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Is there a common structural and functional cortical architecture
that can be quantitatively encoded and precisely reproduced across
individuals and populations? This question is still largely unan-
swered due to the vast complexity, variability, and nonlinearity of
the cerebral cortex. Here, we hypothesize that the common cortical
architecture can be effectively represented by group-wise consis-
tent structural fiber connections and take a novel data-driven
approach to explore the cortical architecture. We report a dense
and consistent map of 358 cortical landmarks, named Dense
Individualized and Common Connectivity--based Cortical Landmarks
(DICCCOLs). Each DICCCOL is defined by group-wise consistent
white-matter fiber connection patterns derived from diffusion
tensor imaging (DTI) data. Our results have shown that these 358
landmarks are remarkably reproducible over more than one hundred
human brains and possess accurate intrinsically established
structural and functional cross-subject correspondences validated
by large-scale functional magnetic resonance imaging data. In
particular, these 358 cortical landmarks can be accurately and
efficiently predicted in a new single brain with DTI data. Thus, this
set of 358 DICCCOL landmarks comprehensively encodes the
common structural and functional cortical architectures, providing
opportunities for many applications in brain science including
mapping human brain connectomes, as demonstrated in this work.

Keywords: cortical architecture, cortical landmark, diffusion tensor
imaging, fMRI

Introduction

Brodmann (1909) published a cytoarchitectonic map of the

human brain that segregated the cerebral cortex into dozens of

Brodmann areas (BAs) based on cell body--stained histological

sections. The Brodmann map has profoundly impacted the

neuroscience field, as many neuroscientists use Brodmann’s

map as a common reference for mapping neuroimaging data

acquired from the living human brain (Zilles and Amunts 2009).

For instance, the current common practice in functional

magnetic resonance imaging (fMRI) (Logothetis 2008) is to

report stereotaxic coordinates for brain activations, usually in

relation to the Talairach or the Montreal Neurological Institute

(MNI) coordinate system (74% of over 9400 fMRI studies

[Derrfuss and Mar 2009]) after brain image registration (e.g.,

Thompson and Toga 1996; Fischl et al. 2002; Shen and

Davatzikos 2002; Liu et al. 2004; Van Essen and Dierker 2007;

Avants et al. 2008; Yap et al. 2011; Zhang and Cootes 2011).

However, the Brodmann map itself does not provide a precise

definition of boundaries between cortical areas in individual

brains. Therefore, the brain science field largely depends on

image registration algorithms (e.g., Thompson and Toga 1996;

Fischl et al. 2002; Shen and Davatzikos 2002; Van Essen and

Dierker 2007; Avants et al. 2008; Yap et al. 2011; Zhang and

Cootes 2011) to aggregate and/or compare neuroimaging data

from individuals and populations to infer statistically meaning-

ful conclusions about the brain.

A basic assumption of image registration methodology is that

the images under consideration are similar and can be matched

(Bajcsy et al. 1983; Thompson and Toga 1996; Fischl et al. 2002;

Shen and Davatzikos 2002). However, this assumption has

limitations for human brain images considering the substantial

variability of cortical anatomy and function. Recent advance-

ments in the image registration field, such as group-wise image

registration (e.g., Yap et al. 2011; Zhang and Cootes 2011) and

multiatlases image registration (e.g., Jia et al. 2010; Asman and

Landman 2011), are helpful attempts at dealing with the above-

mentioned questionable assumption in brain image registra-

tion. In parallel, literature efforts in seeking common and

corresponding anatomical/functional regions across individuals

via cortical parcellation approaches, for example, those in

Behrens et al. (2004) and Jbabdi et al. (2009), are promising.

To the best of our knowledge, currently there is a lack of

effective fine-scale representation of common structural and

functional cortical architectures that can be precisely repli-

cated across individuals and populations in the brain science

field. This problem of quantitative representation of common

cortical architecture, if not solved, could be a major barrier to

advancements in the brain imaging sciences (Hagmann et al.

2010; Kennedy 2010; Van Dijk et al. 2010; Williams 2010). From

our perspective (Liu 2011), the major challenges for mapping

common cortical architecture include the unclear functional or

cytoarchitectural boundaries between cortical regions, the

remarkable individual variability, and the highly nonlinear

properties of cortical regions, for example, a slight change to

the location of a brain region of interest (ROI) might

dramatically alter its structural and/or functional connectivity

profiles (Li et al. 2010; Zhu et al. 2011b). Thanks to recent

advancements in multimodal neuroimaging techniques, we are

now able to quantitatively map the axonal fiber connections

and the brain’s functional localizations of the same group of

subjects using diffusion tensor imaging (DTI) (Mori 2006) and
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fMRI (Logothetis 2008) data. Thus, the close relationships

between structural connection patterns and brain functions

have been reported in a variety of recent studies (Honey et al.

2009; Li et al. 2010; Zhu et al. 2011a). For instance, our recent

works (Li et al. 2010; Zhu et al. 2011a, 2011b; Zhang et al.

2011) have demonstrated that DTI-derived axonal fibers

emanating from corresponding functional brain regions iden-

tified by working memory task--based fMRI (Faraco et al. 2011)

are remarkably consistent. This provides direct supporting

evidence to the connectional fingerprint concept (Passingham

et al. 2002), which premises that each brain’s cytoarchitectonic

area has a unique set of extrinsic inputs and outputs that largely

determines the functions that each brain area performs. In

addition, the DTI fiber clustering literature (e.g., Gerig et al.

2004; Maddah et al. 2005; O’Donnell et al. 2006) has

demonstrated that it is feasible and possible to obtain

consistent fiber bundles across individual subjects via fiber

similarity metrics, which further inspired the data-drive

discovery approach in this paper.

In response to the challenges of mapping a common cortical

architecture and inspired by the connectional fingerprint

concept (Passingham et al. 2002) and fiber clustering literature

(Gerig et al. 2004; Maddah et al. 2005; O’Donnell et al. 2006),

we hypothesize that there is a common cortical architecture

that can be effectively represented by group-wise consistent

structural fiber connection patterns. To test this hypothesis, we

extensively extended our recent work (Zhu et al. 2011a)

which used DTI data sets to discover the dense and common

cortical landmarks likely present across all human brains (see

Initialization and Overview of the DICCCOL Discovery

Framework, Fiber Bundle Comparison Based on Trace-Maps,

Optimization of Landmark Locations, Determination of Consis-

tent DICCCOLs). Compared with the previous work in Zhu

et al. (2011a), in this paper, we refined the landmark

optimization procedure (Optimization of Landmark Locations),

used much larger multimodal DTI/fMRI data sets for evaluation

and reproducibility studies (see Data Acquisition and Prepro-

cessing and Reproducibility and Predictability), functional

activations for validation (see Functional Localizations of

DICCCOLs), compared our approaches with image registration

algorithms (see Comparison with Image Registration Algo-

rithms), and applied the approaches for construction of human

brain connectomes (see Application) to test our hypothesis.

We have dubbed this strategy: Dense Individualized and

Common Connectivity--based Cortical Landmarks (DICCCOLs).

The basic idea is that we optimize the localizations of each

DICCCOL landmark in individual brains by maximizing the

group-wise consistency of their white matter fiber connectivity

patterns. This approach effectively and simultaneously

addresses the above-mentioned 3 challenges in the following

ways. 1) The DICCCOLs provide intrinsically established

correspondences across subjects, which avoids the pitfall of

seeking unclear cortical boundaries. 2) Individual structural

variability is effectively addressed by directly determining the

locations and sizes of DICCCOL landmarks in each individual’s

space. 3) The nonlinearity of cortical connection properties is

adequately addressed by a global optimization and search

procedure, in which group-wise consistency is used as an

effective constraint.

