Modified Lymphoma Endothelial Cells
Chromosomal abnormalities involving all chromosomes may occur in
lymphomas, and characterization of genetic abnormalities, while not
an absolute requirement, can be essential to the diagnosis of many
lymphomas [77].

The presence of lymphoma-specific chromosomal translocations
in endothelial cells in B cell lymphomas has been demonstrated, sug-
gesting that microvascular endothelial cells in B cell lymphomas are,
in part, tumor related [78]. Moreover, 15% to 85% of microvascular
endothelial cells harbored lymphoma-specific genetic alterations con-
sisting not only of B cell–specific translocation of immunoglobulin
heavy locus (IGH) but also secondary genetic alterations in FL
[78]. As suggested by Streubel et et al. [78], four mechanisms may
be involved: lymphoma cells and endothelial cells may be derived
from a multipotent hemangioblastic precursor cell targeted by neo-
plastic transformation that can differentiate in tumor cells or endothe-
lial cells sharing the same genetic abnormalities; the endothelial cells
carrying the genetic alterations of the lymphoma may arise from a cell
that was already committed to the lymphoid lineage; fusion of lym-
phoma cells and endothelial cells with formation of hybrid vessels or
gene transfer by means of the uptake of apoptotic bodies from tumor
cells by neighboring cells may be alternative mechanisms.

The expression of a transcript called T cell Ig and mucin-containing
molecule 3 has been identified in microvessels of DLBCL but not in
reactive lymph nodes, suggesting that the lymphoma endothelium may
act as a functional barrier facilitating the establishment of lymphoma
immune tolerance [79].

Antiangiogenesis in NHL
Antiangiogenesis is a promising therapeutic approach in cancer. Pre-
clinical studies with various angiogenesis inhibitors have produced
remarkable antitumor effects in animal models and inhibition of
angiogenesis is a major area of therapeutic development for the treat-
ment of hematological malignancies.

Endostatin
Endostatin is an endogenous inhibitor of angiogenesis, which inhib-

its endothelial cell proliferation and migration, induces apoptosis, and
causes a G1 arrest of endothelial cells. Moreover, endostatin inhibits
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MMP-2 activity, blocks the binding of VEGF to VEGFR-2, and sta-
bilizes cell-cell and cell-matrix adhesions, preventing the breakage of
these junctions required during angiogenesis [80].
Various endogenous inhibitors of angiogenesis may be found in

the bloodstream, and a circulating form of human endostatin has been
identified [81]. In a subgroup of patients with large cell and immuno-
blastic lymphoma, patients with high serum endostatin levels had a
significantly better survival as compared with those with lower levels
[82]. In a mouse model of B cell lymphoma, a delay in tumor growth
has been shown after administration of endostatin [83] and continu-
ous infusion of endostatin inhibits tumor growth and the mobilization
and differentiation of EPC in mice bearing an angiogenic human
lymphoma [84].
Treatment of lymphoma-bearing mice with endostatin caused an

increase in the frequency of apoptotic cells in the endothelial cell com-
partment and most of the CECs were apoptotic or dead, while cyclo-
phosphamide had no such effect. This difference probably occurred
because most of the circulating apoptotic cells were hematopoietic
and not endothelial in nature [75]. Endostatin administration in
advanced stages of tumor growth led to tumor regression even in
cyclophosphamide- and rituximab-resistant cases [83]. This effect
was induced by inhibition of proliferation and stimulation of apop-
tosis in endothelial cells.

Immunomodulatory Drugs
Thalidomide exerts its antiangiogenic action through the inhi-

bition of various cytokines, including tumor necrosis factor–α
(TNF-α) and VEGF [85]. Thalidomide as single agent demonstrated
a low overall response rate in patients with relapsed/refractory in-
dolent NHL [86] and in heavily pretreated patients with recurrent
lymphoma [87]. In combination with fludarabine, thalidomide was
associated with significant therapeutic efficacy in CLL [88].
Lenalidomide is a more potent analog of thalidomide with pref-

