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Abstract
Concerted proton-electron transfer (CPET) reactions in iron carboxy-tetraphenylporphyrin
complexes have been investigated using both experimental and theoretical methods. Synthetic
heme models abstract H+ and e− from the hydroxylamine TEMPOH or an ascorbate derivative,
and the kinetics of the TEMPOH reaction indicate concerted transfer of H+ and e−. Phenylene
linker domains vary the electron donor/acceptor separation by approximately 4 Å. The rate data
and extensive molecular simulations show that the electronic coupling decay constant (β) depends
on conformational flexibility and solvation associated with the linker domain. Our best estimate of
β is 0.23 ± 0.07 Å−1, a value that is near the low end of the range (0.2–0.5 Å−1) established for
electron transfer reactions involving related linkers. This is the first analysis of β for a CPET
reaction.
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Electron transfer (ET) reactions accompanied by protonation changes are ubiquitous in
chemistry and biology. Many of these proton-coupled electron transfer (PCET) reactions are
ones in which both charged particles transfer in a single step (concerted PCET, denoted
CPET). CPET is implicated in biological processes that often involve spatial separation of
donor/acceptor sites,1–3 as in the oxidation of tyrosine Z in photosystem II, which is thought
to proceed by proton transfer (PT) to a nearby histidine in concert with ET to an oxidized
chlorophyll P680+ approximately 10 Å away.1 Separated CPET likely also is operative in
ascorbate peroxidase,4 with ET between substrate and the heme iron (8 Å) and PT to or from
the heme propionate.

A central question in both ET and CPET is how redox center separation and the composition
of the intervening medium affect electron/hole transport. This relation provides a basis for
controlling the mechanisms and flow of charge in biological and synthetic systems. Studies
of the distance dependence of pure ET revealed how linker domains and the associated
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bridge states impact the electronic coupling between redox sites.5–7 In the current study, we
present the first corresponding analysis for a CPET reaction. We have employed rigid
linkers in model porphyrin-based systems that allow for comparison of similar reactions at
two different separations and therefore an estimate of the donor-acceptor electronic coupling
constant (β). Subtle changes in both the preorganization and solvent reorganization energies
are shown to play an important role in evaluation of β values from the experimental rate
constants.

Syntheses of 5-(4-carboxyphenyl)-10,15-20-triphenylporphyrin, 5-(1,1′-biphenyl-4-
carboxylic acid)-10,15,20-triphenylporphyrin, and their iron complexes followed published
procedures.8–11 UV-vis and 1H NMR spectra of the two bis(N-methyl imidazole) porphyrin
complexes, denoted FeIIIPhCO2H and FeIIIPh2CO2H, exhibited similar features to those
of the parent tetraphenylporphyrin (TPP) compounds.10,11

Titrations of FeIIIPhCO2H or FeIIIPh2CO2H with the strong base 1,8-
diazabicycloundecane (DBU, pKa = 24.312) in MeCN revealed small UV-vis spectroscopic
changes,9 indicative of weak thermodynamic coupling between the iron and benzoate
sites.13,14 Titrations of the ferric compounds with Et3N gave the pKa values reported in
Scheme 1,9 ca. 1 pKa unit lower than benzoic acid in MeCN (21.515). All titrations were
reversible with addition of triflic acid (HOTf).

Cyclic voltammograms in MeCN (0.1 M nBu4NPF6) of FeIIIPhCO2H and FeIIIPh2CO2H
were reversible with E1/2 = −0.545 and −0.550 V vs. Cp2Fe+/0, respectively. Addition of 1
equiv. DBU (or nBu4NOH) shifted the waves by −30 ± 10 and −15 ± 10 mV for
FeIIIPhCO2H and FeIIIPh2CO2H. The shifts in potential were fully reversible upon
addition of HOTf. The shifts in E1/2 upon protonation indicate that the small coupling
between the heme-iron and the benzoate decreases slightly with increasing linker length.
Redox data were used to calculate the pKa of the FeII porphyrins using Hess’ law (Scheme
1). The thermochemical properties of the two iron systems are very similar.

The deprotonated ferric compounds FeIIIPhCO2
− and FeIIIPh2CO2

− reacted with 2,2´-4,4´-
tetramethylpiperidin-1-ol (TEMPOH, eq 1) or 5,6-isopropylidene ascorbate16 (iAscH−, eq 2)
to yield the corresponding protonated ferrous species FeIIPhCO2H and FeIIPh2CO2H, as
confirmed by UV-vis spectroscopy. The reactions with iAscH− and with ≥ 100 equivalents
of TEMPO proceed to completion within minutes, before precipitation of the carboxylate
species, which occurs over ~10 min for such dilute (µM) solutions under ambient conditions.