Materials and Methods

Data Acquisition and Preprocessing
In total, we acquired and used 4 different multimodal DTI/fMRI data

sets for the development, prediction, and validation of the DICCCOL

map, as summarized in Table 1. In brief, data set 1 included the DTI, R-

fMRI (resting-state fMRI), and 5 task-based fMRI scans of 11 healthy

young adults recruited at The University of Georgia (UGA) Bioimaging

Research Center (BIRC) under IRB approval. The scans were performed

on a GE 3T Signa MRI system using an 8-channel head coil at the UGA

BIRC. The 5 task-based fMRI scans were based on in-house verified

paradigms including emotion, empathy, fear, semantic decision making,

and working memory tasks at UGA BIRC. The data set 2 included 23

healthy adult students recruited under UGA IRB approval. Working

memory task--based fMRI and DTI scans were acquired for these

participants at the UGA BIRC. The data set 3 included 20 elderly

healthy subjects recruited and scanned at the UGA BIRC under IRB

approval. Multimodal DTI and Stroop task--based fMRI data sets were

acquired using the same imaging parameters as those in data sets 1 and

2. The data set 4 included multimodal DTI, R-fMRI, and task-based fMRI

scans for 89 subjects including 3 age groups of adolescents (28), adults

(53), and elderly participants (23). These participants were recruited

and scanned on a 3T MRI scanner in West China Hospital, Huaxi MR

Research Center, Chengdu, China under IRB approvals. The participant

demographics of these 4 data sets are in Supplementary Table 1. More

details of the data acquisition and preprocessing steps are referred to

the Supplementary Materials and Methods.

Initialization and Overview of the DICCCOL Discovery
Framework
Similar to our recent work in Zhu et al. (2011a), we randomly selected

one subject from the data set 1 (this group of subjects are more likely

to participate in follow-up studies) as the template and generated

a dense regular map of 3D grid points within the boundary box of the

reconstructed cortical surface. The intersection locations between the

Table 1
Summary of 4 different data sets with their types, the purposes of functional network mapping, and the sections in which the data sets were used

Data sets Types Networks Sections

Data set 1 DTI, R-fMRI, 5 task-based fMRI scans Emotion, empathy, fear,
semantic decision making,
working memory

Initialization and Overview of the DICCCOL Discovery Framework, Prediction
of DICCCOLs, Identification of Functionally Relevant Landmarks via fMRI,
Mapping fMRI-Derived Benchmarks to DICCCOLs, Reproducibility and
Predictability, Functional Localizations of DICCCOLs

Data set 2 DTI, one task-based fMRI scan Working memory Initialization and Overview of the DICCCOL Discovery Framework, Fiber
Bundle Comparison Based on Trace-Maps, Optimization of Landmark
Locations, Determination of Consistent DICCCOLs, Reproducibility and
Predictability

Data set 3 DTI, one task-based fMRI scan Attention Prediction of DICCCOLs, Identification of Functionally Relevant Landmarks via
fMRI, Mapping fMRI-Derived Benchmarks to DICCCOLs

Data set 4 DTI, R-fMRI, 2 task-based fMRI scans Default mode, visual, auditory Prediction of DICCCOLs, Identification of Functionally Relevant Landmarks via
fMRI, Mapping fMRI-Derived Benchmarks to DICCCOLs, Functional
Localizations of DICCCOLs, Application
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grid map and the cortical surface were used as the initial landmarks. As

a result, we generated 2056 landmarks on the template (Fig. 1a,b).

Then, we registered this grid of landmarks to other subjects (data set 2)

by warping their T1-weighted MRI images to the same template MRI

image using the linear registration algorithm FSL FLIRT. This linear

warping is expected to initialize the dense grid map of landmarks and

establish their rough correspondences across different subjects (Fig.

1a,b). The aim of this initialization was to create a dense map of

DICCCOL landmarks distributed over major functional brain regions.

Then, we extracted white matter fiber bundles emanating from small

regions around the neighborhood of each initial DICCCOL landmark

(Fig. 1c--g). The centers of these small regions were determined by the

vertices of the cortical surface mesh, and each small region served as

the candidate for landmark location optimization. Figure 1d shows

examples of the candidate fiber bundles we extracted. Afterward, we

projected the fiber bundles to a standard sphere space, called trace-

map (Zhu et al. 2011a, 2011b), as shown in Figure 1e and calculated the

distance between any pair of trace-maps in different subjects within the

group. Finally, we performed a whole space search to find one group of

fiber bundles (Fig. 1f) which gave the least group-wise variance. Figure

1g shows examples of the optimized locations (red bubble) and the

DICCCOL landmark movements (yellow arrow).

Fiber Bundle Comparison Based on Trace-Maps
An essential step in landmark optimization is the quantitative

comparison of similarities across fiber bundles, which represent the

structural connectivity patterns of cortical landmarks (Zhu et al.

2011a). Our rationale for comparing fiber bundles through trace-maps

(Zhu et al. 2011a, 2011b) is that similar fiber bundles have similar

overall trace-map patterns. After representing the fiber bundle by the

trace-map model (Zhu et al. 2011a, 2011b), the bundles can be

compared by defining the distances between their corresponding

trace-maps. It should be noted that the trace-map model is not sensitive

to small changes in the composition of a fiber bundle (Zhu et al. 2011a,

2011b). This is a very important property when we perform between-

subjects comparisons because we want to determine whether the fiber

bundles have similar overall shapes.

After representing the fiber bundle by the trace-map model, the

bundles can be compared by defining the distances between their

corresponding trace-maps, as shown in Figure 1h--j. We built a standard

sphere coordinate system as shown in Figure 1h and set up the sample

points on the standard sphere surface by adjusting angle U and h. The
step of angle change is p/6. Hence, we have 144 sample points as shown

in Figure 1i. For each trace-map, we can calculate the point density at

the location of certain sample point. In other words, we can use

a histogram vector of 144 dimensions to represent a trace-map. Each

dimension in this vector is the point density information of a specific

sample point. As a result, the vector can reflect the point distribution of

a trace-map uniquely. The point density den (Pi) is defined as:

denðPi Þ=ni=N ð1Þ
where ni is the number of points in the trace-map whose center is Pi
with radius d. In this paper, d = 0.3. N is total number of points in the

trace-map. As shown in Figure 1i, we calculate the point density within

the range of the yellow circle. The distance of 2 trace-maps is defined as:

D
�
T ; T #

�
=

+
n

i=1

�
Ti – T

#
i

�2

n
ð2Þ

where T and T # are 2 vectors representing different trace-maps. Ti and

T #
i are the ith element of the vector T and T #. n is the number of sample

points, and in this paper, n equals 144. Note that the point density here

is normalized so that we do not require that the numbers of points in

different trace-maps are equal.

Optimization of Landmark Locations
We formulate the problem of optimization of landmark locations and

sizes as an energy minimization problem, which aims to maximize the

consistency of structural connectivity patterns across a group of subjects.

By searching the whole space of landmark candidate locations and sizes,

we can find an optimal combination of new landmarks that ensure the

fiber bundles from different subjects have the least group variance.

