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Normal listeners effortlessly determine a person’s gender by voice,
but the cerebral mechanisms underlying this ability remain unclear.
Here, we demonstrate 2 stages of cerebral processing during voice
gender categorization. Using voice morphing along with an
adaptation-optimized functional magnetic resonance imaging de-
sign, we found that secondary auditory cortex including the anterior
part of the temporal voice areas in the right hemisphere responded
primarily to acoustical distance with the previously heard stimulus.
In contrast, a network of bilateral regions involving inferior
prefrontal and anterior and posterior cingulate cortex reflected
perceived stimulus ambiguity. These findings suggest that voice
gender recognition involves neuronal populations along the auditory
ventral stream responsible for auditory feature extraction, func-
tioning in pair with the prefrontal cortex in voice gender perception.

Keywords: adaptation, auditory cortex, inferior prefrontal cortex, neuronal
representation, superior temporal sulcus

Introduction

Voice gender is easily and accurately perceived by normal

listeners (Childers and Wu 1991; Kreiman 1997), yet our brain’s

task is not as trivial as this ease of processing may suggest. The

fundamental frequency of phonation (F0, perceived as the

pitch of the voice) is highly variable within as well as between

individuals. Despite being on average lower by nearly an octave

in male compared to female voices, it shows considerable

overlap between male and female speakers (Hillenbrand et al.

1995) suggesting that additional cues, such as formant

frequencies (reflecting vocal tract length) as well as other

sexually dimorphic acoustical cues (Wu and Childers 1991), are

integrated. Yet the cerebral mechanisms underlying voice

gender perception remain unclear.

Perceptual after effects caused by adaptation to voice gender

have been observed using auditory adaptation techniques: brief

exposure to voices of a given gender (adaptation) biases the

perception of a subsequently presented gender-ambiguous

voice toward the gender opposite to that of the adaptor

(Mullennix et al. 1995; Schweinberger et al. 2008). Results from

these 2 behavioral studies suggest the existence of neuronal

populations involved in a plastic representation of voice

gender. Two neuroimaging studies also directly compared

activity elicited by male versus female voices, controlling for

acoustical features by manipulating the fundamental frequency

of the voices. Both studies suggested a right-hemispheric

involvement in the cerebral processing of voice gender and

report greater activity for female voices. Converging evidence

for the involvement of specific cortical regions, including the

temporal voice areas (TVAs), in voice gender recognition is,

however, still missing (Lattner et al. 2005; Sokhi et al. 2005).

This inability to find a persuasive link between localized

cortical activity and gender perception could potentially be

a consequence of the use of a subtraction approach, which

constrains the search to brain regions more sensitive to voices

of one gender over another. We suggest an alternative, more

physiologically plausible model: voice gender representation

could involve overlapping neuronal populations sensitive to

male or female voices. Assuming equal proportions of male- and

female-sensitive neurons in a given cortical area/voxel, the

subtraction of male- versus female-related cerebral activity

would fail to highlight them.

Here, we used an efficiency-optimized functional magnetic

resonance imaging (fMRI) adaptation (Grill-Spector and Malach

2001) paradigm called a continuous carryover design (Aguirre

2007) to explore this alternative hypothesis. We took

advantage of the recent development of audio morphing

techniques (Kawahara 2003, 2006) to generate voice gender

continua (Fig. 1a), providing 2 direct benefits over previous

studies: 1) all stimuli sounded like natural voices and 2)

changes in perceived gender can be examined at controlled

physical differences. Subjects were scanned in a rapid

event-related design while listening to voice stimuli drawn

from male--female voice gender continua and performing

a 2-alternative forced choice (2AFC) gender classification task.

The continuous carryover design allows to examine in an

optimally efficient way the repetition--suppression effect, that

is, the effect of one stimulus on the cerebral response of the

one presented immediately after. We used this adaptation

paradigm as a means to test the hypothesis that the perception

of male and female voices is carried out by overlapping

neuronal populations: in that case, the repeated presentation of

a male voice would be combined with a reduction of the

response signal and a ‘‘recovery from adaptation’’ would be

observed for a subsequently presented female voice. Further-

more, we examined the effects of stimulus differences based on

perceived gender independently of their acoustical differences,

providing a better understanding of the neural mechanisms

involved in higher level voice gender perception.