(1)
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(2)

FeIIPhCO2H and FeIIPh2CO2H have similar O–H bond dissociation free energies (BDFEs,
Scheme 1), indicating that their CPET reactions have similar driving forces. Reactions 1(n)

(n = 1, 2; eq 1), under conditions of excess TEMPOH at 298 K, follow pseudo-first-order
kinetics, with k1

(1) = 15.3 ± 1.4 M−1 s−1; k1
(2) = 6.5 ± 0.8 M−1 s−1.9 The corresponding

reactions with TEMPO–D were markedly slower, such that kinetic measurements and
quantitative deuterium kinetic isotope effects (KIEs) were complicated by the competing
precipitation; however, the initial rates (d[FeIII]/dt) were clearly slower for D-versus H-
transfer in both cases.9

Reactions 2(n) (n = 1, 2; eq 2) proceeded more quickly, requiring stopped-flow
spectrophotometry to monitor the kinetics under pseudo-first-order conditions of excess
iAscH−. For the reaction of FeIIIPhCO2

− with iAscH(D)−, k2
(1) = (6.9 ± 0.4) × 105 M−1 s−1,

and the corresponding rate constant for the deuterated system is (3.9 ± 0.3) × 105 M−1 s−1,
such that kH/kD = 1.8 ± 0.2. For the reaction of FeIIIPh2CO2

− with iAscH−, k2
(2) = (4.7 ±

0.5) × 105 M−1 s−1 [(4.2 ± 0.4) × 105 M−1 s−1 for iAscD−, kH/kD = 1.12 ± 0.15]. These
results are consistent with the small KIEs found for reactions of iAscH− with other iron-
porphyrin complexes.17

Possible mechanisms for reactions 1 and 2 include initial ET followed by PT, initial PT
followed by ET, or concerted transfer of H+ + e−.1c FeIIIPhCO2

− and FeIIIPh2CO2
− have

little bias towards CPET, since there is virtually no thermodynamic coupling between the
redox and acid-base sites (Scheme 1), while TEMPOH strongly favors concerted H+/e−

transfer to avoid high-energy intermediates generated from individual ET or PT.1c 
for concerted transfer from TEMPOH to FeIIIPhCO2

− (−3.5 ± 1.1 kcal/mol) is more
favorable than ΔGo

PT
(1) or ΔGo

ET
(1) (+28.5, +29.6 kcal/mol, respectively). The

experimentally measured barrier ΔG1
(1)‡ = 15.8 kcal/mol is below the ΔGo

PT
(1) or

ΔGo
ET

(1), ruling against these pathways in favor of a CPET mechanism. CPET is similarly
likely for reaction 1(2).18

Thermochemical analysis of reaction 2 did not provide evidence for one specific
mechanism,9 although the primary KIEs are consistent with CPET. Also, reactions 1 and 2
exhibited qualitatively similar behavior (i.e., k2

(1) > k2
(2)), consistent with CPET mediated

by a (Ph)n bridge.

The rate constants for the reactions of the complex with the n = 2 linker are approximately
two times slower than for the analogous k values for the complex with the n = 1 linker
(Table 1). This is crudely consistent with previous studies of intramolecular ET.5 To better
analyze the measured rate constants for the CPET reactions involving TEMPOH we turned
to molecular simulation techniques and the theory of CPET reaction rates.

Investigations of ET distance dependence employed photo-initiated unimolecular systems,
which constrain the redox centers to a fixed distance, avoiding the formation of multiple,
distinct precursor complexes and their associated free energy of formation.5 For the
bimolecular CPET reactions studied here, the formation of a hydrogen bond between the
donor and acceptor simplifies the analysis of these reactions by providing a well-defined

Warren et al. Page 3

J Phys Chem Lett. Author manuscript; available in PMC 2014 February 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



precursor complex.19 In the following analysis, the subscripts that distinguish between
reactions 1 and 2 have been suppressed; we focus exclusively on reaction 1 (TEMPOH),
which clearly occurs via CPET.

The thermal reaction rate for electronically nonadiabatic CPET in the normal regime
assumes the golden-rule form9,2022

(3)

where R is the electron donor-acceptor distance, λ(R) is the CPET reorganization energy
given by the sum of the inner- and outer-sphere reorganization energies, wr(R) is the work
required for precursor complex formation, ΔGo(R) is the driving force for CPET, HAB(R) is
the electronic coupling matrix element, and γ includes the (n- and R-independent) proton
coupling matrix elements. Derivation of eq 39 uses the assumption that the proton and
electron donor-acceptor distances are statistically uncorrelated for configurations that
dominantly contribute to the CPET rate; numerical validation of this assumption is provided
in Fig. S18. Numerical support for the n- and R-independence of γ also is provided in Fig.
S18 and Section 8.6.9

At a given separation distance, ΔGo(R) can be related to the corresponding value at infinite

separation, , and the difference between the works of bringing together the reactant
and product species.23

(4)

In the electronically nonadiabatic regime, HAB(R) varies exponentially with the electron
donor-acceptor distance,2325

(5)

Here,  is the coupling matrix element at a reference donor-acceptor distance R°, and β is
the associated decay constant. The ratio of the CPET rates for the complexes with n = 1 and
n = 2 phenylene linkers is given by eqs 6–8.