Mathematically, the energy function we want to minimize is defined as:

E
�
S1; S2; . . . ; Sm

�
=+EðSK ; Sl Þ;K 6¼ 1 andK ; l=1; 2; . . . ;m ð3Þ

S1 . . . Sm are m subjects. We let E (Sk,Sl) = D (Tk,Tl) and rewrite the

equation (3) as below:

E

 

S1; S2; . . . Sm

!

=

++
n

i=1

ðTk ; Tl iÞ2

n
;K 6¼ 1 andK ; l=1; 2; . . . ;m ð4Þ

For any 2 subjects SK and Sl, we transformed them to the

corresponding vector format, TK and Tl, of trace-maps. Tki and Tli are

the ith element of TK and Tl, respectively. Intuitively, we aim to minimize

the group distance among fiber shapes defined by trace-maps here.

In our implementation, for each landmark of the subject, we

examined around 30 locations (surface vertices of 5-ring neighbors of

the initial landmark) and extracted their corresponding emanating fiber

bundles as the candidates for optimization. Then, we transformed the

Figure 1. (a,b) Illustration of landmark initialization among a group of subjects.
(a) We generated a dense regular grid map on a randomly selected template. (b) We
registered this grid map to other subjects using linear registration algorithm. The
green bubbles are the landmarks. (c--g) The workflow of our DICCCOL landmark
discovery framework. (c) The corresponding initialized landmarks (green bubbles) in
a group of subjects. (d) A group of fiber bundles extracted from the neighborhood of
the landmark. (e) Trace-maps corresponding to each fiber bundle. (f) The optimized
fiber bundle of each subject. (g) The movements of the landmarks from initial
locations (green) to the optimized locations (red). Step (1): Extracting fiber bundles
from different locations close to the initial landmark. Step (2): Transforming the fiber
bundles to trace-maps. Step (3): Finding the group of fiber bundles which make the
group variance the least. Step (4): Finding the optimized location of initial landmark
(red bubble). (h--j) Illustration of trace-map distance. (h) A sphere coordinate system
for finding the sample points. We totally have 144 sample points by adjusting angle U
and h. 1) A sphere with 144 sample points. (j) Two trace-maps. The 2 red circles
belong to the same sample point and will be compared based on the point density
information within red circles.

Common Connectivity-Based Cortical Landmark d Zhu et al.788



fiber bundles to trace-maps. After representing them as vectors, we

calculated the distance between any pair of them from different

subjects. Thus, we can conduct a search in the whole space of

landmark location combinations to find the optimal one that has the

least variance of fiber bundles shapes within the group. The

optimization procedure (eq. 4) is performed for each of those 2056

initial landmarks separately.

Determination of Consistent DICCCOLs
Ten subjects were randomly selected from data set 2 and were equally

divided into 2 groups. The steps in Initialization and Overview of the

DICCCOL Discovery Framework, Fiber Bundle Comparison Based on

Trace-Maps, and Optimization of Landmark Locations were performed

separately in these 2 groups. Due to that the computational cost of

landmark optimization procedure via global search grows exponentially

with the number of subjects used (Zhu et al. 2011a), we can more

easily deal with 5 subjects in each group at current stage. As a result, we

obtained 2 independent groups of converged landmarks. For each

initialized landmark in different subjects in 2 groups, we used both

quantitative (via trace-map) and qualitative (via visual evaluation)

methods to evaluate the consistency of converged landmarks. First, for

each converged landmark in one group, we sought the most consistent

counterparts in another group by measuring their distances of trace-

maps and ranked the top 5 candidates in the decreasing order as

possible corresponding landmarks in 2 groups. Then, we used an in-

house batch visualization tool (illustrated in Fig. 2) to visually examine

all the top 5 landmark pairs in 2 separate groups. If the fiber shape

patterns were determined to be the most consistent across 2

independent groups, the landmark pair was determined as a DICCCOL

landmark. In addition, the trace-map distances between any pair of

DICCCOL landmarks across subjects were also checked to verify that

the landmark was similar across groups of subjects. Finally, we

determined 358 DICCCOL landmarks by 2 experts independently by

both visual evaluation and trace-map distance measurements and a third

expert independently verified these results. If any of the subjects in 2

separate groups exhibited substantially different fiber shape pattern,

that landmark was discarded. Therefore, all the discovered 358

DICCCOLs were independently confirmed in 2 different groups of

subjects, and their fiber connection patterns turned out to be very

consistent. The visualizations of all 358 DICCCOLs are released online

at: http://dicccol.cs.uga.edu.

Prediction of DICCCOLs
It has been shown in the literature that prediction of functional brain

regions via DTI data has superior advantages since a DTI scan takes less

than 10 min and is widely available (Zhang et al. 2011). Here, we are

motivated to predict the 358 DICCCOL landmarks in a single subject’s

brain. The prediction of DICCCOLs is akin to the optimization

procedure in Optimization of Landmark Locations. We will transform

a new subject (on MRI image via FSL FLIRT) to be predicted to the

template brain that was used for discovering the DICCCOLs and

perform the optimization procedure following the equation (4). It is

noted that there is a slight difference from Optimization of Landmark

Locations since we already have the locations of DICCCOLs in the

model brains. Therefore, we will keep those DICCCOLs in these models

unchanged and optimize the new subject only to minimize the trace-

map difference among the new group including the models and the

subject to be predicted. Specifically, Sm1, Sm2, . . . , Sm10 and Sp represent

the model data set and the new subject to be predict, respectively.

Formally, we summarize the algorithm as bellow:

1. We randomly select one case from the model data set as a template

(Smi), and each of the 358 DICCCOL landmarks in the template is

roughly initialized in Sp by transforming them to the subject via

a linear registration algorithm FSL FLIRT.

2. For Sp, we extract white matter fiber bundles emanating from small

regions around the neighborhood of each initialized DICCCOL

landmark. The centers of these small regions will be determined by

the vertices of the cortical surface mesh, and each small region will

serve as the candidate for landmark location optimization.

3. For Smi, each of the 358 model DICCCOLs will be fixed for the

optimization.

Figure 2. An example of the in-house batch visualization tool and its rendering of fiber shapes of one DICCCOL landmark in 10 subjects.

Cerebral Cortex April 2013, V 23 N 4 789
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4. We project the fiber bundles of the candidate landmarks in Sp to

a standard sphere space, called trace-map, as shown in Figure 1d--f.

For each landmark to be optimized in Sp, we calculate the trace-map

distances between the candidate landmark and those DICCCOL

landmarks in the model subjects within the group.

5. For each landmark, we performed a whole space search to find one

group of fiber bundles (Fig. 1f), which gives the least group-wise

variance. The candidate landmark in Sp with the least group-wise

variance is selected as the predicted DICCCOL landmark.

As we can see, even though the prediction is an exhaustive search

algorithm in which the performance is dependent on how many

candidates we choose from Sp, it can be finished within linear time

because we will not move the DICCCOLs in the model brains.

Therefore, the DICCCOL prediction in a new brain with DTI data is

very fast, typically around 10 min on a desktop computer.

