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Background: As metastasis is the prime cause of death from malignancies, there is vibrant interest to discover options for the
management of the different mechanistic steps of tumour spreading. Some approved pharmaceuticals exhibit activities against
diseases they have not been developed for. In order to discover such activities that might attenuate lymph node metastasis, we
investigated 225 drugs, which are approved by the US Food and Drug Administration.

Methods: A three-dimensional cell co-culture assay was utilised measuring tumour cell-induced disintegrations of the
lymphendothelial wall through which tumour emboli can intravasate as a limiting step in lymph node metastasis of ductal breast
cancer. The disintegrated areas in the lymphendothelial cell (LEC) monolayers were induced by 12(S)-HETE, which is secreted by
MCF-7 tumour cell spheroids, and are called ‘circular chemorepellent induced defects’ (CCIDs). The putative mechanisms by
which active drugs prevented the formation of entry gates were investigated by western blotting, NF-kB activity assay and by the
determination of 12(S)-HETE synthesis.

Results: Acetohexamide, nifedipin, isoxsuprine and proadifen dose dependently inhibited the formation of CCIDs in LEC
monolayers and inhibited markers of epithelial-to-mesenchymal-transition and migration. The migration of LECs is a prerequisite
of CCID formation, and these drugs either repressed paxillin levels or the activities of myosin light chain 2, or myosin-binding
subunit of myosin phosphatase. Isoxsuprine inhibited all three migration markers, and isoxsuprine and acetohexamide suppressed
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the synthesis of 12(S)-HETE, whereas proadifen and nifedipin inhibited NF-kB activation. Both the signalling pathways
independently cause CCID formation.

Conclusion: The targeting of different mechanisms was most likely the reason for synergistic effects of different drug
combinations on the inhibition of CCID formation. Furthermore, the treatment with drug combinations allowed also a several-fold
reduction in drug concentrations. These results encourage further screening of approved drugs and their in vivo testing.

INTRODUCTION

Lipoxygenases were shown to have a significant role in tumour
metastasis. MCF-7 breast cancer cells secrete 12(S)-HETE (Uchide
et al, 2007), a metabolite of lipoxygenases 12 and 15-1 (ALOX12 or
ALOX15-1), which repels different types of endothelial cells (Honn
et al, 1994; Madlener et al, 2010). When placing MCF-7 cell
spheroids on lymphendothelial cell (LEC) monolayers, the secreted
12(S)-HETE causes the retraction of underneath growing LECs,
giving way to cell-free zones called ‘circular chemorepellent
induced defects’ (CCIDs). The CCIDs are formed by the
directional migration of LECs, and this phenomenon faithfully
resembles bulky tumour intravasation through the lymphatic cell
wall. Therefore, CCIDs, which are caused by 12(S)-HETE, are
considered as entry gates for intravasating tumour emboli
(Kerjaschki et al, 2011). 12(S)-HETE production correlates with
lymph node metastasis of ductal breast cancer in human patients
and inhibiting 12(S)-HETE synthesis by experimental drugs (i.e.,
the ALOX12/15 inhibitors baicalein or NDGA) and genetic
manipulations (knock down of ALOX15) reduce the size of CCIDs
and the metastatic spread into lymph nodes in a breast cancer
xenograft mouse model (Kerjaschki et al, 2011). NDGA and
baicalein are preclinical drugs which have no approval for clinical
use. Hence, we screened 225 drugs, which are approved by the US
Food and Drug Administration (FDA), regarding their CCID-
inhibitory properties to evaluate their potential in anti-metastatic
therapy.