Materials and Methods

Participants
Twenty young adult participants (10 females, mean age = 25.4 ± 6.3

years) with no history of neurological or psychiatric conditions

participated in this study after giving written informed consent. The

study was approved by the ethical committee from the faculty of

information and mathematical sciences of the University of Glasgow.

Subjects were paid £12 for participating in this study.
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Stimuli
Recordings of natural male and female voice stimuli were used to

construct 9 voice gender continua via auditory morphing. These

recordings consisted of male (n = 3) and female (n = 3) adult speakers

uttering the syllables ‘‘had,’’ ‘‘heed,’’ or ‘‘hood,’’ taken from the database

of American English vowels described in Hillenbrand et al. (1995).

Three female--male pairs were constituted by randomly assigning each

female voice with a different male voice and were used to generate the

continua (3 voices per gender * 3 vowels). The morphing procedure

was performed using STRAIGHT (Kawahara 2003, 2006) in Matlab (The

MathWorks, Inc., Natick, MA). STRAIGHT performs an instantaneous

pitch-adaptive spectral smoothing in each stimulus to separate the

contributions of the glottal source (including F0) versus supralaryngeal

filtering (distribution of spectral peaks, including the first formant, F1;

Ghazanfar and Rendall 2008) to the voice signal. Voice stimuli are

decomposed by STRAIGHT into 5 parameters: fundamental frequency

(F0), formant frequencies, duration, spectrotemporal density, and

aperiodicity; each parameter can be independently manipulated.

Anchor points, that is, time--frequency landmarks, were identified in

each individual sound on the basis of landmarks easily recognizable on

each spectrogram. Temporal anchors were onset and offset of

phonation and burst of the ‘‘d.’’ Spectrotemporal anchors were first,

second, and third formants at onset of phonation, onset of formant

transition, and end of phonation. Using the temporal landmarks, each

continuum was equalized in duration (557 ms). Morphed stimuli were

then generated by resynthesis based on a logarithmic interpolation of

Figure 1. (a) Stimuli were voices derived from male-to-female voice gender continua. Example of a continuum where the physical interpolation was done with mix ratios
increasing by 15%. Superimposed on the continua is the average intensity level correction for each degree of morph derived from the pilot study on perceived loudness. The error
bars show the standard error computed from the average variation in intensity correction between the 9 different continua. (b) Voice gender psychophysical function: the group-
average proportion of female responses is shown as a function of the degree of morph. For panels b--e, the error bars show the standard error computed from the individual
subject’s classifications. (c) Reaction times: the group-average reaction times as a function of the voices’ degree of morph. (d) Reaction times: the group average reaction times
as a function of the physical difference with the previously heard stimulus. (e) Reaction times: the group average reaction times as a function of the perceptual difference with the
previously heard stimulus. (f) Illustration example for the definition of the parametric regressors: Spectrogram examples of 3 consecutive voices in the stimulation sequence.
Shown above the spectrogram is the voice’s respective degree of morph value and the physical difference with the previous stimulus. Shown below the spectrogram is the
voice’s perceptual value (for a given subject) and the perceptual difference with the previous stimulus. (g) Design matrix: the first row of the design matrix defines the stimulus
onsets for the 9 continua (each continuum separated by baseline trials). The following rows represent the parametric regressors included in the general linear model. The first
regressor models the first stimulation in a sequence. Since this stimulus is not preceded by another voice, we model it out of the regression. The second regressor models the
voice’s degree of morph. The third regressor models the physical difference between consecutive voices, and finally, the fourth regressor models the perceptual difference
between consecutive voices.
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female and male anchor templates and spectrogram in steps of 15%. We

thus obtained, for each of the 9 male--female original voice pairings,

a continuum of 7 voices ranging from 95% female (resynthesized

female stimulus) to 95% male (resynthesized male stimulus) with 7

gender-interpolated voices in 15% steps (95% female--5% male; 80%

female--20% male; . . .; 5% female--95% male; see Fig. 1a). Noteworthy,

interpolated voices sounded natural, that is, as if produced by a real

human being, as a result of the independent interpolation and

resynthesis of the source and filter components of the voices. We

further controlled for the potential contribution of differential

frequency distributions in male and female voices (i.e., greater energy

in higher frequencies for female voices) by matching all stimuli in

perceived loudness (Fig. 1a). Intensity correction levels were obtained

from a pilot experiment with 3 subjects, where each voice was

compared in terms of perceived loudness with a random voice selected

from the set of 63 voices. Examples of stimuli are provided as

supplementary audio files.