Identification of Functionally Relevant Landmarks via fMRI
We used the FSL FEAT to process and analyze task-based fMRI data in

data sets 1--4. First, both group-level and individual-level activation

detections were performed based on the paradigm parameters for each

data set. Then, consistent group-level activation peaks were selected via

similar approaches used in Zhu et al. (2011b) and Li et al. (2010), as

illustrated in Figure 3a. It should be noted that the peak Z-values could

be different for separate activations and data sets (Li et al. 2010; Zhu

et al. 2011b). These group-level activation peaks were afterward

linearly registered to each individual subject’s space via the FSL FLIRT

and overlaid on the individual activation map (Fig. 3b). All the

consistent activation peaks that existed in both group-wise and

individual activation maps (if they were within a neighborhood of 8

mm on the activation maps and shared similar anatomical locations on

the MRI images) were selected as the benchmark functional local-

izations for each brain network. In particular, the activation peaks that

existed in the group-wise map but do not exist in the individual map

(no corresponding activation peaks or the distances between closest

peaks were larger than 8 mm), were removed from further analysis. Our

rationale is that the current work focuses on the identification of

consistent fMRI-derived brain regions for functional validation of

DICCCOLs but not on the study of activation patterns in different

task-based fMRI data sets. As an example, Figure 3a--c shows how we

manually selected the ROI (highlighted by cross-lines in Fig. 3a) for an

individual (highlighted by cross-lines in Fig. 3b) with the guidance of

a group-level activation map.

For R-fMRI data sets, we used the independent component analysis

(ICA) toolkit in FSL to localize the default mode network (DMN) and its

functionally relevant landmarks from the decomposed ICA compo-

nents. The DMN is among the most consistent and reproducible

resting-state networks discovered so far in the literature (Fox and

Raichle 2007). The DMN includes the right medial frontal gyrus (BA8),

right posterior cingulate (BA29), right superior temporal gyrus (BA22),

right middle temporal gyrus (BA39), left superior frontal gyrus (BA6),

left posterior cingulate gyrus (BA29), left middle temporal gyrus

(BA21), and left angular gyrus (BA39), which have been reproduced in

a variety of literature papers such as Damoiseaux et al. (2006), De Luca

et al. (2006), Fox and Raichle (2007); and van den Heuvel et al. (2008).

Therefore, we were able to identify the DMN and its functionally

relevant landmarks reliably from all brains with R-fMRI data from the

consistent ICA component patterns. Figure 3d--e shows the group-ICA

result for the DMN and 2 randomly selected examples of the ICA

component from R-fMRI data sets. Notably, ICA of R-fMRI data could

possibly identify multiple resting-state networks (Fox and Raichle 2007;

van den Heuvel et al. 2008). However, as this work concentrates on the

most consistent R-fMRI-derived networks for validation of DICCCOLs,

we only used the most consistent DMN at current stage. Finally, all the

consistent functionally relevant landmarks in individual subjects

obtained in the above task-based fMRI and R-fMRI data sets were used

for the following sections.

Mapping fMRI-derived Benchmarks to DICCCOLs
As the DICCCOLs were identified in the DTI image space, the fMRI-

derived functional landmarks were mapped to the DTI image space via

a linear registration procedure using the FSL FLIRT toolkit. For each

corresponding fMRI activation peak within a group of subjects, the top

5 closest individual DICCCOL landmarks within each subject were

identified. Then, within the same group of subjects, the DICCCOL

landmark with the most votes (in terms of the frequencies of being

ranked as closest distance to the fMRI-derived functional landmarks)

was determined as the corresponding landmark for that fMRI activation.

Our extensive results showed that there was always a dominant

DICCCOL landmark that can be selected as the top ranked DICCCOL

Figure 3. (a--c) Illustration of manual selection of working memory ROIs for an individual with the guidance of group activation map. (a) Group-wise activation map. The ROI
considered is shown in blue and highlighted by yellow arrow. (b) Individual activation map. The registered ROI peak from group activation map is shown in blue and highlighted by
yellow arrow. (c) The manually chosen ROI peak for this individual. The ROI peak is the cross of 2 axes and the center of the highlighted purple circle. (d and e) Identification of
DMN using ICA. (d) group-ICA result of DMN; (e): 2 individual samples of ICA maps for DMN.

Common Connectivity-Based Cortical Landmark d Zhu et al.790



landmark for those corresponding fMRI-derived landmarks, as shown in

Figure 4 as an example. This procedure was performed for all the 8

task-based fMRI data sets and the resting-state fMRI data set.

Results

The Result section includes 3 parts as follows. Reproducibility

and Predictability focuses on the reproducibility and pre-

dictability of the discovered DICCCOLs and an external

independent structural validation using subcortical regions as

benchmark landmarks. Functional Localizations of DICCCOLs

focuses on functional colocalization and validations of these

DTI-derived DICCCOLs via fMRI data. Comparison with Image

Registration Algorithms compares the DICCCOL system with

image registration algorithms.

Reproducibility and Predictability

The 358 DICCCOLs were identified via a data-driven whole

brain search procedure (see Initialization and Overview of the

DICCCOL Discovery Framework, Fiber Bundle Comparison

Based on Trace-Maps, Optimization of Landmark Locations,

Determination of Consistent DICCCOLs) in 10 randomly

selected subjects from data set 2 (equally and randomly divided

into 2 independent groups), as shown in Figure 5a. As an

example, we randomly selected 5 DICCCOLs (5 enlarged color

spheres in Fig. 5a) and plotted their emanating fibers in these

10 brains (Fig. 5b--f). It can be clearly seen that the fiber

connection patterns of the same landmark in 10 brains are very

consistent, suggesting that DICCCOLs represent common

structural cortical architecture. Importantly, by visual inspec-

tion, all these 358 DICCCOLs have consistent fiber connection

patterns in these 10 brains. For more details, the visualization of

all these 358 landmarks is available online at http://dicccol.c-

s.uga.edu. In addition to visual evaluation, we quantitatively

measured the differences of fiber shape patterns represented

by the trace-maps (see Fiber Bundle Comparison Based on

Trace-Maps) for each DICCCOL within and across 2 groups

(Fig. 5l--n). The average trace-map distance is 2.19, 2.05, and

2.15 using equation (4). It is evident that the quantitative trace-

map representations of fiber bundles for each DICCCOL has

similar patterns within and across 2 separate groups, demon-

strating the consistency of DICCCOL’s fiber connection

patterns.

In addition to the remarkable reproducibility of each

DICCCOL in Figure 5b--f, the 358 DICCCOLs can be effectively

and accurately predicted in a single separate brain with DTI

data (other test cases in data set 2), as exemplified in Figure 5g--

k. The landmark prediction will be evaluated by both fiber

shape patterns (in this section) and functional locations (in

Functional Localizations of DICCCOLs and Comparison with

Figure 5. (a) The 358 DICCCOLs. (b--f) DTI-derived fibers emanating from 5 landmarks (enlarged color bubbles in a) in 2 groups of 5 subjects (in 2 rows), respectively. (g--k) The
predicted 5 landmarks in 2 groups of 5 subjects (in 2 rows) and their corresponding connection fibers. (l) Average trace-map distance for each landmark in the first group (rows in
b--f); the color bar is on top of (o,p). (m) Average trace-map distance for each landmark in the second group (rows in b--f); (n) Average trace-map distance for each landmark
across 2 groups in b--f; (o,p) Average trace-map distance for each landmark in the 2 predicted groups in g--k, respectively. (q) The decrease fraction of trace-map distance before
and after optimization (the color bar on the top of q). The initialization was performed via a linear image warping algorithm.

Figure 4. Two examples of mapping DICCCOL landmarks (blue) to fMRI benchmarks
(red). The DMN is used here as an example.
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Image Registration Algorithms). Here, each landmark was

predicted in 10 separate test brains (Fig. 5g--k) based on the

template fiber bundles of corresponding landmarks (Fig. 5b--f).