MATERIALS AND METHODS

Reagents and antibodies. The NF-kB inhibitor parthenolide, the
I-kBa phosphorylation inhibitor (E)-3-(4-methylphenylsulfonyl)-
2-propenenitrile (Bay11-7082) and the ALOX12/15 inhibitor
baicalein (EI-106) were purchased from Biomol (Hamburg,
Germany), and 12(S)-HETE was purchased from Cayman
Chemical (Ann Arbor, MI, USA). Acetohexamide (no. A178),
dimethyl sulfoxide (DMSO, minimum 99.5% GC, no. D4540),
isoxsuprine hydrochloride (no. I0880), nifedipin (no. N7634) and
proadifen hydrochloride (no. P1061) were purchased from Sigma-
Aldrich (Munich, Germany). Mouse monoclonal anti-CD54
(ICAM-1) antibody was from Immunotech (Marseille, France),
and polyclonal rabbit anti-paxillin (H-114) (sc-5574) and
b-tubulin (H-235, sc-9104) were from Santa Cruz Biotechnology
(Heidelberg, Germany). Monoclonal mouse anti-phospho-p44/42
MAPK (Erk1/2) (Thr202/Tyr204) (E10), monoclonal rabbit anti-
p44/42 MAPK (Erk1/2) (137F5), polyclonal rabbit anti-phospho-
myosin light chain 2 (MLC2) (Ser19), polyclonal rabbit anti-MLC2
and polyclonal rabbit anti-myosin-binding subunit of myosin
phosphatase (MYPT1) were from Cell Signaling (Danvers, MA,
USA). Monoclonal mouse anti-b-actin (clone AC-15) was from
Sigma-Aldrich, polyclonal rabbit anti-phospho-MYPT1 (Thr696)
was from Upstate (Lake Placid, NY, USA), and monoclonal mouse
anti-CD31 (JC70A), polyclonal rabbit anti-mouse and anti-rabbit
IgGs were from Dako (Glostrup, Denmark).

Cell culture. Human MCF-7 breast cancer cells were purchased
from the American Type Culture Collection (Rockville, MD, USA)

and grown in MEM medium supplemented with 10% fetal calf
serum (FCS) and 1% penicillin/streptomycin (PS) (Invitrogen,
Karlsruhe, Germany). Telomerase-immortalised human LECs were
grown in EGM2 MV (CC-4147; Clonetics, Allendale, NJ, USA), all
at 37 1C in a humidified atmosphere containing 5% CO2. For CCID
formation assays, LECs were stained with cytotracker green
purchased from Invitrogen. Three-dimensional co-cultivation of
breast cancer spheroids with LEC monolayers: MCF-7 cells (input
of 3000 cells for one spheroid) were transferred to 30 ml MEM
medium containing 6 ml of a 1.6% methylcellulose solution (0.3%
final concentration; cat. no.: M-512, 4000 centipoises; Sigma-
Aldrich). A total of 150 ml of this cell suspension (containing 3000
cells) was transferred to each well of a 96-well plate (Cellstar
650185; Greiner Bio-one, Kremsmünster, Austria) to allow
spheroid formation within 48 h.

The CCID assay. In this model, the sizes of the cell-free areas
(CCIDs) are measured that are formed in the endothelial
monolayer directly underneath 12(S)-HETE-secreting tumour
spheroids, which is a mechanistic cause for this phenomenon
(Madlener et al, 2010; Kerjaschki et al, 2011; Vonach et al, 2011;
Viola et al, 2012). MCF-7 spheroids were washed in PBS and
transferred to cytotracker-stained LEC monolayers that were
seeded into 24-well plates (Costar 3524; Sigma-Aldrich) in 2 ml
EGM2 MV medium. After 4 h of incubation, the CCID areas in the
LEC monolayers underneath the MCF-7 spheroids were photo-
graphed using an Axiovert (Zeiss, Jena, Germany) fluorescence
microscope to visualise cytotracker (green)-stained LECs under-
neath the spheroids. The CCID areas were calculated with the
Axiovision Re.4.5 software (Zeiss). DMSO-treated co-cultures
served as negative control. For each condition, the CCID size of
12 or more spheroids (unless otherwise specified) was measured.
During the experiments, which were mostly short term, we did not
observe toxic effects of the used drugs (monitored by HOPI
staining; Grusch et al, 2002).

