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Abstract
We present an approximate conditional and joint association analysis that can use summary-level
statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage
disequilibrium (LD) from a reference sample with individual-level genotype data. Using this
method, we analyzed meta-analysis summary data from the GIANT Consortium for height and
body mass index (BMI), with the LD structure estimated from genotype data in two independent
cohorts. We identified 36 loci with multiple associated variants for height (38 leading and 49
additional SNPs, 87 in total) via a genome-wide SNP selection procedure. The 49 new SNPs
explain approximately 1.3% of variance, nearly doubling the heritability explained at the 36 loci.
We did not find any locus showing multiple associated SNPs for BMI. The method we present is
computationally fast and is also applicable to case-control data, which we demonstrate in an
example from meta-analysis of type 2 diabetes by the DIAGRAM Consortium.

Genome-wide association studies have been successful in identifying genes and pathways
involved in the development of human complex traits and diseases1,2. For many traits, such
as height and BMI, and diseases, such as type 2 diabetes (T2D) and breast cancer, an
increasing number of genetic variants have been identified that are associated with trait
variation by performing GWAS with continually increasing sample sizes or meta-analyses
of multiple studies3–6, in line with a pattern of polygenic inheritance. Usually, SNPs are
tested for associations with a trait on the basis of a single-SNP model, and the SNP showing
the strongest statistical evidence for association in a genomic region (for example, a 2-Mb
window centered on the locus) is reported to represent the association in this region. Implicit
assumptions, often untested, are that the detected association at the top SNP captures the
maximum amount of variation in the region by its LD with an unknown causal variant and
that other SNPs in the vicinity show association because they are correlated with the top
SNP. There are a number of reasons why these assumptions may not be met. First, even if
there is a single underlying, causal variant, a single genotyped or imputed SNP may not
capture the overall amount of variation at this locus7,8. Second, there may be multiple causal
variants at the locus, in which case, a single SNP is unlikely to account for all the LD
between the unknown causal variants and the genotyped or imputed SNPs at the locus.
Therefore, the total variation that could be explained at a locus may be underestimated if
only the most significant SNP in the region is selected.

Conditional analysis has been used as a tool to identify secondary association signals at a
locus3,9,10, involving association analysis conditioning on the primary associated SNP at the
locus to test whether there are any other SNPs significantly associated. A more general and
comprehensive strategy would be to perform a conditional analysis, starting with the top
associated SNP, across the whole genome followed by a stepwise procedure of selecting
additional SNPs, one by one, according to their conditional P values. Such a strategy would
allow the discovery of more than two associated SNPs at a locus7,11. For meta-analysis of a
large number of participating studies, however, pooled individual-level genotype data are
usually unavailable, such that conditional analysis can only be performed at the level of
individual studies. Summary results from individual studies are then collected and combined
through a second round of meta-analysis. This procedure is administratively onerous. It
often takes months to organize and perform a single round of this kind of conditional meta-
analysis, and it would be extremely time-consuming and therefore impractical to implement
a stepwise selection procedure in this manner.
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We propose an approximate conditional and joint analysis approach using summary-level
statistics from a meta-analysis and LD corrections between SNPs estimated from a reference
sample, such as a subset of the meta-analysis sample, using an approach similar to one
previously described12. We adopt a genome-wide stepwise selection procedure to select
SNPs on the basis of conditional P values and estimate the joint effects of all selected SNPs
after the model has been optimized. We applied this method to meta-analysis for height and
BMI from the GIANT Consortium and validated results by prediction analysis in
independent samples. We extended the procedure to the analysis of case-control data and
demonstrate its power with an example of meta-analysis data for T2D.

RESULTS
Loci with multiple associated variants

Using summary statistics (effect size, standard error and allele frequency) of ~2.5 million
SNPs from the GIANT meta-analysis of 133,653 individuals for height3 and 123,865
individuals for BMI4 along with SNP LD estimated in 6,654 unrelated European-Americans
selected from the Atherosclerosis Risk in Communities (ARIC) study (Online Methods), we
identified 247 jointly associated SNPs for height and 33 for BMI with P < 5 × 10–8