We can clearly see that the predicted landmarks have quite

consistent fiber connection patterns in these test brains (Fig.

5g--k) as those in the template brains (Fig. 5b--f), indicating that

the DICCCOLs are predictable across different brains. Quanti-

tatively, the predicted landmarks have similar quantitative

trace-map patterns as those in the template brains, as shown in

Figure 5o,p. The average trace-map distance is 2.27 and 2.17. As

a comparison, the predicted landmarks have much more

consistent fiber trace-map patterns than the linearly registered

ones via FSL FLIRT (Fig. 5q). The average decrease fraction of

trace-map distance is 15.5%. We have applied the DICCCOL

prediction framework in all the brains in data sets 1--4 and

achieved very consistent results. These results support the

DICCCOL as an effective quantitative representation of

common structural cortical architecture that is reproducible

and predicable across subjects and populations.

Also, we applied the DICCCOL prediction method in

Prediction of DICCCOLs to localize the 358 DICCCOLs in all

the brains in data sets 1--4. All the 358 predicted DICCCOLs in

these populations are available online for visual examination:

http://dicccol.cs.uga.edu. Figure 6a shows one example of

a predicted DICCCOL landmark in one subject. In Figure 6a,

the first 2 rows (n = 10) are models and last row (n = 5) is the

predicted result in the new subject. The DICCCOL index

shown in Figure 6a is #311. From the results in Figure 6a and

online visualizations (http://dicccol.cs.uga.edu), we can see

that: 1) given the DICCCOLs in the model brains, we can

effectively predict their corresponding counterparts in a new

brain with DTI data; 2) the patterns of fiber bundles of

corresponding DICCCOLs in the predicted brains are consis-

tent with those in the model brains. We have visually examined

all the 358 predicted DICCCOLs in 4 different data sets (143

brains) and found the similar conclusion. These comprehensive

results on 4 different data sets over 143 brains indicate that our

DICCCOLs can potentially reveal the common structural

connectivity patterns of the human brain.

To verify that the DTI-derived fiber patterns of DICCCOLs

discovered in Optimization of Landmark Locations and De-

termination of Consistent DICCCOLs faithfully represent

structural connectivity patterns, we used subcortical regions,

which are relatively consistent and reliable, as benchmark

landmarks for measurement of consistency of DICCCOL’s

structural connectivities (Zhu et al. 2011a). The subcortical

regions were segmented via the FSL FIRST toolkit from MRI

image (e.g., Fig. 6b--d) and then linearly warped to DTI image

via FSL FLIRT. Our results demonstrate that 175 of the 358

DICCCOLs have strong connections (over 50 streamline fibers)

to subcortical regions and all of them have quite consistent

structural connectivities to subcortical regions. Specifically, we

Figure 6. (a) An example of a predicted DICCCOL landmark (DICCCOL #311) in 5 separate subject brains. The first 2 rows (n 5 10) are models, and last row (n 5 5) is the
predicted result in 5 brains. (b--e) Demonstration that fiber shape pattern represents structural connectivity pattern using subcortical regions as benchmark landmarks. (b) One
DICCCOL landmark (blue sphere) and its fiber connections in 5 different brains. The 4 subcortical regions are represented by yellow, red, green, and cyan colors in d. The fibers
connected to these subcortical regions are in the same colors. It is evident that this DICCCOL landmark has the same pattern of structural connectivity to these subcortical
regions. (c) Another lateral view of the fiber connection patterns. (d) Color codes for cortical surface, landmark ROI, and subcortical regions. (e) The average distances of
structural connectivity patterns for 175 DICCCOL landmarks that have strong fiber connections (over 50 fibers) to subcortical regions. Other DICCCOL landmarks are shown in
green.
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constructed a feature vector <V1, V2, V3, V4, V5, V6 > to

represent the connectivity pattern from cortical region to the

intrahemisphere subcortical structures (amygdala, hippocam-

pus, thalamus, caudate, putamen, and globus pallidus). For

instance, if there is any fiber that connects the cortical region

to a specified subcortical region, we set its corresponding item

to one. Otherwise, it is set to zero. Then, we used the L-2

distance to measure group distance of the cortical--subcortical

connectivity patterns, which are color coded in Figure 6e. The

average L-2 distance for all these 175 DICCCOL landmarks over

10 subjects is 1.42, which is considered as quite low. This result

suggests that consistent fiber shape patterns of DICCCOL

landmarks indeed represent consistent structural connectivity

patterns.

Functional Localizations of DICCCOLs

The major objective of performing functional localization of

DICCCOLs in this section is to demonstrate that structural

DICCCOL landmarks with consistent fiber shape patterns

possess corresponding functional localizations. In total, we

were able to identify 121 functional ROIs that were consis-

tently activated from 9 brain networks (working memory,

default mode, auditory, semantic decision making, emotion,

empathy, fear, attention, and visual networks) based on the

fMRI data sets in Data Acquisition and Preprocessing. More

details of these 121 ROIs including coordinates in MNI_152

template space and BAs are summarized in Supplementary

Table 2. To examine the functional colocalizations of 358

DICCCOLs, we mapped the 121 functionally labeled brain ROIs

onto the DICCCOL map by the methods in Mapping fMRI-

Derived Benchmarks to DICCCOLs. Surprisingly, 95 of the 358

DICCCOLs were consistently colocalized in one or more

functional brain networks determined by fMRI data sets across

different subjects and/or populations (see Fig. 7). Specifically,

76 of them are located adjacently to one functional network, 16

of them are located within 2 functional networks, and 3 of

them are located inside 3 functional networks.

To quantitatively evaluate the functional localization accu-

racy by the 95 DICCCOLs, we measured the Euclidean distance

between the centers of each DICCCOL and each fMRI-derived

landmark and reported the results in Figure 7. There are 9

subfigures corresponding to the 9 functional networks

identified using fMRI data sets, that is, working memory

(Fig. 7a), default mode (Fig. 7b), auditory (Fig. 7c), semantic

decision making (Fig. 7d), emotion (Fig. 7e), empathy (Fig. 7f),

fear (Fig. 7g), attention (Fig. 7h), and visual networks (Fig. 7i),

respectively. In each subfigure, the fMRI-derived landmarks are

highlighted by white spheres, while the corresponding

DICCCOLs are highlighted in other colors. The distances

(measured in millimeter) between the centers of fMRI

Figure 7. Functional localizations of 95 DICCCOLs determined by 121 fMRI-derived functional regions. Specifically, 76 of them are located adjacently to one functional network,
16 of them are located within 2 functional networks, and 3 of them are located inside 3 functional networks. (a) Working memory network (data set 2). White spheres represent
fMRI-derived benchmarks and yellow spheres represent corresponding DICCCOLs. The distances between centers of fMRI benchmarks and DICCCOLs are shown in the bottom
panel, in which the horizontal axis indexes activations and the vertical axis is the distance in the unit of millimeter. Each bar represents the median (interface between the red and
yellow bars), minimum and maximum value (2 ends of the white line), 25% (bottom of the red bar), and 75% (top of the yellow bar) of the distances for each fMRI activation
peak. The average distance is 6.07 mm (b--i) results for default mode (data set 1), auditory (data set 4), semantic decision making (data set 1), emotion (data set 1), empathy
(data set 1), fear (data set 1), attention (data set 3), visual networks (data set 4), respectively. In b--i, white spheres stand for fMRI benchmarks and other colors represent
corresponding DICCCOLs. The average distances between centers of fMRI benchmarks and DICCCOLs in these networks are 5.50, 6.48, 6.25, 6.12, 6.41, 5.93, 5.94, and 7.59
mm, respectively.
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landmarks and DICCCOLs are shown in the bottom panel, in

which the horizontal axis indexes activations and the vertical

axis is the distance in the unit of mm. Each bar represents the

median (interface between the red and yellow bars), minimum

and maximum value (2 ends of the white line), 25% (bottom of

the red bar), and 75% (top of the yellow bar) of the distances

for each fMRI activation peak. The average distances for the 9

functional networks are 6.07, 5.43, 6.48, 6.25, 6.12, 6.41, 5.93,

5.94, and 7.59 mm, respectively. On average, the distance is

6.25 mm. The results in Figure 7 demonstrate that the

DICCCOLs are consistently colocalized with functional brain

regions, and the DICCCOL map itself offers an effective

and quantitative representation of common functional cortical

architecture that is reproducible across subjects and

populations.