Sodium dodecyl sulphate (SDS) gel electrophoresis and western
blotting. LECs were grown in petri dishes (6-cm diameter) to 80%
confluence and treated with 1mM 12(S)-HETE and/or the indicated
drug concentrations. Then, cells were washed twice with cold PBS
and lysed in a buffer containing 150 mM NaCl, 50 mM Tris pH 8.0,
1% Triton-X-100, 1 mM phenylmethylsulfonyl fluoride and 1 mM

protease inhibitor cocktail (Sigma, Schnelldorf, Germany). The
lysates were centrifuged at 12 000 r.p.m. for 20 min at 4 1C, and the
supernatants were transferred to 1.5-ml tubes and stored at
� 20 1C until further analysis. Equal amounts of protein lysate
were mixed with (� 2) SDS sample buffer and loaded onto a 10%
polyacrylamide gel. SDS polyacrylamide gel electrophoresis and
western blotting were according to the protocol described by
Vonach et al (2011).

NF-jB luciferase assay. 10� 106 HEK293-NF-kB-Luc cells
(Panomics, Fremont, CA, USA) were seeded in 20 ml full growth
DMEM medium in a 15-cm dish. Next day, cells were transfected
with an expression plasmid for green fluorescence protein (GFP)
(pEGFP-N1; Clontech, Mountain View, CA, USA). A total of 30 ml
Lipofectamin 2000 (Invitrogen) and 7.5 mg DNA were mixed in
2 ml transfection medium and incubated for 20 min at room
temperature, followed by adding this mixture to the cells. After
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incubation for 6 h in humidified atmosphere containing 5% CO2,
4� 104 cells per well were seeded in serum- and phenol red-free
DMEM in a transparent 96-well plate. On the next day, cells were
treated with the indicated drugs and 2.5mM parthenolide as a
specific inhibitor of NF-kB (control). One hour after treatment,
cells were stimulated with 2 ng ml� 1 human recombinant TNFa
for additional 4 h. Luminescence of the firefly luciferase and
fluorescence of the GFP were quantified on a GeniusPro plate
reader (Tecan, Grödig, Austria). The luciferase signal derived from
the NF-kB reporter was normalised by the GFP-derived fluores-
cence to account for differences in cell number (Giessrigl et al,
2012).

12(S)-HETE assay. 12(S)-HETE, which is secreted by MCF-7
spheroids, is a trigger factor of directional LEC migration and,
thus, CCID formation. Hence, we studied the influence of
candidate drugs on 12(S)-HETE synthesis in a MCF-7 clone. A
commercially available 12(S)-HETE EIA (enzyme immunoassay)
kit was not sensitive enough to detect 12(S)-HETE produced by
normal MCF-7 cells. Therefore, ALOX12 cDNA was overexpressed
to detect 12(S)-HETE baseline levels and its alterations after drug
treatment.

Cell culture. ALOX15 of MCF-7 cells were knocked down by
lentiviral-packaged shRNA, and 12(S)-HETE synthesis was
reconstituted by stable transfection of ALOX12 cDNA as described
(Kerjaschki et al, 2011), resulting in MCF-7ALOX12 cells. MCF-
7ALOX12 cells were cultivated in MEM medium (Gibco no. 10370-
047, Karlsruhe, Germany) supplemented with 10% FCS, 1%
GlutaMAX-I (Gibco no. 35050-038), 1% PS (Gibco no. 15140-
148), 1 mg ml� 1 G148-sulphate (PAA, no. P25-011), 150 mg ml� 1

hygromycin B (Sigma-Aldrich, no. H3274) and 1 mg ml� 1

puromycin. The cells were grown at 37 1C in a humidified
atmosphere containing 5% CO2.

Treatment. MCF-7ALOX12 cells were seeded in 3.5-cm dishes and
grown in 2.5 ml complete MEM medium without selection
pressure. The next day, the medium was changed to serum-free
medium and cells were kept at 37 1C for 24 h. Then, cells were
treated with 10 mM arachidonic acid (no. A3555, Sigma-Aldrich)
and simultaneously with different concentrations of the indicated
compounds for 4 h when the supernatants were aspirated,
centrifuged at 2000 r.p.m. at 4 1C for 5 min, collected in cryo-
tubes, flash frozen and stored at � 80 1C until analysis.