Stimulus Presentation

Stimuli were presented using Media Control Functions (DigiVox,

Montreal, Canada) via electrostatic headphones (NordicNeuroLab,

Norway) at a sound pressure level of 80 dB as measured using a Lutron

Sl-4010 sound level meter. Before they were scanned, subjects were

presented with sound samples to verify that the sound pressure level

was comfortable and loud enough considering the scanner noise.

Experimental Design and Task
We used a continuous carryover experimental design (Aguirre 2007).

This design allows measuring both the direct effects (effect of voice

gender) and the repetition suppression, which can be observed not only

in pairs of voices (like the typical fMRI adaptation experiments) but also

in the continuous modulation of response to voices presented in an

unbroken stream (i.e., the modulation of activity to a stimulus by the

preceding stimulus; Aguirre 2007). All voice gender continua (n = 9)

were presented in one single echo-planar imaging (EPI) run of 24 min.

The order of the continua was counterbalanced across subjects. The

stimulus sequence within a continuum was determined using an n = 8 (7

morph steps plus 1 silent null event) type 1 index 1 sequence (ISI: 2s

Nonyane and Theobald 2007), which shuffles stimuli within the

continuum so that each stimulus is preceded by itself and every other

within-continuum stimuli in a balanced manner. There were thus 8

repetitions of a stimulus per continuum. Each continuum sequence

lasted around 2.25 min (71 volumes) and the sequences for the different

continua were separated by a silent baseline of 18 s (9 volumes).

Task

Participants were instructed to perform a 2AFC voice gender

classification task using 2 buttons of an MR compatible response pad

(NNL technologies; button order counterbalanced across the subjects).

Reaction times (relative to sound onset) were collected using MCF

with a response window limited to the trial duration.

Magnetic Resonance Imaging

Localization of the TVAs (Functional Localizer Experiment)

A functional localizer of the TVAs was conducted for each subject. This

consisted of a 10 min fMRI scan measuring the activity in response to

either vocal or nonvocal sounds (Belin et al. 2000; Pernet et al. 2007)

using an efficiency-optimized design. The comparison of responses to

vocal and nonvocal sounds reliably highlights the TVAs: bilateral

auditory cortical regions presenting greater activity in response to

sounds of voice. Stimuli are available for download at http:\\vnl.psy.-

gla.ac.uk. The independent functional localizer was used in voxel

selection/region of interest (ROI) definition. Furthermore, its aim was

to identify whether statistical maps from the voice gender carryover

experiment overlapped with the TVA.

Continuous Carryover Functional Measurements

Blood oxygen level--dependent (BOLD) measurements were performed

using a 3.0-T Siemens TIM Trio scanner with a 12-channel head coil. We

acquired 668 EPI image volumes for the carryover experiment (32 axial

slices, time repetition [TR] = 2000 ms, time echo [TE] = 30 ms, flip angle

[FA] = 77, 3 mm3). The first 4 s of the functional run consisted of

‘‘dummy’’ gradient and radio frequency pulses to allow for steady state

magnetization during which no stimuli were presented and no fMRI

data collected. MRI was performed at the Centre for Cognitive

Neuroimaging (CCNi) in Glasgow, United Kingdom.

Anatomical Measurements

High-resolution T1-weighted structural images were collected in 192

axial slices and isotropic voxels (1 mm3; field of view: 256 3 256 mm2,

TR =1900 ms, TE = 2.92 ms, time to inversion = 900 ms, FA = 9�).

Statistical Analysis

fMRI Data Preprocessing

Data analysis was performed using Statistical Parametric Mapping (SPM8;

Welcome Department of Cognitive Neurology). All images were

realigned to correct head motion with the first volume of the first

session as reference. T1-weighted structural images were coregistered to

the mean image created by the realignment procedure and were used for

normalization of functional images onto the Montreal Neurological

Institute Atlas using normalization parameters derived from segmenta-

tion of the anatomical image. Finally, each image was smoothed with an

isotropic 8 mm full-width at half-maximum Gaussian kernel.