It is notable that due to the limited number of subjects

scanned in the task-based fMRI of the 8 networks, the dominant

DICCCOLs within those task-based networks displayed in

Figure 7 were acquired by using all the fMRI scans available

in data sets 1--4. To study the reproducibility of the mapping

between functional ROIs and the DICCCOL map, we used the

DMN as a test bed, since R-fMRI data were available in 3

independent groups (i.e., healthy adolescents [N = 26], healthy

adults [N = 53] and healthy elders [N = 23] from data set 4, see

Data Acquisition and Preprocessing for details). These data sets

have 102 subjects and cover a wide range of ages (see

Supplementary Table 1 for demographics). In particular, the

elders were scanned separately with 2 different sets of imaging

parameters, which provides an ideal evaluation of the

robustness of mapping functional ROIs onto DICCCOLs. Two

examples of the study results are provided in Supplementary

Figure 1, in which red spheres represent the predefined R-

fMRI-derived benchmarks and the blue ones are the DICCCOL

representations of these functional ROIs. Supplementary Figure

1a shows a cross-session comparison result for the same

subject with 2 repeated scans, while Supplementary Figure 1b

depicts the DICCCOL representations for 2 randomly selected

subjects. As we can see from the figure, the DICCCOLs have

a robust and effective representation of the ROIs in DMN

across imaging scans and different subjects.

The quantitative evaluations applied on the 4 different

subject groups are summarized in Table 2. There are 8 DMN

ROIs identified (Identification of Functionally Relevant Land-

marks via fMRI), corresponding to ROI#1~ROI#8 respectively

in Table 2. As we can see from the table, the dominant

DICCCOLs for the 4 independent groups are strikingly the

same, and the Euclidian distance from the dominant DICCCOLs

to the benchmarks is consistently small across the 4 in-

dependent subject groups, averaged at 5.43 ± 2.59 mm. Besides,

the 2 independent data sets from the elders (the first 2 panels

in Table 2) have similar results in terms of the mean distance

and variance. These results indicate that our DICCCOL

representation of functional ROIs is accurate, robust, consis-

tent, and reproducible in multiple multimodal fMRI and DTI

data sets across populations.

Comparison with Image Registration Algorithms

In addition, we performed a comparison study on the

functional localization accuracy by DICCCOL and FSL’s FLIRT

image registration (Jenkinson and Smith 2001) that was

performed on MRI images. Here, the fMRI-derived functional

landmarks were used as the benchmark data for comparison.

The image registration error was defined as the distance

between the linearly transformed fMRI peaks from individual

subjects in the MNI atlas space to the centers of these multiple

subjects’ transformed fMRI-derived peaks. Here, we used the

individualized activation peaks in 9 networks as the bench-

marks. The DICCCOL error is defined as the distance between

the dominant DICCCOL and benchmark. The comparisons for

the 9 brain networks are summarized in Table 3. Overall, the

average of the distance by our DICCCOL over 9 networks is

6.25 mm. The average FSL FLIRT linear image registration error

is 8.70 mm, which is 39% larger than that of DICCCOL. For

statistical comparisons of our DICCCOL method and the FSL

FLIRT, the P values were also calculated. As summarized in

Table 3, most networks have P value < 0.05. These comparison

results show that DICCCOL has superior localization accuracy

compared with the FSL FLIRT image registration strategy

(Jenkinson and Smith 2001).

Besides, we performed a comparison between our DICCCOL

method and other 3 different non-linear image registration

algorithms, including FNIRT (Andersson et al. 2008), ANTS

(Avants et al. 2008), and HAMMER (Shen and Davatzikos 2002),

using the fMRI-derived working memory ROIs as benchmarks.

The average localization errors by the 5 methods (FLIRT,

FNIRT, ANTS, HAMMER, and DICCCOL) are 8.17, 8.35, 8.19,

8.15, and 6.08 mm, respectively. The comparison results in

Supplementary Figure 2 indicate that these image registration

algorithms have similar performances in terms of the registra-

tion error from the benchmarks, and no one is superior to

others for all working memory functional ROIs. Importantly,

the result also shows that our DICCCOL method has superior

localization accuracy than these 3 nonlinear image registration

algorithms for functional ROI localization. Notably, these

compared image registration algorithms were originally

designed for anatomical alignments but not specifically for

functional ROI localization. If these image registration algo-

rithms take the advantage of multimodal data in the future,

their performances for functional ROI localization could be

substantially better than what was reported here.

Application

Human connectomes constructed via neuroimaging data offer

a complete description of the macroscale structural connec-

tivity within the brain (Hagmann et al. 2010; Kennedy 2010;

Table 2
Reproducibility study on DICCCOL representation of DMN ROIs for 4 subject groups

ROI ROI1 ROI2 ROI3 ROI4 ROI5 ROI6 ROI7 ROI8

DICCCOL ID 326 76 144 45 298 79 155 72
Distance: mean 4.20 4.44 3.81 4.40 4.32 6.96 8.63 5.00
Distance: SD 2.16 3.23 1.82 2.03 2.39 3.07 3.24 3.58

DICCCOL ID 326 76 144 45 298 79 155 72
Distance: mean 5.11 4.13 4.90 5.06 5.22 5.74 6.38 6.32
Distance: SD 1.65 2.32 2.90 2.52 2.37 3.22 3.43 3.55

DICCCOL ID 326 76 144 45 298 79 155 72
Distance: mean 5.12 5.32 4.51 5.25 5.35 6.39 4.45 5.80
Distance: SD 2.41 2.99 2.25 2.36 2.47 3.17 1.57 2.89

DICCCOL ID 326 76 144 45 298 79 155 72
Distance: mean 5.40 6.42 4.83 6.11 6.27 7.48 5.77 4.84
Distance: SD 2.13 3.40 1.77 2.16 2.74 3.22 1.97 2.13

Note: Each color represents a data set. From top to bottom are elderly group (N 5 23) in data set

4, the same elderly group with repeated R-fMRI scans in data set 4, adult group (N 5 53) in data

set 4, and adolescent group (N 5 26) in data set 4. Distances are measured in millimeter.
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Van Dijk et al. 2010; Williams 2010). Given the intrinsically

established correspondences across individuals, the 358 com-

mon DICCCOLs provide natural structural substrates for

assessments of large-scale structural and functional connectiv-

ities within the connectomes. Our general hypothesis is that

the structural and functional connectomes constructed via the

DICCCOLs have close relationships and are relatively consis-

tent across age populations. After predicting the DICCCOL map

in 3 age groups of adolescents (22 subjects), adults (44

subjects), and elders (23 subjects), we constructed large-scale

structural (by streamline fiber numbers, Zhang et al. 2010 and

Yuan et al. 2011) and functional (Pearson correlation between

representative fMRI signals after PCA transforms, Li et al. 2010)

connectivities of individuals in 3 age groups. It is noted that our

purpose is to map the structural fiber pathways among

DICCCOLs in healthy brains and we assume that there is no

significant difference in diffusivity along these pathways in

normal brains, which is the case in our experimental results.