12(S)-HETE extraction. Medium samples of MCF-7ALOX12 cells
were slowly thawed at room temperature and centrifuged at
3000 r.p.m. for 2 min. Extraction cartridges (Oasis HLB 1cc;
Waters, Milford, MA, USA) were equilibrated with 2� 1 ml
methanol (highest purity) and 2� 1 ml distilled H2O, and
1.25 ml of medium samples were passed through the cartridges.
Afterwards, the cartridges were washed with 3� 1 ml distilled
H2O, and 12(S)-HETE was eluted with 500 ml methanol. The
methanolic solution was flash frozen and stored at � 80 1C until
further analysis.

Analysis by 12(S)-HETE EIA. The 12(S)-HETE EIA (enzyme
immunoassay) kit (no. ADI-900-050) was purchased from Enzo
Life Sciences (Lausen, Switzerland), and the samples were prepared
and the assay was performed according to the instructions of the
manufacturer. In detail, the methanolic solution was evaporated
with a speed-vac concentrator, 250 ml of assay buffer were added to
the dried samples and a 1 : 54 dilution was prepared. The standards
(a solution of 500 ng ml� 1 12(S)-HETE, no. 80-0607) for the
12(S)-HETE standard curve were prepared according to the
instruction manual. Then, 100 ml of the samples and standards
were added to a 96-well plate coated with goat anti-rabbit IgG

antibody (no. 80-0060). Furthermore, 50 ml of 12(S)-HETE
conjugate (no. 80-0610; blue solution) and 50 ml of rabbit
polyclonal antibody (no. 80-0611; yellow solution) were added into
the appropriate wells. Afterwards, the plate was incubated at room
temperature for 2 h on a shaker (226 r.p.m.). Then, wells were
emptied and washed 3� with 400ml wash buffer (1 : 20 dilution of
wash buffer concentrate, no. 80-1286), and after the final wash, the
plate was tapped on a flint-free paper towel to completely remove
the wash buffer. A total of 200ml of the pNPP substrate (no. 80-
0075) solution was pipetted into each well and incubated for 3 h at
37 1C in a humidified atmosphere containing 5% CO2. Then, 50ml
of the stop solution (no. 80-0247) was added into each well, and
absorbance was measured with a Wallac 1420 Victor 2 multilabel
plate reader (Perkin Elmer Life and Analytical Sciences, Waltham,
MA, USA).

Statistical analysis. For statistical analyses, Excel 2003 software
and Prism 5 software package (GraphPad, San Diego, CA, USA)
were used. The values were expressed as mean±s.e.m., and the
Student’s t-test was used to compare differences between controls
and individual samples, whereas analyses of variance (ANOVAs;
one-way ANOVA together with Dunnett’s post test) was used to
analyse treatment groups. Statistical significance level was set at
Po0.05. The calculations of drug-combination effects were
performed using the ‘Calcusyn’ software (Biosoft, Ferguson, MO,
USA) designed by Chou and Talalay (1981, 1984). This method
analyses the interaction among drugs in a given combination and
calculates a predictive value at which the effect of a drug
combination is additive or above it is synergistic, or below it is
antagonistic.

RESULTS

Acetohexamide, isoxsuprine, nifedipin and proadifen inhibit
CCID formation. The screening of 225 FDA-approved drugs and
four natural products (Figure 1A–J) showed that acetohexamide,
nifedipin, proadifen and isoxsuprine inhibited CCID formation
dose dependently (5–60 mM; Figure 2A–D). The strongest inhibi-
tory effect was observed with isoxsuprine followed by
proadifen4nifedipin4acetohexamide.