(Supplementary Tables 1–3). For the convenience of presentation and the summary of
results, we define a locus as a chromosomal region at which adjacent pairs of associated
SNPs are less than 1 Mb distant, and we define alleles of two SNPs to be positively
(negatively) correlated if their disequilibrium parameter D is positive (negative)13. Of the
247 SNPs associated with height, 87 at 36 loci represent multiple associated SNPs within a
single locus (Table 1 and Supplementary Tables 1 and 2), and all 36 loci are located in the
genomic regions known to be associated with height3. We did not find any locus with
multiple associated SNPs for BMI (Supplementary Tables 1 and 3). For most of the height-
associated loci, multiple associated variants were detected, mainly because of their very low
LD (r2 < 0.01), despite their relatively close physical proximity (Table 1). In this case, the
effect sizes from a joint analysis were little different from those from single-SNP analyses.
For some loci, SNPs were in modest LD and their increasing alleles were positively
correlated. One example of this is the rs17720281 and rs7689420 SNP pair at the HHIP
locus on chromosome 4 (Table 1), where effect sizes for these SNPs were therefore
overestimated in single-SNP analyses. In the joint analysis, although the joint effects were
smaller compared to the marginal effects, these SNPs still reached genome-wide
significance, and the variance explained by them collectively was larger than that if we only
considered the leading SNP at that locus. For the loci at which the increasing alleles of at
least two SNPs were negatively correlated, the SNP effects were underestimated in single-
SNP analyses, meaning that some associated variants may be undetected. In other words, the
joint analysis is more powerful than the single-SNP analysis in detecting such SNPs7,8. For
example, rs1367226 at the EFEMP1 locus on chromosome 2 (Pvalue from the single-SNP
meta-analysis (PM) = 0.198) and rs6784185 at the IGF2BP2 locus on chromosome 3 PM =
0.088) did not even show nominally significant association in single-SNP analyses, but they
both reached genome-wide significance when fitted jointly with the leading SNPs at these
two loci (Table 1). At the same time, the significance and effect sizes of the leading SNPs at
the two loci also increased where PM = 1.1 × 10–28 versus the P value from the joint analysis
(PJ) = 3.0 × 10–37 for rs3791675 and PM = 1.8 × 10–14 versus PJ = 1.5 × 10–22 for rs720390
(Table 1). There were 11 loci harboring more than 2 associated SNPs, with a maximum
number of 4, and the length of each locus varied substantially. For examples, three
associated SNPs at a locus on chromosome 1 covered a genomic region of 1,134 kb, and the
ACAN locus on chromosome 15, with three associated SNPs, only has a length of 32 kb
(Table 1). Only considering the leading SNP(s) at each of the 36 loci (Table 1), there were
38 leading SNPs that, in total, explained 2.5% of phenotypic variance. However, taking all
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87 jointly associated SNPs into account (38 leading and 49 additional), 4.1% of variance
was explained, with the additional 49 SNPs explaining an additional 1.6% of the variance.

We extracted the GIANT summary statistics of the 247 associated SNPs and performed a
joint analysis of these SNPs with their LD estimated in 3,924 unrelated Australians of
British Isles ancestry14 selected from a GWAS cohort at the Queensland Institute of Medical
Research (QIMR) (Online Methods). The allele frequencies of the 247 SNPs estimated from
either the ARIC or the QIMR cohort were consistent with those reported by the GIANT
meta-analysis (Supplementary Fig. 1). The joint effects and their corresponding P values,
obtained from the joint analysis using the ARIC cohort as a reference sample, showed good
agreement with those obtained using the QIMR cohort as the reference sample
(Supplementary Fig. 2 and Supplementary Table 2), suggesting that the results are robust
with respect to the choice of reference sample.

We created two predictors in the QIMR cohort by PLINK15, one based on all 87 multiple
associated SNPs and the other based on the 49 additionally associated SNPs only, with SNP
effects estimated from the joint analysis using the ARIC cohort as a reference sample, and
then regressed the observed height phenotypes on the predictors. We performed the same
prediction analysis in the ARIC cohort but with SNP effects estimated from the joint
analysis using the QIMR cohort as the reference sample, acknowledging that the ARIC
cohort is part of the discovery sample of the GIANT meta-analysis. The regression slopes
were not significantly different from 1 (Table 2), suggesting that the estimates of joint SNP
effects are unbiased, the prediction R2 of all 87 SNPs was ~3.8–4.8%, consistent with the
estimate of 4.1% of variance explained in the discovery sample, and the prediction R2 of the
49 additional associated SNPs was ~1.3–1.5%, in line with the estimate of 1.6% of variance
explained by these SNPs in the discovery sample. Hence, by performing a prediction
analysis in an independent sample, we confirmed that the 49 additional associated variants
explain approximately 1.3% of phenotypic variation.