erentially TNF-α inhibitory properties and weaker antiangiogenic
effect. Lenalidomide has been used as monotherapy in the treatment
of both aggressive (DLBCL and transformed) and indolent relapsed/
refractory NHL, MCL, and angioimmunoblastic T cell lymphoma
[89–94]. Lenalidomide has also been studied in relapsed/refractory
CLL, inducing complete and partial remissions, and has considerable
activity in both heavily pretreated CLL patients and patients with
unfavorable prognostic factors [95,96]. Moreover, thalidomide has
shown antitumor activity in combination with rituximab in patients
with relapsed or refractory MCL [97].
Bortezomib, a proteasome inhibitor, exerts anticancer activity

mainly by inhibiting nuclear factor-κB (NF-κB), which has a pivotal
role in the synthesis of antiapoptotic and angiogenic factors [98].
Clinical studies using bortezomib in relapsed or refractory B cell
NHL, MCL, or marginal zone B cell lymphoma have shown prom-
ising results [99–104].

Anti-VEGF Neutralizing Antibodies and VEGFR Inhibitors
Stimulation of VEGFRs and other receptor tyrosine kinases causes

activation of signaling pathways in endothelial cells. Many of the pro-
cesses involved in tumor growth, progression, and metastasis are
mediated by signaling molecules acting downstream from activated
receptor tyrosine kinases. The VEGF/VEGFR pathway is consid-
ered a key regulator of angiogenesis and most of the agents currently
in preclinical and clinical development focus on the inhibition of
this pathway.
Bevacizumab (Avastin), a recombinant humanized monoclonal
antibody directed against VEGF-A, has been the first antiangiogenic
agent to be approved by the US Food and Drug Administration.
Bevacizumab inhibit tumor growth, either alone or in combination
with chemotherapy in untreated DLBCL [33,105]. A long disease-
free survival in patients with aggressive NHL subtypes treated with
bevacizumab as single agent has been reported [105]. Anti-VEGF
neutralizing antibodies and VEGFR inhibitors blocked the pro-
survival effect of CD154 (CD40 ligand) on CLL cells and decreased
the migration of CLL cells through the endothelium [106,107].

Histone Deacetylase Inhibitors
Acetylation and deacetylation of histone proteins are important

mechanisms for the regulation of gene expression. The interest in
histone deacetylases (HDACs) as antineoplastic drugs originated with
the observation that these agents could reverse the malignant pheno-
type of transformed cells [108]. HDACs represent an emerging class
of therapeutic agents effective in hematological malignancies [109] that
induce tumor cell cytostasis, differentiation, and apoptosis, in part due
to an angiostatic effect, through an inhibition of VEGFR expression in
endothelial cells [110,111].

Vorinostat, panobinostat, and MGCD0103 have been evaluated
in NHL [112,113]. Successful therapy with vorinostat was associated
with a reduced MVD and an increase of the antiangiogenic molecule
thrombospondin-1 following treatment [111]. Panobinostat was
evaluated in cutaneous T cell lymphoma (CTCL), and microarray
analysis of skin biopsies showed a consistent down-regulation of
proangiogenic gene guanylate cyclase 1A3 and angiopoietin-1 [114].
Two HDAC inhibitors, sodium butyrate and suberoylanilide hydro-
xamic acid, reduced VEGF production and induced growth suppres-
sion and apoptosis in human MCL cell lines [115].

Concluding Remarks
Over the last 20 years, the importance of angiogenesis in human
lymphoma is now well recognized, and several factors involved in
its control are being identified. Within the different types of B cell
NHL, angiogenesis may be prominent in aggressive rather than in-
dolent subtypes. In addition to the demonstration that lymph node
bioptic specimens involved with NHL contain high number of MVD
and high number of inflammatory cells secreting angiogenic cytokines,
several studies reported high levels of soluble angiogenic factors in sera
of patients with NHL.

The antiangiogenic therapy is an important tool for the treatment
of human lymphoma. However, a significant number of patients are
resistant, whereas those who respond have minimal benefits. A tumor
resistance and also significant side effects including toxicity can occur.

Further research should provide new useful therapeutic approaches
and increase options for patients with resistant or refractory disease.
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