Acetohexamide and isoxsuprine reduce the 12(S)-HETE
level. 12(S)-HETE, which is secreted by MCF-7 spheroids, is a
major trigger factor of CCID formation in LEC monolayers. 12(S)-
HETE is the product of ALOX12/15. Therefore, we analysed
whether acetohexamide, isoxsuprine, nifedipin and proadifen
inhibited 12(S)-HETE synthesis in an ALOX12-expressing MCF-
7 clone (MCF-7ALOX12 cells) using an adapted EIA assay, which
measures the 12(S)-HETE levels in cell-culture supernatants.
Acetohexamide and isoxsuprine inhibited 12(S)-HETE synthesis,
whereas nifedipin did not alter 12(S)-HETE levels significantly,
and proadifen even induced the 12(S)-HETE level in MCF-7ALOX12

cells (Figure 3).

Proadifen and nifedipin inhibit activation of NF-kB. Recent
studies showed that the activity of NF-kB (in addition to the
activity of ALOX12/15 of MCF-7 cells) contributes to CCID
formation (Vonach et al, 2011; Viola et al, 2012). Therefore, we
assesed the effect of acetohexamide, isoxsuprine, nifedipin and
proadifen on NF-kB activity using a luciferase reporter fused to a
NF-kB-responsive promoter. Nifedipin and proadifen inhibited the
activation of the NF-kB reporter construct, whereas acetohexamide
and isoxsuprine did not alter the read out (Figure 4).

Inhibition of mobility markers. The formation of CCIDs, which
are triggered by MCF-7 spheroids, requires LEC mobility and,
therefore, the induction of proteins facilitating cell migration.
Hence, the expression of the mobility proteins MYPT, MLC2 and
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paxillin was studied and also that of Erk1/2 because it was shown
to mediate migratory signals (Webb et al, 2004). We simplified the
three-dimensional co-culture cell model and replaced MCF-7
spheroids (as source of 12(S)-HETE stimulation) by direct 12(S)-
HETE treatment, which allowed to perform western blot analyses.
Interestingly, 12(S)-HETE transiently downregulated Erk1/2 phos-
phorylation (Vonach et al, 2011; Viola et al, 2012). Acetohexamide,

isoxsuprine, nifedipin and proadifen inhibited one or more
mobility markers (MLC2, MYPT and paxillin) in LECs
(Figure 5A–D), thereby providing a molecular explanation for
attenuated LEC migration. Proadifen downregulated paxillin
expression and reversed 12(S)-HETE-mediated Erk1/2 de-phos-
phorylation. Acetohexamide strongly inhibited 12(S)-HETE-
induced phosphorylation of MLC2, and also MYPT
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phosphorylation was weakly inhibited. Nifedipin strongly sup-
pressed the phosphorylation of MYPT, whereas phosphorylation of
MLC2 became induced. Isoxsuprine was the only drug inhibiting
the induction of all three mobility markers. Therefore, all four
CCID-inhibitory drugs affected the expression/activation of one or
more mobility proteins.

Combinatorial drug treatment further reduces CCID areas. The
drug concentrations that substantially inhibited CCID formation
were rather high and physiologically not relevant (60 mM).

Therefore, we performed combination experiments aiming towards
the reduction of the individual drug concentrations. Together with
the other three drugs (acetohexamide, nifedipin and proadifen,
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and isoxsuprine on CCID formation. MCF-7 spheroids were placed on
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20 mM each), the effect of 20mM isoxsuprine was significantly
improved (Table 1). Two of the drug combinations (isoxsuprine
together with nifedipin, or proadifen) synergised in inhibiting
CCID formation when compared with single-drug treatment,
whereas isoxsuprine in combination with acetohexamide was
additive (Figure 6A, Table 2). This was in agreement with the
observation that isoxsuprine was the most potent CCID inhibitor
and with its property to downregulate all three of the analysed LEC
mobility markers.