The GIANT Consortium performed a conditional meta-analysis for height3 in a subset of
stage 1 studies including 106,336 individuals and identified 19 secondary signals at 19 loci
at P < 3.3 × 10–7. The GIANT conditional meta-analysis only reported one secondary signal
at each of the 19 loci, because it was too time-consuming to conduct a single run of the
conditional meta-analysis to take the process further. There are 16 loci associated with
height that were reported by GIANT3 with secondary SNPs at P < 5 × 10–8, all of which
overlapped with our set of 36 loci with multiple associated SNPs. The concordance of these
results provides a technical replication of the analysis methods.

Associated SNPs more than 1 Mb away can be in substantial LD
The GIANT meta-analysis identified 180 loci that were associated with height3. When we
fitted all 180 hit SNPs simultaneously in a joint analysis, the majority of them seemed to be
independently associated, because they had been deliberately selected to be at least 1 Mb
away from each other to render them unlikely to be in strong LD. However, there was an
exception. Two SNPs, rs1814175 and rs5017948, were reported as independently associated
SNPs by the GIANT Consortium3 with P values in the discovery set of 1.9 × 10–8 and 4.6 ×
10–8, respectively (Table 3). These SNPs are ~1.76 Mb distant but in substantial LD (r =
0.61 and 0.59 in the ARIC and QIMR cohorts, respectively), suggesting that, in some
specific cases, the commonly used 1-Mb window is not big enough to guarantee that two
SNPs are independently associated with a trait and that the stepwise conditional analysis is a
more general approach to refine association signals and to identify additional associated
SNPs. Given either of these SNPs in the model, the other SNP is not found to reach genome-
wide significance with PJ > 0.001 (Table 3). In our conditional and joint analysis, only the
rs1814175 SNP was selected, and no additional signals were detected in this region.
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Case-control studies
Our method is applicable to case-control studies (Online Methods). We demonstrate this by
using the summary-level statistics of the DIAGRAM meta-analysis for T2D from a
discovery set of 8,130 affected individuals (cases) and 38,987 controls. In our example
analysis, we focused only on the CDKN2B region, where there was some previous evidence
of multiple signals16. We analyzed the DIAGRAM meta-analysis data, with allele
frequencies and LD structure estimated from the ARIC cohort, and replicated the findings
by a joint analysis using the QIMR cohort as reference sample. Two SNPs, rs10965250 and
rs10757282, which are only 700 bp apart, were retained in stepwise model selection as
jointly associated SNPs with P < 5 × 10–12, using either the ARIC or QIMR cohort as a
reference sample for LD (Table 4), consistent with the result from a previous analysis that
the two SNPs define a haplotype association16. The risk alleles of these two SNPs are
negatively correlated (r = –0.53 and –0.59 in the ARIC and QIMR cohorts, respectively);
therefore, the secondary SNP (rs10757282; PM = 3.1 × 10–4) was masked by the primary
SNP (rs10965250; PM = 1.0 × 10–10) in single-SNP analyses. When they were fitted jointly,
their effects, as well as statistical significance, were substantially increased compared to
what was obtained in single-SNP analyses.

DISCUSSION
We have presented a method of approximate conditional and joint genome-wide association
analysis that is powerful, versatile and computationally fast. The method does not require
any additional genotyping or phenotyping and does not rely on individual-level genotype
and phenotype data, except for a reference population with individual genotypes—either
from one of the participating studies of the meta-analysis or from genotype data in the public
domain—that is required for LD estimation. The effect sizes of most SNPs that are
associated with complex traits are very small, such that there is a great benefit in using
estimates from a large-scale meta-analysis, and a reasonably large reference sample is
sufficient to estimate LD between SNPs located near to one another. We believe that this
method is useful to refine independent GWAS associations and to identify additional
associated variants in large-scale meta-analysis where the pooled individual-level genotype
data are unavailable for analysis.

The method is built upon the assumption that the reference sample is from the same
population as the samples from which the genotype-phenotype associations are estimated,
meaning that the LD correlations that are estimated from the reference sample are unbiased.
We show by simulation (Supplementary Note) that the P values from our approximate
approach are highly consistent with those from the conditional meta-analysis (correlation of
>0.99 in 1,000 simulation replicates), given a reference sample of 6,654 individuals
(Supplementary Fig. 3 and Supplementary Table 4). The simulation results did not
change if the reference sample was independent of the discovery sample, as long as both
were sampled from the same general population (Supplementary Fig. 4). We recommend
that a reference sample be chosen with a large sample size, so that the LD correlations are
estimated with little error17. The simulation results indicate that a reference sample with a
size of at least 2,000 is required and that little additional accuracy is gained beyond a sample
size of 5,000 (Supplementary Fig. 4). The reference sample needs to be checked for cryptic
relatedness and population stratification, which could cause correlations between SNPs that
do not exist in the discovery set. In the present study, we included only the individuals of
European descent in the ARIC cohort18 and of British Isles descent in the QIMR cohort14