General Linear Model

EPI time series were analyzed using the general linear model as

implemented in SPM8. For each subject (first-level analysis), the

localizer and the voice gender tasks were modeled separately.

For the voice localizer, voices and nonvoices were modeled as events

using the canonical hemodynamic response function (HRF; SPM8), and

one contrast per stimulus type was computed. A ‘‘voice greater than

nonvoice’’ contrast was created for each subject, which was used at the

group level (second-level analysis) in a one-sample t-test to identify the

TVA (Fig. 2a).

For the voice gender task, the first analysis was to identify voxelwise

signal changes that reflect direct and carryover effects of the voice

continua. At the first level, each stimulus presentation (voice onsets)

was modeled using the canonical HRF and parametric regressions were

implemented using degree of morph (mix ratio, i.e., direct effect of

voice gender), physical difference (absolute difference in mix ratio

between 2 consecutive stimuli), and perceptual difference (absolute

difference in perceived femaleness between 2 consecutive stimuli

obtained from the behavioral task on an individual subject basis) as

covariates (Figs 1f,g and 2b,c). A regressor modeling the first voice

stimulation of each sequence was added in order to model the

carryover effect of a stimulus following baseline EPI acquisition, which

could potentially have added noise to the carryover effects. At the

second level (i.e., across subjects), a one-sample t-test was performed

on each regressor.

In order to visualize the parameter estimates related to the parametric

regressions described above, regression coefficients were extracted

using in-house Matlab (The MathWorks, Inc.) and SPM programs at the

peak voxel of the significant ROI (single subject level) from the

carryover analyses and the TVAs. The degree of morph, physical

difference, and perceptual difference regressors (after convolution)

were then multiplied by these coefficients. The between-subject average

regression functions and standard error of the mean were then

computed and are displayed in Figure 3 for each ROI and each

parametric regressor (Fig. 3—side panels). Noteworthy, the regression

coefficients for the parametric regressor modulating the perceived

difference were ‘‘binned’’ in steps of 25% to account for interindividual

differences in perceived gender and to allow averaging across subjects.

The inflated cortical surfaces used for displaying results in Figure 2 were

created using Caret (Van Essen C et al. 2001; Van Essen DC et al. 2001).

Behavioral Analysis
We computed a multiple regression to investigate the relative

contribution of the degree of morph, the physical difference, and the
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perceptual difference between consecutive stimuli on the reaction

times in individual subjects. The second order polynomial expansion of

these regressors (degree of morph, physical difference, and perceptual

difference) was included in our model. Regression coefficients were

obtained for each subject independently, and a percentile bootstrap

procedure was used on each parameter to test for between-subject

significant contributions. The percentile bootstrap test was computed

as follow: we sampled with replacement from the original distributions

of between-subject regression coefficients and calculated the mean of

each resampled distribution. This was performed 10 000 times and

lower and upper confidence boundaries were obtained from this

distribution of the bootstrapped means. The null hypothesis was

rejected on the significance level alpha = 0.05 if 0 was not included in

the two-tailed confidence interval.

Results

Behavioral Results

Behavioral results yielded the classical sigmoid-like psycho-

metric function from the gender classification task, with

a steeper slope at central portions of the continua (Fig. 1b).

The percentages of female identification were of 6.1% (±1.7%)
for the 5% female voice and 96.9% (±0.8%) for the 95% female

voice of the continua. The 50% ambiguous male--female voice

was identified as female 55.3 times of 100 (±3.9%). We

observed faster reaction times on average at the extremities

of the continua (801.8 ± 22.1 and 790.8 ± 20.7 ms) and

the ambiguous 50% male--female voices needed more time to

be classified on average (990.1 ± 30.6 ms; Fig. 1c). Because we

were interested in carryover effects of a voice on the

consecutive one, we computed the reaction times as a function

of physical difference between 2 consecutive stimuli (Fig. 1d).

For repeated consecutive voices (0% physical difference) or

clear gender change (90% physical difference), the reaction

times were 729.2 ± 23.5 and 717.9 ± 21.9 ms, respectively. On

the other hand, for consecutive voices with an intermediate

physical difference (45%), voice gender identification decisions

were slower to achieve (938.8 ± 23.9 ms). This effect was also

observed when computing the reaction times as a function of

perceptual difference between 2 consecutive stimuli (Fig. 1e).