Therefore, we used the number of fiber tracts as the

connection strength. Figure 8a--c and Figure 8d--f show their

structural and resting-state functional connectomes, respec-

tively. When comparing the structural connectomes across the

3 age groups, it is inspiring that the structural connectomes are

consistent across the 3 age groups. Specifically, as shown in

Figure 8j, there are around 74--80% common edges across 2 age

groups, and in particular, there are approximately 67%

common edges across all 3 age groups.

When comparing the resting-state functional connectomes

across the 3 age groups, it is also interesting that the resting-

state functional connectomes are also reasonably consistent

across these 3 age groups. Specifically, as shown in Figure 8k,

there are around 55--70% common edges across 2 age groups,

despite more functional connections in the adolescent group

(Fig. 8d--f). In particular, there are approximately 47% common

edges across all 3 age groups. We further examined the

relationship between structural and functional connectomes.

As shown in Figure 8g--i, for each age group, approximately

78% of the common functional connections (Fig. 8g--i) have

direct or indirect structural common connections, suggesting

the structural underpinnings of functional connectivities.

These results demonstrate that the DICCCOL representation

of common cortical architecture reveals common structural

and functional connectomes and their close relationship.

According to the above results, we demonstrated that there

is a deep-rooted regularity of cortical architectures among

healthy human brains (despite normal variation due to age

differences). Furthermore, the DICCCOL map can indeed

represent common cortical architecture and reveal common

structural and functional connectomes, as well as their close

relationships across human brains.

To compare the DICCCOL-based structural connectivity

mapping with that by the MNI atlas-based method, Supple-

mentary Figure 3a,b show the mapped structural connectivi-

ties obtained by these 2 methods, respectively. As

demonstrated in Supplementary Figure 3, the major advantage

of using DICCCOL for structural connectivity construction is

that this method offers finer granularity, better functional

homogeneity, more accurate functional localization, and

automatically established cross-subjects correspondence. For

instance, a single ROI at the gyrus scale in Supplementary

Figure 3b was represented by multiple DICCCOL ROIs with

finer granularity and more functional homogeneity. Meanwhile,

the overall structural connectivity patterns among the gyrus-

scale ROIs in Supplementary Figure 3b were also well

preserved in the DICCCOL-scale connectivity map in Supple-

mentary Figure 3a.

Discussion and Conclusion

As summarized in Figure 9, our data-driven discovery approach

has identified 358 DICCCOLs that are consistent and re-

producible across over 143 brains based on DTI data. Extensive

studies have shown that these 358 landmarks can be accurately

predicted across different subjects and populations. Our work

has demonstrated that there is deep-rooted regularity in the

structural architecture of the cerebral cortex, which has been

jointly and spontaneously encoded by the DICCCOL map. The

DICCCOL map has been evaluated by 4 independent multi-

modal fMRI and DTI data sets which consisted of 143 subjects

covering different age groups, that is, adolescent, adult, and

elderly. In total, 121 consistent and stable functional ROIs

derived from 8 task-based fMRI network (auditory, attention,

emotion, empathy, fear, semantic decision making, visual, and

working memory networks) and one R-fMRI network (DMN),

shown in Figure 9b--j, were used to functionally label the

predicted DICCCOLs for individuals. Our extensive experi-

mental results demonstrated that the DICCCOL representation

of functional ROIs is accurate, robust, consistent, and re-

producible in multiple multimodal fMRI and DTI data sets. The

advantage of the DICCCOL-based brain reference system in

comparison with brain image registration methods (see

Comparison with Image Registration Algorithms) has been

demonstrated by validation studies using fMRI-derived brain

networks. With the universal DICCCOL brain reference system,

different measurements of the structural and functional

properties of the brain, for example, morphological measure-

ments derived from structural MRI data and functional

measurements derived from fMRI data, can be reported,

integrated, and compared within the DICCCOL reference

system. For instance, we can report fMRI-derived activated

regions by their corresponding closest DICCCOL IDs, instead

of their stereotaxic coordinates in relation to the Talairach or

MNI coordinate system. This principled and universal DICC-

COL brain reference system could be an effective solution to

the widely recognized problem of ‘‘blobology’’ in fMRI research

(Poldrack 2011).

In a broader sense, the DICCCOL map provides a general

platform to aggregate and integrate functional networks from

Table 3
Comparisons of functional localization accuracies by DICCCOL and FSL FLIRT

WM DMN Visual Auditory Emotion Attention Fear SDM Empathy

DICCCOL 6.07 5.43 7.59 7.48 6.12 5.94 5.93 6.25 6.41
FLIRT 9.13 6.92 15.21 14.34 6.86 7.57 7.41 8.25 7.20
P value 1.30 3 10�05 1.52 3 10�03 3.57 3 10�06 5.35 3 10�05 2.25 3 10�01 6.65 3 10�08 4.62 3 10�02 2.34 3 10�03 2.58 3 10�01
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Figure 8. Structural and functional (resting-state) human brain connectomes. (a--c) Structural connectomes in adolescent (n 5 22), adult (n 5 44), and elderly (n 5 23) groups.
Each structural connectome is obtained by the averaged structural connectivity between each pair of DICCCOLs in each age group. The color bar at the bottom of c encodes the
number of streamline fibers (from 10 to 150). (d--f) Functional connectomes in the 3 age groups. Each functional connectome is obtained by the averaged functional connectivity
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different multimodal DTI and fMRI data sets to the universal

DICCCOL map, the sum of which can then be transferred to

a new separate individual or population via DTI data. For

instance, the functional labeling of a portion of the DICCCOLs

in an individual data set, for example, in Figure 9b--j, can be

readily transferred to the universal template space (Fig. 9a) and

then be propagated to other individual brains, as shown in

Figure 9k. In this way, specific functional localizations on the

DICCCOL map achieved in one multimodal fMRI and DTI data

set (e.g., Fig. 9b--j) can contribute to the same functional

localization problem in other brains, once DTI data, on which

the DICCCOL map prediction can be accurately performed, is

available (e.g., Fig. 9k). This common DICCCOL platform offers

an alternative approach and can be complementary to current

methods (e.g., Van Horn et al. 2004; Derrfuss and Mar 2009),

such that contributions from different laboratory can be

effectively integrated and compared.

The powerfulness of the DICCCOL map and its potential

impact on the brain science has been exemplified by its

application to the discoveries of structural and functional

human brain connectomes (Biswal et al. 2010; Hagmann et al.

2010; Kennedy 2010; Van Dijk et al. 2010; Williams 2010) in

various age populations. The idea of connectome was proposed

recently (Hagmann et al. 2005) to represent the notion that the

brain is a large network composed of neural connections

(edges) and neural units (nodes). It has attracted significant

interest (Biswal et al. 2010; Hagmann et al. 2010; Van Dijk et al.