The weakest drug and also a weak cooperation partner was
acetohexamide, which inhibited ALOX12 less efficiently than
isoxsuprine. Acetohexamide, which downregulated two mobility
markers (MYPT and MLC2), synergised just with nifedipin.
Nifedipin synergised with two drugs (isoxsuprine and acetohex-
amide) and suppressed MYPT phosphorylation, whereas that of
MLC2 became even induced. Therefore, the inhibition of MYPT
activity may have been crucial for the synergistic and additive
inhibition of CCID formation (by nifidipin and acetohexamide,
nifidipin and isoxsuprine and acetohexamide and isoxsuprine,
respectively), whereas MLC2 may have been negligible. From this
perspective, the reason why nifidipin and proadifen was not
efficient remains obscure. From another perspective, both
proadifen and nifedipin inhibited NF-kB but not ALOX12, which
could explain why this combination did not further reduce CCID
formation (Figure 6B). Proadifen synergised only with isoxsuprine,
and this combination inhibited CCID formation most effectively
and was only topped by the combination of all four drugs.
Furthermore, also nifedipin & isoxsuprine, and nifedipin &
acetohexamide synergistically reduced CCID formation. In these
combinations, the first drug inhibited NF-kB and the other one
inhibited ALOX12 (respectively). The antagonistic effect (deter-
mined by Calcusyn software) of proadifen and acetohexamide co-
treatment may have been due to the opposing effects of the two
drugs on 12(S)-HETE synthesis. Interestingly, the combination
treatment with the two drugs that inhibit ALOX12 (acetohexamide
and isoxsuprine) inhibited CCID formation additively. In contrast,
the combination treatment with the two NF-kB-inhibitory drugs
(proadifen and nifedipin) was antagonistic, which may have been
because of the 12(S)-HETE-increasing property of proadifen.

DISCUSSION

Metastasising ductal breast cancer emboli secrete 12(S)-HETE,
which causes the subsequent retraction of beneath LECs, thereby
forming entry ports for the tumour bulk into the lymphatic
vasculature (Kerjaschki et al, 2011). This way the tumour passes on
from lymph node to lymph node. Normally, 12(S)-HETE is
produced by ALOX12 and ALOX15-1 (Funk, 1996) of platelets,

leukocytes, smooth muscle, epithelial, neuronal and fibroblast cells
(Spector et al, 1988), induces retraction of microvascular
endothelial cells (MECs) and increases tumour cell adhesion to
exposed ECM (Tang et al, 1993; Honn et al, 1994). Also, MCF-7
breast cancer cells secrete 12(S)-HETE (Uchide et al, 2007),
inducing a mobile phenotype and CCIDs in adjacent LECs and
causing lymph node metastasis in scid mice (Madlener et al, 2010;
Kerjaschki et al, 2011; Vonach et al, 2011). Hence, CCID formation
in the three-dimensional co-culture model consisting of MCF-7
spheroids and LEC monolayers faithfully resembles the in vivo
situation. Previous experiments could associate phosphorylated
MYPT1 with LEC migration (Kerjaschki et al, 2011; Vonach et al,
2011). MYPT1 is the regulatory/targeting subunit of the myosin
phosphatase, which regulates the interaction of actin and myosin
in response to signalling through the GTPase Rho (Feng et al,
1999). Here we demonstrate an increase of phosphorylation and
hence activation of both proteins – MYPT1 and MLC2 – in 12(S)-
HETE-treated LECs. Also, paxillin expression was induced by
12(S)-HETE. Paxillin is essential for labile adhesions facilitating
rapid cell migration (Huang et al, 2003; Deakin and Turner, 2008)
and cell polarity (Digman et al, 2008) as prerequisites for
directional LEC movement (West et al, 2001; Jianxin et al, 2009)
and, hence, CCID formation. Paxillin expression is indicative
for cell plasticity and a marker of an undifferentiated phenotype
and hallmark protein of EMT (Lu et al, 2006; Zeisberg and
Neilson, 2009; Paulitschke et al, 2010; van Zijl et al, 2011).
Endothelial paxillin facilitates the transmigration of neutrophils
through the endothelial barrier and, thus, influences the behaviour
of other cell types that are in direct contact with endothelial cells
(Parsons et al, 2012). Because 12(S)-HETE induced MYPT, MLC2
and paxillin in LECs, these proteins can serve as biochemical
mobility markers in the CCID-forming process and, moreover,
provide a mechanistic explanation for the inhibitory effects of the
candidate drugs.