For consecutive voices with low perceptual change (0--25%

perceptual difference) or clear perceptual change (76--100%

perceptual difference), the reaction times were 860.6 ± 21.9

and 840.8 ± 21.5 ms, respectively. On the other hand, for

consecutive voices with intermediate perceptual changes

(26--50% and 50--75%), voice gender identification decisions

were slower to achieve (928.1 ± 24.8 and 928.4 ± 25.4 ms).

Effect of Degree of Morph on Reaction Times

The between-subject contribution of the degree of morph

parameter on the reaction times was significant (P < 0.05;

average coefficient value = –40.86 [–69.64 –12.98]). This

indicates a significant longer response time for gender-

ambiguous voices on the continua.

Effect of Physical and Perceptual Difference on Reaction

Times

We also observed significant effects of the physical difference

(P < 0.05; average coefficient value = –128.98 [–165.66 –89.69])

and the perceptual difference (P < 0.05; average coefficient

value = 98.90 [69.11 128.89]) parameters on the reaction times.

Figure 2. (a) Inflated cortical surface depicting the TVAs in both hemispheres. Throughout Figure 2, the color bar depicts the statistical lower boundary and global maxima. (b)
Left: inflated cortical surface showing the activation map obtained with the physical difference regressor. Right: axial, sagittal, and coronal slices showing the TVAs (in blue) and
the effect of physical difference (in red). Note how the effect of physical difference overlaps with the anterior parts of the TVAs. (c) Inflated cortical surfaces showing the
activation maps for the perceptual difference regressor. On the 2 inflated cortical surfaces on the left, are shown the activity maps in the bilateral inferior frontal gyrus/insulae
(positive; color map red-to-yellow) and middle temporal gyrus (negative; color map dark-to-light blue). On the 2 right most inflated cortical surfaces is depicted the bilateral
activity maps for the anterior cingulate gyrus (positive; color map red-to-yellow) and precuneus (negative; color map dark blue-to-light blue).
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Altogether, this indicates an important influence of the pre-

viously heard voice on voice gender identification (Fig. 1d,e).

fMRI Results

Temporal Voice Areas

The TVAs identified by the independent functional localizer

were located as expected along the upper bank of the superior

temporal sulcus (STS); 3 clusters were identified surviving

a threshold of 6.5 (threshold T value for a P < 0.05 familywise

error [FWE] corrected, see Table 1 and Fig. 2a).

Effect of Voice Gender

As hypothesized by the overlapping neuronal population

model, the regressor modeling the degree of morph did not

reveal any regions showing greater activity to either one of the

continuum end points (P > 0.001, uncorrected, i.e., no

differences males vs. females). To further visualize this absence

of effect, parameter estimates are displayed in Figure 3a--c

(degree of morph panels).

Carryover Effect of Voice Gender Physical Difference

When analyzing the carryover effect, we observed significant

repetition suppression effects in the anterior portions of the

right STS, overlapping with the independently localized TVA

(Fig. 2b): in this region, the smaller was the physical difference

between stimuli, the lower/smaller was the BOLD signal T1,19 =
4.55, P < 0.05 (FWE-corrected cluster level; Fig. 3a, middle

panel; Table 3).

Carryover Effect of Voice Gender Perceptual Difference

We then investigated the effects of perceptual difference

between stimuli, included as an additional regressor in order to

examine variance not explained by the physical difference (in

the SPM design matrix, parametric regressors are orthogonal-

ized, thus because the perceptual difference was entered after

Figure 3. Parameter estimates and standard error for the contrasts investigated with the parametric regressors. (a) The parameter estimates for the anterior STS ROI in the right
hemisphere that we obtained from the physical difference regressor. (b) The parameter estimates for the bilateral inferior frontal gyrus, precuneus, and ACC that we obtained
from the perceptual difference regressor. (c) The parameter estimates for the left hemisphere posterior and anterior and right hemisphere posterior regions that we obtained from
the functional voice localizer.
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the physical difference, the effect observed corresponds to