and removed one of each pair of individuals with a SNP-derived relatedness estimate of
>0.025 in both cohorts (Online Methods). If the expected value of the LD correlation
between two SNPs is zero in the general population, the sampling variance of an observed
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LD correlation in a sample is proportional to the sample size (m), with var[r | E(r) = 0] = 1 /
m. Thus, given a random sample of 6,654 unrelated individuals from the population, the
probability of observing a LD correlation greater than 0.1 or smaller than –0.1 (r2 > 0.01) is
3.4 × 10–16. In order to investigate possible false positives resulting from errors in LD
estimation, we first performed the analysis using the ARIC cohort as a reference sample, and
we then performed a joint analysis of the selected SNPs using the QIMR cohort as a
reference sample (Supplementary Tables 2 and 3). We show that the LD correlations
between adjacent pairs of the 247 height-associated SNPs are in very good agreement across
the ARIC and QIMR cohorts (Supplementary Fig. 5). Therefore, our main results were
unlikely to be driven by errors in estimating the LD structure in the reference sample. This is
consistent with our technical replication of all secondary signals reported by the GIANT
Consortium from conditional analysis using individual-level genotype and phenotype data3.
We reported most results based on the ARIC cohort (for example, Table 1) because it has a
larger sample size and is more genetically similar to the whole GIANT meta-analysis sample
relative to the QIMR cohort, where ancestry is restricted to the British Isles14. We could also
only consider results that were consistent using two independent cohorts as reference
samples. However, this might be too conservative, as some real associations identified using
one cohort with P values that just passed the arbitrary cutoff value of 5 × 10–8, might be
eliminated from the analysis in another cohort due to random errors in the estimates of LD
correlations. Our method is not limited to meta-analysis summary data but can also be
applied to a single GWAS cohort with individual-level genotypes, in which case, the whole
discovery sample is used as the reference sample, and our method then becomes equivalent
to a multiple regression analysis (Online Methods and Supplementary Fig. 6). In this case,
the automated stepwise selection procedure implemented in our software tool19, which has,
to our knowledge, not been implemented in any other GWAS analysis tools in the public
domain, would still be useful for data applications.

As with any fixed-effect model selection strategy, such as stepwise linear multiple
regression analysis, there is a risk of over-fitting effects. This can be a particular problem for
the analysis of GWAS SNP data because the number of SNPs is typically much larger than
the experimental sample size. The effects of selected SNPs tend to be overestimated
(sometimes called the winner's curse) and, if the threshold for inclusion is less stringent,
false positives could be included in the model. In both cases, the estimated residual variance
will be too low. This can, in theory, be a runaway process, because the more SNPs that are
selected in the model, the lower the apparent residual variance and the greater the number of
remaining SNPs that will become significant and will be added to the model. In the general
population, the expected value of the LD correlation between SNPs on different
chromosomes or more than d Mb distant is zero, even though, in a particular sample, the
observed value is nonzero due to finite sample size. In our method, we set the LD
correlation between distant SNPs to zero, because it is inappropriate to represent a randomly
sampled correlation in the discovery sample by another randomly sampled correlation in the
reference sample. In the conditional analysis, if a SNP to be tested is more than d Mb distant
from all the top SNPs fitted in the model, we are therefore unable to model and adjust for the
variability in the estimate of the SNP effect due to the sampling variation of correlations in
the discovery sample. Thus, the conditional effect will be the same as the marginal effect,
whereas the standard error of this SNP effect decreases as the residual variance is reduced
because of the selected SNPs in the model. This signifies that test statistics will be inflated
and the false positive rate will increase. This problem will be dramatically exacerbated if the
discovery set is not very large, for example, coming from a single GWAS cohort, with there
being a higher chance of observing a substantial correlation due to random sampling and,
further, if the selected SNPs fitted in the model explain a large proportion of variance. In our
method implementation, we keep the residual variance constant at the same level of the
phenotypic variance, even after fitting SNPs that cumulatively explain a substantial
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proportion of phenotypic variation in the model (Online Methods). Although this approach
is conservative, because we know that fitting the 180 known height-associated SNPs in the
model reduces the residual variance by ~10% and therefore increases power to detect
additional variants, it has the benefit of keeping the type-I error rate at the same level as that
in the meta-analysis and thus avoids over-fitting.