Acetohexamide, isoxsuprine, nifedipin and proadifen not only
exhibited an impact on LEC motility markers but also targeted
distinct cellular mechanisms relevant for CCID formation, such as
the activities of ALOX12 and NF-kB. The chemical structures of
these drugs are not related to each other and they are used against
distinct diseases. Isoxsuprine is used as a vasodilator in humans
and equines (Knoll et al, 1996; Erkert and Macallister, 2002), is
applied in humans for the treatment of premature labour
(Giorgino and Egan, 2010), and in the horse, isoxsuprine is used
to treat hoof-related problems and to increase circulation within
the hoof (Erkert and Macallister, 2002). Isoxsuprine is a beta-
adrenergic agonist that causes direct relaxation of uterine (Kato
et al, 1971) and vascular smooth muscle (Belloli et al, 2000). In
smooth muscle, MLC kinase phosphorylates MLC2 (Ikebe and
Hartshorne, 1985), and this is correlated with myosin ATPase
activity and smooth muscle contraction (Tan et al, 1992). 12(S)-
HETE induces the phosphorylation of MLC in melanoma cells
(Rice et al, 1998), and also in MECs, 12(S)-HETE-induced mobility
is mediated through enhanced phosphorylation (activation) of
proteins co-migrating with MLC (Tang et al, 1993). Conversely,
de-phosphorylation of MLC would suspend cell contraction and
movement. Therefore, the smooth muscle-relaxing effect of
isoxsuprine could be because of the as yet unreported property
to inhibit the phosphorylation and activity of MLC2, which itself
correlates directly with LEC mobility (Vonach et al, 2011).
Furthermore, isoxsuprine exhibited a suppressive effect on 12(S)-
HETE levels in MCF-7ALOX12 cells, which was not observed so far.
Isoxsuprine strongly affected LEC migration in the co-culture
model when applied in combination with the NF-kB-inhibitory
drugs, because NF-kB is involved in a separate CCID-promoting
mechanism. It is widely accepted that NF-kB is associated with
cancer development (Folmer et al, 2009), promoting oncogenesis
through the transcriptional activation of genes associated with

Table 1. Significance of improvement of CCID inhibition by treatment
with drug combinations

A N P I

A and I 0.0066 — — 0.0090

N and I — 0.0016 — 0.0016

P and I — — o0.0001 0.0005

P and A n.s. — n.s. —

P and N — n.s. n.s. —

N and A 0.0052 0.0021 — —

I, A, N and P o0.0001 o0.0001 o0.0001 o0.0001

Abbreviations: A¼ acetohexamide; I¼ isoxsuprine; N¼ nifedipin; P¼proadifen. The effect
of combination treatment versus single-drug treatment on CCID inhibition was analysed by
t-test, and the P-values are shown (Po0.05 – significant).
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cell proliferation, angiogenesis and metastasis (Orlowski and
Baldwin, 2002).

Nifedipin interacts with the binding site of the receptors
associated with calcium channels (Swanson and Green, 1986) and
inhibits the influx of exogenic calcium in the smooth muscle cells
(Wiemer et al, 1992). This causes their relaxation (Kanmura et al,
1983), and therefore, it is administered to patients with coronary
heart diseases and hypertonia (Lundy et al, 2009). The smooth
muscle-relaxing property of nifedipin is reminiscent to that of
isoxsuprine and could be because of the inactivation of the mobility
marker MYPT. This would mechanistically link the therapeutic

effect of nifedipin to the inhibition of LEC mobility and CCID
formation. In addition, nifedipin inhibited NF-kB (but not
ALOX12), and neither this nor its MYPT-inhibitory property
have been observed so far.