2010) and efforts in an attempt to map the nodes and edges in

the brain at both individual and population level. Quantitative

mapping of the human brain connectome offers a unique and

exciting opportunity to understand the fundamental cortical

architecture. When mapping human brain connectomes, the

network nodes ROIs provide the structural substrates for

connectivity mapping. Thus, the determination of accurate and

reliable ROIs in different brains is critically important in human

brain connectome mapping (Liu 2011). In this paper, the 358

common, reliable, reproducible, and accurate DICCCOLs pro-

vide a natural choice of ROIs for human brain connectome

mapping. Because the 358 DICCCOLs were discovered and

defined by maximizing the group-wise consistency of ROIs’

white matter fiber connectivity patterns across a group of

subjects, the uncertainties and variations in the localizations of

between each pair of DICCCOLs in each age group. The color bar at the bottom of f encodes the average functional connectivity (from 0.45 to 0.8). (g--i) The percentages of
functional connections in d--f that are coincident with direct and indirect (up to 4 path lengths) structural connections, for 3 age groups, respectively. The horizontal axis
represents the threshold used to select the functional connection edges and the number of selected functional edges in the connectivity matrix, and the vertical axis is the ratio of
structural connections that are coincident with functional connections. Path length 1 (red curve) means direct structural connection between 2 DICCCOLs, while path length 2
(green curve), 3 (blue curve), and 4 (pink curve) represent 2--4 structural connection edges between 2 DICOOOLs. In particular, the black dotted curves in g shows that around
80% of functional connections in d in the adolescent group have direct or indirect structural connections. We can see similar black dotted curves in h and i for the adult and elder
groups. (j) Percentages of common structural connectome edges between 2 groups and across 3 groups. The horizontal axis stands for the thresholds used to select the
structural connection edges and the numbers of selected edges in the connectivity matrix, and the vertical axis is the ratio of common structural edges between 2 or 3 structural
connectivity matrices. (k) Percentages of common functional connectome edges between 2 groups and across 3 groups. The horizontal axis represents the thresholds used to
select the functional connection edges and the numbers of totally selected edges in the functional connectivity matrix, and the vertical axis is the ratio of common functional
edges between 2 or 3 functional connectivity matrices.

Figure 9. Summary of our approach and results. Spheres in orange (total 6), red (total 8), brown (total 9), pink (total 8), blue (total 27), yellow (total 14), cyan (total 14), purple
(total 16), and black-red (total 19) colors stand for landmarks in empathy, default mode, visual, auditory, attention, working memory, fear, emotion, and semantic decision making
networks that are identified from fMRI data sets. The green spheres (totally 263) stand for landmarks that are not functionally labeled yet. The DICCCOLs serve as structural
substrates to represent the common human brain architecture. For instance, 9 different functionally specialized brain networks (b--j) identified from different fMRI data sets are
integrated into the same universal brain reference system (a) via DICCCOL. Then, the functionally labeled DICCCOLs in the universal space can be predicted in each individual brain
with DTI data such that the DICCCOLs and their functional identities can be readily transferred to a local coordinate system (k).
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corresponding ROIs across different brains and populations are

substantially reduced. This principled approach of ROI de-

termination significantly facilitates the construction of reliable

and reproducible human brain connectomes. Importantly,

these 358 DTI-derived DICCCOLs turn out to be well

colocalized with functional brain regions determined by fMRI

data. Hence, the human brain connectomes constructed based

on the 358 DICCCOL ROIs reveal that there is deep-rooted

regularity of connectomes across human brains of different

ages and there is close relationship between structural and

functional connectomes.

Notably, there are several limitations in the current study

that should be addressed in future work. 1) In current stage,

only 358 DICCCOLs were discovered of the 2056 initialized

landmark candidates. This might reflect a combination of

factors including intersubject variability, the limited resolution

of DTI data, and the limitation of our DICCCOL discovery

procedure. In the future, more consistent DICCCOLs could be

possibly discovered via high-quality data and improved

computational approaches. For instance, one of our ongoing

works is to further improve the resolution of DICCCOLs via

high-angular resolution diffusion imaging data. Another possi-

ble improvement is to refine our optimization procedure. For

example, instead of using trace-map distance as main metric, in

the future, we can introduce more informative constraints such

as anatomical and functional homogeneity by which we could

discover more DICCCOLs. 2) We hypothesize that there exists

huge potential for the functional mapping of the DICCCOLs

since the fMRI tasks used in this paper were not originally

designed for this DICCCOL study. Although their applications

in the independent validation of functional correspondences of

DICCCOLs are meaningful and helpful, in the future, a system-

atic design of task paradigms should be considered to

comprehensively validate the functional identities of

DICCCOLs. 3) This work has demonstrated the close relation-

ship between the structure and function of the brain. However,

only the white matter fiber connectivity patterns were

considered in this work, and other potentially important

anatomic information such as cortical folding patterns, cortical

thickness, and MRI image intensity features was not used. It will

be interesting to study the correlations between those

anatomic features and DICCCOLs and investigate how the

combination of different structural features would influence

the functional ROI prediction. 4) It should be noted that, in this

paper, the DICCCOLs focuses on representing the common

cortical architectures. They can possibly serve as the founda-

tion for additional approaches to be developed and validated in

the future to represent the normal intersubject variability of

cortical architectures.

In the future, the DICCCOL map can be applied for the

elucidations of possible large-scale connectivity alterations in

brain diseases. Tremendous efforts have been made to examine

the hypothesized connectivity alterations in brain diseases, for

example, aberrant default mode functional connectivity has

been found in schizophrenia (SZ), mild cognitive impairment

(MCI) and post-traumatic stress disorder (PTSD) (e.g., Garrity

et al. 2007; Bai et al. 2008; Bluhm et al. 2009). In most studies,

connectivity alterations were only evaluated in one or a few

small networks in the human brain, for example, based on the

brain regions detected in a specific task-based fMRI (Atri et al.

2011; Yu et al. 2011) or resting-state fMRI (Greicius et al. 2004;

Sorg et al. 2007; Greicius 2008) scan. Due to the lack of dense

brain landmarks with correspondences across different brains

and the unavailability of extensive task-based fMRI data (i.e., it

is impractical for children or elder patients to perform

extensive tasks during neuroimaging scans), it has been very

challenging to map large-scale structural and functional

connectivities in brain diseases, even though a variety of brain

disease are hypothesized to exhibit large-scale connectivity

alterations (Supekar et al. 2008; Dickerson and Sperling 2009;

Seeley et al. 2009; Suvak and Barrett 2011). In the future, we

plan to apply the 358 DICCCOLs to construct large-scale

networks for the elucidation of widespread structural/func-

tional connectivity alterations for brain diseases such as SZ,

MCI, and PTSD.

In summary, the DICCCOLs representation of common cortical

architecture offers a principled approach and a generic platform

to share, exchange, integrate, and compare neuroimaging data

sets across laboratories, and thus we predict that public release of

our DICCCOL models (http://dicccol.cs.uga.edu) and the release

of DICCCOL prediction tools (http://dicccol.cs.uga.edu/dicccol.

tar.gz) could stimulate and enable many collaborative efforts in

brain sciences, as well as accelerating the pace of data-driven

discovery brain imaging science. For instance, different laboratory

can contribute their multimodal DTI and fMRI data sets to further

perform functional labeling and validation of those 358 DICC-

COLs in healthy brains and tailor them toward different brain

disease populations.
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Supplementary material can be found at: http://www.cercor.
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