To demonstrate the conservative nature of our model selection strategy, we performed
selection of SNPs with a less stringent P value threshold. We constrained the analysis to
region 1 Mb up- or downstream of the 180 known height-associated SNPs and chose a P
value threshold of 5 × 10–7, as only ~13% of the genome is covered by these 2-Mb regions.
We identified 85 additional associated SNPs at 60 loci, which explained 2.4% of variance in
the discovery set. We validated the joint effects of these 85 SNPs by our prediction analyses.
The prediction R2 were 2.4% (P = 8.6 × 10–37) and 1.9% (P = 5.3 × 10–18) in the ARIC and
QIMR cohorts, respectively, suggesting that we could detect more associated variants with a
less stringent threshold but, of course, might increase the risk of including false positives.
Nevertheless, this analysis confirms more heritability can be explained at a substantial
proportion of loci that affect the trait. It also suggests a model of genetic architecture of a
large number of loci and multiple causal variants at many of these regions.

In the GIANT meta-analysis for height and BMI3,4, the summary statistics were adjusted by
the genomic control method20 in each of the participating studies, and the test statistics were
adjusted by the genomic control method for a second time in the combined analysis of all
studies, which is sometimes called ‘double-GC’ correction. In the present study, we did not
perform the second genomic control correction (although we have provided an option to
implement this in our software tool) for two reasons. First, the purpose of genomic control
correction is to adjust for the effect of population stratification, but, in the absence of
population stratification and presence of polygenic inheritance, genomic inflation is
expected21; therefore, double-GC correction might be too conservative and overkill. Second,
if the genomic inflation is due to stratification, there is no reason to find additional
associated SNPs at known loci, whereas under the hypothesis that the genomic inflation is
consistent with polygenic inheritance and that there are multiple variants at the same loci
segregating in the population, we would expect to see what we found empirically. The
GIANT conditional meta-analysis detected 16 loci with additional associated SNPs, and we
identified 20 more such loci, which is partly because the GIANT conditional meta-analysis
used only a subset of the discovery sample (106,336 out of 133,653 individuals) due to the
difficulty of managing the large number of participating studies in a fixed time period and
partly because the GIANT conditional meta-analysis implemented a double-GC correction
that substantially reduced the power of detection.

The results for height and BMI seem to be very different. For height, we identified 36 loci
with multiple associated SNPs, whereas, for BMI, we did not find any such loci. It seems
unlikely that this large difference can be entirely explained by the greater power to detect
associations with height compared to BMI because of the greater heritability of height. The
narrow-sense heritability for height is estimated to be ~80% by pedigree analyses22, and the
heritability for BMI is ~40–60% (refs. 23,24). If we assume the heritability of BMI is 50%,
then 4% (2%/50%) of narrow-sense heritability for BMI has been explained by GWAS4, a
much lower proportion than that for height, which is approximately 12.5% (10%/80%)3.
When considering all the SNPs simultaneously, 32% (16%/50%) of narrow-sense
heritability for BMI can be captured by all common SNPs using the whole-genome
estimation approach we recently developed, which is also lower than the corresponding
explained heritability for height (~56%)14,18. In a previous analysis partitioning genetic
variance onto individual chromosomes, the variance explained by each chromosome showed
a strong linear relationship with chromosome length for height, but such a relationship was
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rather weak for BMI18. To investigate whether additional variants for BMI could be
detected, we performed a conditional and joint analysis with a less stringent P value
threshold of 5 × 10–6, with the LD structure estimated from the ARIC cohort. We identified
19 multiple associated SNPs (9 leading and 10 additional SNPs) at 9 loci (Supplementary
Tables 1 and 5), which is still much lower than the number of additional variants detected
for height. The ten additional SNPs explained 0.21% of the variance in the discovery set.
When using these SNPs to predict the BMI phenotypes in the QIMR cohort, the prediction
R2 was 0.13%, which is nominally significant (P = 0.037). Taken together, the previous and
current results are consistent and suggest that the genetic architectures for height and BMI
might be different in terms of the allelic spectrum of causal variants within and between
loci, the distribution of effect sizes and the robustness of effect sizes to environments and
gene modifiers.