variations in the BOLD signal than cannot be explained by

physical differences between stimuli—Fig. 1g). As we did for

physical difference, we searched for regions showing repeti-

tion--suppression effects, that is, linear decrease of BOLD

magnitude as the perceptual difference between consecutive

stimuli decreased. This linear regression yielded bilateral

effects in the inferior prefrontal cortices (IFGs), insulae, and

the anterior cingulate cortex (ACC) (Fig. 2c; T1,19 = 3.58, P <

0.001 [FWE-corrected cluster level]). Interestingly, the BOLD

signal magnitude as a function of perceptual difference

between consecutive stimuli followed, in these regions,

a quadratic polynomial expansion (Fig. 3b). When consecutive

stimuli were perceived as very similar or very different (bins 0--

25% or 76--100%), BOLD signal magnitude was lower than

when consecutive stimuli were involving the 50% ambiguous

voice (bins of 26--50% and 51--75%; Fig. 3b). This is in line with

the subject’s reaction times for which we observed an inverted

U-shaped function where the 50% ambiguous stimuli led to

slower voice gender decisions (Fig. 1c). We also observed

a modulation of the BOLD signal in the precuneus, with greater

(negative) magnitude for the 26--50% and 51--75% bins of

perceptual difference (Fig. 3b; Table 4).

Note that for illustration purposes, we have plotted the

parameter estimates for all of the regions that were observed in

the fMRI analyses described above (carryover effects and

functional localizer). For the degree of morph parameter, in

most of the ROIs, the shape of the average regression function

was flat, indicating the absence of effect of voice gender on the

magnitude of the BOLD response (albeit a trend for stronger

responses to male voices in the left posterior STS, which did

not reach statistical significance).

For the physical difference parameter, we observed a trend

for an increased magnitude of the BOLD signal as a function of

physical difference in the ROIs defined from the TVA localizer

and the precuneus and a decreased magnitude of BOLD signal

in the right IFGs/insulae (Fig. 3—physical difference panels).

Finally, for the perceptual difference parameter, we ob-

served a trend for a quadratic polynomial expansion of the

average regression function in the ROIs defined from the

temporal voice localizer and in the right anterior STS (aSTS)

(Fig. 3—perceptual difference panels).

Discussion

We used auditory morphing technologies to generate voice

gender continua in conjunction with a continuous carryover

design to investigate the cerebral correlates of voice gender

perception. Our aim was to disentangle between cerebral

processes related to voice gender (‘‘direct effect,’’ i.e., spatially

segregated neurons preferring male or female voices), voice

gender repetition suppression effects (overlapping populations

of male/female sensitive neurons), and higher order cognitive

voice gender perception processes.

Voice Gender Behavioral Effect

We observed a good identification of the male and female

portions of the continua, with slower reaction times on average

for the voice gender ambiguous portions in line with recent

behavioral data (Mullennix et al. 1995; Schweinberger et al.

2008). Furthermore, we observed a significant influence of

context on the perception of voice gender indicated by

Table 1
Acoustical properties of the continua

Utterance Proportion of
male voice (%)

F0
(Hz)

F1
(Hz)

F1 bandwidth
(Hz)

F2
(Hz)

F2 bandwidth
(Hz)

F3
(Hz)

F3 bandwidth
(Hz)

F4
(Hz)

F4 bandwidth
(Hz)

HNR
(dB)

Jitter
(ls)

Shimmer
(dB)

Low-frequency
energy (dB)

High-frequency
energy (dB)

Had 5 208 935 131 1630 202 2773 228 4348 351 19 0.57 0.68 42 35
20 192 902 129 1600 192 2749 226 4294 423 19 0.49 0.66 44 32
35 177 878 120 1558 183 2703 194 4196 572 19 0.42 0.6 43 32
50 163 851 103 1523 155 2661 183 4056 590 19 0.46 0.66 44 31
65 151 820 101 1488 157 2612 185 3882 626 18 0.6 0.73 44 31
80 139 801 111 1460 157 2568 158 3764 384 17 0.43 0.76 44 31
95 129 786 117 1427 161 2527 170 3690 305 15 0.57 0.69 44 31

Heed 5 211 729 95 1995 205 2914 206 4523 396 21 0.71 0.59 44 24
20 194 699 89 2003 177 2861 180 4545 342 21 0.65 0.54 44 25
35 178 671 84 1890 177 2730 173 4257 404 21 0.51 0.58 44 26
50 163 653 71 1916 190 2711 233 3933 2865 20 0.39 0.64 44 27
65 149 629 59 1860 186 2696 191 3754 1382 19 0.84 0.74 44 27
80 137 610 52 1817 154 2639 239 3799 902 18 0.56 0.77 44 28
95 126 592 43 1782 139 2574 209 3736 917 17 0.67 0.8 44 28