Proadifen blocks glibenclamide-sensitive Kþ channels (Sakuta
and Yoneda, 1994), stimulates prostocylin through the inhibition
of platelet thromboxane synthesis (Boeynaems et al, 1987) and
inhibits neuronal nitric oxide synthase (Metea and Newman, 2006)
and hepatic drug metabolism through the inhibition of the
cytochrome P-450 (CYP) system (Ueno et al, 1997). The CYP
was shown to promote metastases in humans (Jiang et al, 2007).
Recently, it was demonstrated that proadifen inhibits CYP also in
MCF-7 cells (Seelinger et al, 2012), and hence, CYP activity of
MCF-7 cells might contribute to CCID formation of LECs, that is,
by disturbing arachidonic acid metabolism for which ALOX is also
competing. In fact, proadifen treatment perturbed (increased) the
12(S)-HETE level in MCF-7ALOX12 cells. However, proadifen
inhibited also NF-kB, and paxillin expression in LECs and thus,
counteracted intercellular communication and directional LEC
migration.

Acetohexamide is used for the treatment of diabetes mellitus
type 2 because it has a positive influence on the release of insulin
from the active beta cells in the pancreas. Further, it improves the
binding between insulin to insulin receptors (Sheldon et al, 1966;
Nakamura, 1984; Imamura et al, 1989). We could not link the
therapeutic use or known mechanism of acetohexamide to its
CCID-inhibitory property. It was the drug with the weakest effect
and correlated with the inhibition of ALOX12 and MLC2
phosphorylation.

Summing up, screening of 229 drugs could identify four drugs
that inhibited CCID formation and detailed investigations
elucidated their potential mechanisms responsible for this
inhibitory property. For three drugs, we could, in part, link the
mechanism to their therapeutic effects.

Recent reports demonstrate that inhibition of ALOX12/15 is a
prime target for the attenuation of lymph node metastasis
(Kerjaschki et al, 2011; Vonach et al, 2011), and together with
inhibition of NF-kB attenuates CCID formation additively (Viola
et al, 2012). Some drug combinations with different mechanistic
profiles exhibited synergistic effects, and this allowed reducing the
drug concentrations. This supports the notion that the individual
drugs targeted more than just one CCID-forming mechanism.
Hence, as a consequence from our preliminary data, these and
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Figure 6. (A, B) Analysis of drug combinations on CCID formation. MCF-7 spheroids were placed on LEC monolayers and co-cultivated for 4 h
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control and treatments and ‘s’ between double treatments and quadruple treatments (s; Po0.05). The significant differences between single
treatments and double (and quadruple) treatments are shown in Table 1.

Table 2. Synergistic, additive or antagonistic effects on CCID formation
by drug combinations

Compound(s)
Concentration

(lM)
CCID formation (%

of control)±s.d.
Predicted

valuea

A 20 80.73; ±29.63

N 20 75.48; ±18.42

P 20 83.87; ±10.85

I 20 71.87; ±11.57

A and I 20/20 55.12; ±18.33 a 58.02

N and I 20/20 46.43; ±21.89 b 54.25

P and I 20/20 38.35; ±27.80 b 60.28

P and A 20/20 77.53; ±34.95 c 67.71

N and A 20/20 49.93; ±17.43 b 60.93

I, A, N and P 20/20/20/20 28.59; ±13.91 b 36.73

N 40 63.67; ±29.16

P 40 73.20; ±21.77

N and P 40/40 66.15; ±14.11c 46.60

Abbreviations: A¼ acetohexamide; I¼ isoxsuprine; N¼ nifedipin; P¼proadifen. Co-culti-
vated MCF-7 spheroids and LECs were treated with individual drugs or with the indicated
drug combinations for 4 h. Then, CCID formation (% of control) was measured and analysed
by Calcusyn software. The CCID data are means of at least 12 determinations; s.d.
aPredicted value indicating additive effect: (% of dug ‘1’�% of drug ‘2’)/100.
bSynergistic combination effect according to the equation of Chou and Talalay (1984).
cAntagonistic combination effect according to the equation of Chou and Talalay (1984).
Bold values are the data derived from drug combinations.
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other drug combinations could be considered for adjuvant anti-
metastatic therapy.
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