(6)

(7)

(8)

The decay constant β can be obtained via numerical solution of eq 6 using the rate constants
in Table 1. However, this requires terms wr(R), wp(R), ΔΔGo, and λ(R). Using a
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combination of MD and electronic structure techniques, we obtained these terms for
reactions 1(n) and investigated their relative impact on the interpretation of β.

We first considered the work of preorganization for the reactant and product complexes.
Calculation of the reactant and product free energy profiles, wr(n)(R) and wp

(n)(R), was
performed using all-atom MD simulations with a novel setup9 that allows for the direct
comparison of free energies obtained with different linker numbers, n. Atomic charges for
the MD simulations were obtained at the B3LYP/6-31G(d,p) level of theory. Efficient
sampling was achieved by combining two-dimensional umbrella sampling with a three-
dimensional implementation of the weighted histogram analysis method;9 nonetheless, a
total of 400 ns of simulation time was needed to obtain sufficiently tight convergence for the
analysis presented here. The reactant and product free energy profiles are presented in
Figure 1.

The reactant profiles confirm that the longer (n = 2) linker domain increases the electron
donor-acceptor distance by approximately 4 Å. The longer linker also leads to a wider basin
of stability and slightly stronger binding of TEMPOH due to improved solvation of the
hydrogen-bound complex. The product free energy profiles are qualitatively similar, but
contain additional structure arising from the torsional potential associated with rotation of
the carboxylic acid OH moiety (see inset structures).

Next, we computed the CPET reorganization energy λ(n) (R) for reactions 1(n). As in the
calculation of the preorganization work, the outer-sphere contribution to the reorganization

energy, , was obtained using all-atom MD simulations.9 We found that  is only
weakly sensitive to the number of phenylene linkers, n, and to the electron donor-acceptor

distance, R (Fig. S11); thermally averaging over R yields  kcal/mol and

 kcal/mol.9 For comparison, we also evaluated the outer-sphere
reorganization energy using the frequency-resolved cavity mode (FRCM),26,27 which
provides a continuum dielectric representation for the MeCN solvent, yielding

 kcal/mol and  kcal/mol.9 While qualitatively similar, FRCM

predicts a stronger n-dependence for  than the simulations with explicit solvent. The

CPET inner-sphere reorganization energy, , was computed at the B3LYP/6-31G(d,p)||
B3LYP/TZVP level of theory9 using a version of Nelsen’s four-point method applied to

CPET,9 yielding values of  kcal/mol and  kcal/mol.

Finally, we computed ΔΔGo, the difference in driving forces for the TEMPOH reactions at

infinite separation (eq 8). Driving forces for individual reactions,  kcal/mol

and  kcal/mol, were obtained at the B3LYP/6-31G(d,p)||B3LYP/TZVP level
of theory with solvation effects included via the polarizable continuum model.9,2829 The
computed values for the driving forces are in striking agreement with the corresponding

experimental measurements (  kcal/mol and  kcal/
mol) and yielded a difference of ΔΔGo = 0.26 kcal/mol, which we employ throughout the
following analysis.

Having computed wr
(n)(R), wp(n)(R), λ(n)(R), and ΔΔGo, we examined the impact of these

terms in the calculation of the decay constant β using eq 6. We considered a series of three
cases (I–III), which provided increasingly complete descriptions of these terms.

In the simplest treatment of eq 6 (Case I), the CPET reaction was assumed to involve only a
single electron donor-acceptor distance, R̃(n), and the terms wp, wr and λ were each assumed
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to be independent of the number of phenylene linkers. Equation 6 then simplifies to a form
that resembles what has been employed in the theoretical analysis of ET reactions,23

(9)

In this simplest case, the electron donor-acceptor distances for reactions 1(1) and 1(2) were
estimated from the distances between the metal center and the carboxyl oxygen in the crystal
structures of iron(III) tetra-4-carboxyphenylporphyrin chloride30 and silver(II) 5,10,15,20-
tetrakis(4-carboxy-2,6-dimethylbiphenyl)porphyrin,31 respectively. Inserting the relative
difference R̃(1) – R̃(2) = −4.2 Å and the experimental values for k1

(1) and k1
(2) into eq 9 gave

β = 0.26 ± 0.04 Å−1. The error bar in this estimate for β reflects the experimental
uncertainty in the rate constants; error bars in the subsequent calculations for β additionally
incorporate the statistical uncertainty of the numerical simulations.