Hood 5 228 506 65 1332 102 2773 143 4381 366 28 0.38 0.49 44 21
20 207 508 80 1357 120 2724 138 4299 407 28 0.33 0.45 44 22
35 188 522 70 1340 140 2662 136 4161 380 27 0.58 0.48 44 23
50 171 511 54 1339 136 2590 143 3981 634 27 0.37 0.51 44 22
65 155 495 58 1342 163 2534 152 3783 534 26 0.44 0.62 44 22
80 141 499 80 1351 208 2488 165 3627 340 24 0.49 0.75 44 22
95 128 483 71 1365 251 2445 167 3502 267 24 0.48 0.64 44 22

Note: F0: fundamental frequency in hertz. F1--F4: frequency of the first to the fourth formant in hertz. HNR: harmonic-to-noise ratio in decibel. Jitter and Shimmer reflect variation of pitch and loudness

expressed in microseconds and decibel, respectively. The summed energy between 50 Hz--1 kHz (low-frequency energy in decibel) and 1--5 kHz (high-frequency energy in decibel) was computed from the

long-term average spectrum between 0 and 6700 Hz.

Table 2
Temporal voice areas

Voice [ nonvoice Coordinates (mm) T values P values Cluster size

x y z

Left
Mid-STG �60 �31 4 10.18 0.001 186
aSTS �51 �5 11 11.25 0.001 52

Right
Mid-STG 54 �28 4 12.93 0.001 289

Note: Whole-brain analysis. Clusters surviving a threshold of T [ 6.5 (FWE, P \ 0.05). STG,

Superior Temporal Gyrus.

Cerebral Cortex April 2013, V 23 N 4 963



changes in reaction times according to the physical difference

and perceptual difference between consecutive stimuli.

Absence of Female Voice Effect in the Brain

A surprising result of this study is the absence of a larger brain

response for female than male voices in the auditory cortex as

reported by previous studies (Lattner et al. 2005; Sokhi et al.

2005). We did not observe a single brain region showing

significant modulation of BOLD signal by the degree of morph

of the voice in one direction (an increase of signal coupled

with an increase of stimulus femaleness) or the other (an

increase of signal coupled with an increase of stimulus

maleness).

This difference could arise from differences in materials

between the previous reports and this experiment. The vocal

stimuli used in Lattner et al. (2005) and in Sokhi et al. (2005)

were a combination of at least 2 words, whereas we used

simple brief stimuli. Using a combination of words preserves

information relative to the temporal dynamics that is largely

absent from simple syllables, and the temporal dynamics of

a voice, part of the prosody, is an important cue to categorize

voice (Murry and Singh 1980; Andrews and Schmidt 1997).

Thus, a simple explanation in term of processing temporal

dynamics of the voice could partly justify the discrepancies

between our study and previous reports. Another potential

explanation of this result relies in the perceived loudness of the

voice. Because the formant frequencies and F0 are both higher

on average for female voices, female voices might be perceived

as louder than the male voices, thus resulting in a larger brain

activity (Langers et al. 2007). In the present study, the stimuli

were controlled for perceived loudness via a pilot experiment

in which subjects increased or decreased the intensity of the

voices when comparing to a randomly selected reference voice

from the stimulus set. Thus, using a well-controlled set of

stimuli in terms of loudness, duration, and temporal variation,

we did not replicate previous results showing larger activity for

female than male voices, suggesting that these differences

reflected more low-level differences than gender processing

per se.

Repetition Suppression as a Function of Physical
Difference

Lattner et al. (2005) and Sokhi et al. (2005) reported different

brain regions processing male and female voices in the human

brain. From a physiological point of view, it would make more

sense if a single brain region would process voice gender. Here,

we tested the hypothesis of overlapping neuronal populations

encoding voice gender in the auditory cortex and the TVAs by

including a regressor modeling the voice gender physical

difference of 2 consecutive voices in the stimulation sequence.