We identified 36 loci with multiple associations for height. We have shown by examples of
pairs of multiple associated SNPs that marginal SNP effects will be underestimated
(overestimated) if their trait increasing alleles are negatively (positively) correlated,
consistent with the findings from a GWAS of gene expressions25. However, this is not
necessarily always the case when there are more than two associated SNPs in LD with each
other, and the generality of these results depends on the actual LD correlations of all
segregating causal variants at a locus. If one of the associated SNPs at each locus is
causative, then there must be multiple causal variants in that region, because the joint effects
have already taken the LD into account, such that, conditional on the causal variant in the
model, the effects of any of its proxies would not be statistically significant. However, it is
unlikely that the SNPs themselves are causative, because the ~2.5 million SNPs in the
HapMap 2 panel of Utah residents of Northern and Western European ancestry (CEU)26

represent only a fraction of all the polymorphisms segregating in the human population27.
Assuming that multiple associated SNPs at a particular locus are not causative, it is unlikely
that they are in LD with a single rare causal variant, especially for SNPs with minor allele
frequency (MAF > 0.1), and it is also implausible that they are in LD with a single common
causal variant (Supplementary Note). Therefore, it seems likely that there are multiple
causal variants segregating at the same locus; however, this inference is indirect and
inconclusive. With whole-genome sequence data, the conditional and joint analysis
approach we present here will be helpful in identifying causal variants.

URLs. GCTA, http://gump.qimr.edu.au/gcta/massoc.html.

ONLINE METHODS
Summary statistics of meta-analysis and individual-level genotype data

The GIANT Consortium performed a meta-analysis of GWAS data in a discovery set with
133,653 and 123,865 individuals of recent European ancestry from 46 studies for height3

and BMI4, respectively. In each of the participating studies, genotype data were imputed to
~2.8 million SNPs present in the HapMap Phase 2 European-American reference panel26,
and the standard errors of all SNPs were adjusted by the genomic control method20. We
calculated the effective sample size for each SNP and excluded SNPs with effective sample
sizes of >2 s.d. from the mean. We also excluded SNPs with MAF of <0.01, retaining ~2.5
million SNPs for both height and BMI.

We also obtained access to the individual-level genotype and phenotype data of the ARIC
cohort, a population-based study of Americans28, and the QIMR cohort, a twin study of
Australians29. The ARIC samples were genotyped by Affymetrix 6.0 SNP array, and the
QIMR samples were genotyped by Illumina 610K or 370K array. After quality control
filtering of SNPs, 593,521 and 274,604 genotyped SNPs were retained in the ARIC
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(excluding SNPs with missingness of >2%, MAF of <0.01 or Hardy-Weinberg equilibrium
(HWE) P value of <1 × 10–3) and QIMR cohorts (excluding SNPs with missingness of >5%,
MAF of <0.01 and HWE P value of <1 × 10–6), respectively. After sample quality control
analysis, 8,682 and 11,742 individuals of European ancestry in the ARIC and QIMR
cohorts, respectively, were included for further analysis. The quality control protocol has
been detailed previously for the ARIC cohort18,30 and for the QIMR cohort14,29. We then
estimated pairwise genetic relationships between individuals14 and removed one of each pair
of individuals with an estimated relatedness of >0.025. After these quality control steps,
6,654 and 3,924 unrelated individuals were retained in the ARIC and QIMR cohorts,
respectively. All the ARIC samples were from adults and the QIMR samples were from
3,247 adults and 677 16-year-old adolescents. The SNP data for both ARIC and QIMR
cohorts were imputed to the HapMap Phase 2 CEU panel by MACH31. We used the best
guess genotypes of the imputed SNPs and excluded imputed SNPs with HWE P value of <1
× 10–6, imputation R2 of <0.3 or MAF of <0.01 and retained 2,406,652 and 2,410,957 SNPs
in the ARIC and QIMR cohorts, respectively. The ARIC cohort is part of the discovery
sample of the GIANT meta-analysis, whereas the QIMR cohort is not. In the prediction
analyses, the height and BMI phenotypes in the ARIC and QIMR cohorts were adjusted for
age and sex effects and standardized to z scores14,18. In the QIMR cohort, only samples
from 3,247 adults were used in the prediction analysis for BMI.

Estimating the joint effects of multiple SNPs for a quantitative trait
Under the assumption that a quantitative trait is affected by multiple genetic variants, we can
express phenotypes in a sample of unrelated individuals by a multi-SNP model as

(1)

where y = {yi} is an n × 1 vector of phenotypes, with n being the sample size, X = {xij} is an
n × N genotype matrix, with xij = –2pj, 1 – 2pj or 2 – 2pj for the jth SNP of the ith
individual, with pj being the allele frequency of a SNP j and N being the number of SNPs
fitted in the model, and b = {bj}, an N × 1 vector of joint SNP effects. For simplicity, we
subtract the mean of the phenotype from yi, such that we do not need to fit the intercept in
the model. We therefore can estimate the joint effects of multiple SNPs by the least-squares
approach as

(2)

where  is the residual variance in the joint analysis.