For Case II, a more detailed treatment of eq 6 included the distance dependence of wr
(n)(R)

and wp
(n)(R), while the dependence of the reorganization energy on the electron donor-

acceptor distance and on the linker number was still neglected. Using the experimental
values for k1

(1) and k1
(2), solution of eq 6 via numerical quadrature yielded β = 0.35 ± 0.06

Å−1.

In the most complete treatment of eq 6 (Case III), we included the distance dependence of
wr

(n)(R) and wp
(n)(R), and the distance- and n-dependence of λ. Using the values for λo(R)

obtained from the explicit-solvent MD simulations, eq 6 yielded β = 0.23 ± 0.07 Å−1.
However, using the (physically reasonable) values for λo(R) from the continuum-solvent
FRCM yielded the unphysical result of β = −0.10 ± 0.06 Å−1.

Table 2 presents a summary of these three analyses. Each case yielded a value for β that
falls within the established range for ET across phenylene bridges (0.2–0.5 Å−1),13 but
inclusion of the various preorganization and solvent reorganization contributions was found
to significantly shift β within that range. Specifically, comparison of Cases I and II indicates
that inclusion of the difference in preorganization work for the bimolecular reactions leads
to an increase of 0.09 ± 0.04 Å−1 in the estimated value of β, emphasizing that even weak n-
dependence in the energy of preorganization (~0.3 kcal/mol) leads to a substantial difference
in the calculated β. Moreover, comparison of Cases II and III indicates that the weak n-
dependence in the solvent reorganization energy leads to a decrease of 0.12 ± 0.04 Å−1 in
the calculated β. Although the combined effects of wr

(n)(R), wp
(n)(R), and λ(n)(R) in Table 2

nearly cancel for this current study, this must be regarded as fortuitous; for systems that do
not exhibit this cancellation of error, a careful treatment conformational flexibility and
solvent reorganization energy would be necessary to avoid miscalculation of β. The point is
further underscored by our finding that approximations in the description of the solvent
reorganization (i.e., using implicit vs. explicit solvation) can lead to an unphysical estimate
for β.

In conclusion, we have examined the bimolecular PCET reactions of FeIIIPhCO2
− or

FeIIIPh2CO2
− with TEMPOH and iAscH−. Thermochemical arguments show that the

reactions between FeIIIPhnCO2
− and TEMPOH (n = 1, 2; eq 1) follow a concerted

mechanism, which may also be exhibited by the ascorbate reactions (eq 2). Adding a phenyl
linker and lengthening the electron donor-acceptor distance by ~4 Å leads to a decrease in
CPET rate constant of only a factor of 2. Combination of the experimental results with
extensive molecular simulations for reactions 1(n) gives the first test of the dependence of
CPET reaction rates on the electron donor-acceptor distance. Notably, analysis of the value
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of β for CPET in reaction 1 is sensitive to the treatment of the preorganization and solvent
reorganization energies. The most detailed treatment provided here yields an estimate of β ~
0.23 Å−1, which is on the low end of the range of values for ET across phenylene bridges (β
= 0.2–0.5 Å−1).13 While this is only the first step in characterizing the relationship between
β in ET and CPET reactions, the current results suggest that values of β obtained from ET
reactions have relevance for electronically nonadiabatic CPET reactions that are central to
biological catalysis and energy production.
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Figure 1.
(A) Free energy profiles for reactant preorganization, wr

(n)(R), associated with the
TEMPOH-FeIIIPhnCO2

− complexes with n = 1 (red) and n = 2 (blue) linkers. The profiles
are plotted as a function of R, defined as the separation between the TEMPOH oxygen and
the 5-carbon of the porphyrin ring. Thermally accessible (+1 kT) regions of the free energy
profiles are shaded. (B) The corresponding product free energy profiles, wp

(n)(R). Molecular
structures indicate representative configurations for the complex associated with two basins
of stability in the product profiles (with TEMPO• oriented toward the linker or into
solution).
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Scheme 1.
Thermochemical cycle for PCET reactions.
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Table 1

PCET rate constants for reactions 1 and 2.a

FeIIIPhCO2
− FeIIIPh2CO2

− k(1)k(2)

iAscH− 6.9(4) × 105 4.7(5) × 105 1.5

TEMPOH 15(1) 6.5(8) 2.4

a
Rate constants in M−1 s−1 for reactions at 298 K. Uncertainty in the last digit indicated in parentheses.
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