In a GWAS or meta-analysis, however, each SNP is usually tested for association separately
based on a single-SNP model

(3)

where xj is the jth column of X and βj is the marginal effect of SNP j. The marginal effects
of multiple SNPs estimated from a single SNP–based genome scan can be written in matrix
form as

(4)

where β = {βj} is an N × 1 vector of marginal SNP effects, D = {Dj} is the diagonal matrix

of X′X with  and  is the residual variance in the single-SNP analyses. The
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marginal SNP effects do not take the LD correlations between SNPs into account compared
with the joint SNP effects. There are two issues involved in such single-SNP analyses for
SNPs a short distance from each other: (i) if the increasing (or risk) alleles of two SNPs is
negatively correlated, the effects of both SNPs will be attenuated; therefore, the single-SNP
analysis is underpowered, and one SNP or both SNPs may be undetected and (ii) if both
SNPs reach genome-wide significance, it is difficult to determine their degree of
dependency by interrogating the LD afterwards.

With the summary statistics from single-SNP analyses and individual-level genotype data of
the discovery sample, we can convert the marginal effects to joint effects without using the

phenotype data. We know from equation (4) that , and we therefore can rewrite

equation (2) with respect to 

(5)

The proportion of phenotypic variance explained by all the SNPs (coefficient of
determination of a multiple regression model) is

(6)

giving the following equation:

(7)

In an association analysis of a single SNP j,

(8)

and the squared standard error of the estimate of the effect size is  so that

. Although the phenotypes of a quantitative trait are often

standardized to z scores, we take the median of  across all the SNPs to
calculate y′y instead of relying on the variance being known.

For a meta-analysis of a large number of cohorts, such as the GIANT Consortium meta-
analysis3,4, we are usually unable to obtain pooled individual-level genotype data of the
whole discovery set; hence, we do not have the X′X matrix. X′X is essentially a variance-
covariance matrix of SNP genotypes, which can be estimated from the allele frequencies in
the meta-analysis sample along with LD correlations between SNPs from a reference
sample, such as one of the meta-analysis cohorts for which individual-level genotype data
are available. We let W = {wij} denote the genotype matrix of the reference sample with
sample size of m, where wij = –2fj, 1 – 2fj or 2 – 2fj for the three genotypes, with fj being the
allele frequency of a SNP j in the reference sample, and we let DW denote the diagonal

matrix of W′W with . If the reference sample is from the same population as
the meta-analysis sample, the LD correlation between a pair of SNPs j and k should be
similar in the two samples32,33, with
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(9)

so that X′X is approximately equal to B, with the jkth element of B being

(10)

We have defined above that  and, as xij is not available in this case, we thus take
Dj = 2pj (1 – pj)n, assuming HWE and can show this in matrix form:

(11)

Therefore, we can approximate a joint analysis of multiple SNPs as

(12)

where b ̃ = {b̃j} is an N × 1 vector of approximate estimates of joint SNP effects. If a SNP is
uncorrelated with all other SNPs in the model, then the estimate of the effect size from the
joint analysis will be identical to that from the meta-analysis. In a genetically homogenous
population of large effective size, the expected value of LD correlation between two SNPs
on different chromosomes or a large distance apart is approximately zero, and the observed
LD correlations between such pairs of SNPs in a sample are just a result of random
sampling. We show with empirical data that the observed LD correlation between SNPs
more than 10 Mb apart is consistent with what we would expect by chance (Supplementary
Fig. 7). We use the expected values (zeros) in the matrix B for such pairs of distant SNPs,
because it is more appropriate to represent a sampled correlation observed in the meta-
analysis sample by its expected value rather than another sampled correlation observed in
the reference sample unless the whole meta-analysis sample is used as the reference sample.

In addition, the sample size varies for different SNPs due to imputation failures for different
SNPs in different participating studies. Therefore, n is no longer constant across different
SNPs, and we need to rescale the elements of B and D according to the different effective
sample sizes of different SNPs. For any SNP j,

(13)

where we take the variance explained by a single SNP into account, considering that the
effect sizes of some particular SNPs are large for some traits. We use the estimated effective
sample size rather than the reported sample size, because the effective sample size will be
smaller than the reported sample size if there is some degree of relatedness in the data. We
then adjust the jkth element of B for the sample size variability of the SNPs as

(14)
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and adjust the jth diagonal element of D as Dj = 2pj(1 – pj)n̂j.

Conditional analysis
In a linear regression analysis of multiple SNPs, the least-squares estimates of the joint
effects of one set of SNPs conditional on another set of SNPs (b2 | b1) are

(15)

(16)

where  is the residual variance in the conditional analysis and all the other variables and
parameters are defined as above, with the subscripts 1 and 2 indicating the two SNP sets.
We can perform a multi-SNP conditional analysis using summary data from single-SNP
analyses and individual-level genotype data of the sample without accessing the phenotype
data by

(17)

(18)

where N1 and N2 are the number of SNPs in the two sets. If there is only one SNP to be
tested in the conditional analysis (N2 = 1), then equations (17) and (18) simplify to

(19)

(20)

where b̂2,  and D2 are scalars.

As in a joint analysis, if the individual-level genotype data of the discovery sample are
unavailable, we can estimate the LD correlations from the reference sample and approximate
a conditional analysis as

(21)

(22)

where B1 and B2 are similar as in equation (11) and  with the jkth element.

(23)

Yang et al. Page 12

Nat Genet. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Model selection
There are many ways of performing model selection in a multiple regression framework. We
use the following stepwise selection strategy to select the associated SNPs iteratively over
all the SNPs across the whole genome, regardless of their P values from the meta-analysis,
except for the most significant SNP, which was used for model initiation.

1. Start with a model with the most significant SNP in the single-SNP meta-analysis
across the whole genome with P value below a cutoff P value, such as 5 × 10–8.

2. For the tth step, calculate the P values of all the remaining SNPs conditional on the
SNP(s) that have already been selected in the model. To avoid problems due to
colinearity, if the squared multiple correlation between a SNP to be tested and the
selected SNP(s) is larger than a cutoff value, such as 0.9, the conditional P value
for that SNP will be set to 1.

3. Select the SNP with minimum conditional P value that is lower than the cutoff P
value. However, if adding the new SNP causes new colinearity problems between
any of the selected SNPs and the others, we drop the new SNP and repeat this
process.

4. Fit all the selected SNPs jointly in a model and drop the SNP with the largest P
value that is greater than the cutoff P value.

5. Repeat processes (2), (3) and (4) until no SNPs can be added or removed from the
model.

A multiple regression analysis with model selection, such as that presented above, might
suffer from over-fitting of effects, because the residual variance decreases as more and more
SNPs are included in the model, such that the false positive rate for the inclusion of new
SNPs in the model would be inflated. In practice, we keep the residual variance constant to
the phenotypic variance, even if we added significant SNPs into the model, which may be
too conservative and may therefore result in a loss of power to detect additional associated
variants but has the benefit of keeping the false positive rate in the conditional and joint
analysis at the same level as in the meta-analysis. If a SNP has no correlation with any of the
SNPs selected in the model, its P value in the conditional or joint analysis will remain the
same as it is in the meta-analysis.

Case-control studies
We know from the methods above that the scale of measurement of a quantitative trait is not
important, as it can be dropped from the equations. We therefore extend these methods to be
applied to the case-control study design, assuming that the disease liabilities (L) of all the
individuals are known, and model the effects of multiple SNPs.

(24)

There are two distributions that are often assigned to the residuals to transform the
underlying liability to the probability of being affected or unaffected, the standard normal
distribution (probit model) and the logistic distribution (logistic regression). Given the
logistic probability function of f(li) = exp(li)/[1 + exp(li)] with li being the liability of the ith
individual, the odds ratio (OR) for a SNP j in a multiple-SNP analysis is exp(bj), with bj
being the log(OR) in a joint analysis, and is exp(βj) for a single-SNP model L = xjβj + e,
with βj being the log(OR) in a single-SNP analysis. Even though the residuals follow a
logistic distribution, the least-squares estimates of effect sizes are unbiased, because the
least-squares approach does not rely on the assumption of normality. Hence, we can apply
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the same methods as described above for a quantitative trait to a case-control study, as long
as the effect sizes and standard errors are expressed on the log(OR) scale.

Software tool
The method described above has been implemented as an option in the GCTA software
package (see URLs)19.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 2

Prediction analysis based on the SNPs at the 36 loci with multiple associated SNPs

Prediction in ARIC Prediction in QIMR

g 87 g 49 g 87 g 49

Slope 0.979 0.953 1.076 0.880

S.e. 0.060 0.095 0.076 0.123

P 1.6 × 10–58 2.3 × 10–23 4.3 × 10–44 8.9 × 10–13

R2 0.038 0.015 0.048 0.013

Shown are the results of a linear regression analysis of the observed height phenotype on a single predictor based upon all 87 multiple associated
SNPs (g87) and that based on the 49 additional SNPs (g49) in both the ARIC and QIMR cohorts. The predictors in one cohort are created based on

SNP effects estimated from the approximate joint analysis using the other cohort as a reference sample.
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