In an adaptation framework, 2 consecutive gender-similar

voices (low physical difference) should lead to a reduction of

BOLD signal. As the physical difference between 2 consecutive

voices increases, the 2 voices become more distinctive on

a gender basis (male or female) and recovery from adaptation

should increase. Our data showed a significant linear modula-

tion of BOLD signal in relation with increasing physical

differences as observed in Figure 3a in the right anterior

temporal lobe, along the upper bank of the STS.

Is the Right aSTS Voice Gender Specific?

Previous studies have shown the involvement of the anterior

part of the STS in an acoustic-based representation of sounds in

general (Zatorre et al. 2004; Leaver and Rauschecker 2010).

Hence, our results should be interpreted with care in terms of

voice gender selectivity. Indeed, fMRI adaptation results have

often proven to be more complex than assumed, and only

when combined with prior knowledge, perhaps some electro-

physiological evidence and great care can unequivocal inter-

pretations about domain specificity be put forward (for more

detailed discussions on the interpretations of fMRI and fMRI

adaptation results, see Grill-Spector et al. 2006; Krekelberg

et al. 2006; Logothetis 2008; Mur et al. 2010).

Here, we would like to argue that the repetition suppression

effects we observed in the anterior part of the right STS are

related to acoustical feature extraction related to voice

cognition, like previously shown for speaker identity (Imaizumi

et al. 1997; Belin and Zatorre 2003; Andics et al. 2010; Latinus

et al. 2011).

A recent study made use of cutting-edge multivariate pattern

analysis (MVPA) and fMRI to investigate whether an abstract

representation of a vowel or speaker emerges from the

encoding of information in the human temporal lobes. Using

spatially distributed activation patterns and a method based on

support vector machine and recursive feature elimination, they

were able to predict the nature (vowel or speaker) of the

stimulus heard by the listener. Furthermore, they investigated

the layout and consistency across subjects of the spatial

patterns that made this decoding possible. They observed

discriminative patterns distributed in early auditory regions and

in specialized higher level regions that allow prediction of the

nature of the stimuli. Noteworthy, they observed 3 clustered

regions along the anterior--posterior axis of the right STS from

which they could decode the speaker identity of the uttered

vowels (Formisano et al. 2008). Interestingly, the most anterior

right STS cluster in their discriminative maps resembles the

region that we report here.

Table 4
Effects of perceptual difference

Coordinates (mm) T values P values Cluster size

x y z

Left
IFG �33 20 4 5.73 0.001 186

Right
IFG 51 20 1 6.18 0.001 240
ACC �9 14 49 8.64 0.001 404
Precuneus �6 �55 19 6.03 0.001 347

Note: Whole-brain analysis. Clusters surviving a threshold of T [ 3.58 (FWE, P \ 0.05).

Table 3
Effects of physical difference

Coordinates (mm) T values P values Cluster size

x y z

aSTS 54 �7 �8 5.04 0.001 25

Note: Whole-brain analysis. Clusters surviving a threshold of T [ 3.58 (FWE, P \ 0.05).
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Sensitivity of Bilateral Inferior Frontal Gyrus and ACC to
Task-Relevant Perceptual Changes

We observed a significant modulation of BOLD signal with

perceptual differences between 2 consecutive items bilaterally

in the inferior frontal gyrus covering part of the anterior insulae

and in the ACC. This is consistent with recent voice perception

studies conducted in macaques (Romanski et al. 2005; Cohen

et al. 2006) and humans (Fecteau et al. 2005; Ethofer, Anders,

Erb, Droll, et al. 2006) in which an involvement of prefrontal

regions was reported.

More specifically, the inferior frontal gyrus was described to

be involved in abstract self-representations (Nakamura et al.

2001; Kaplan et al. 2008), vocal affect evaluation (Imaizumi

et al. 1997; Wildgruber et al. 2005; Ethofer, Anders, Erb,

Herbert, et al. 2006; Johnstone et al. 2006), decision making,

task difficulty, and attentional resources (Binder et al. 2004;

Heekeren et al. 2004; Heekeren et al. 2008). The ACC has also

been described to be involved in making decisions on highly

ambiguous questions (Botvinick et al. 1999) and response

competition/conflict (Carter et al. 1998; Kerns et al. 2004;

Wendelken et al. 2009).

The voice gender perceptual difference effect that we

observed involving bilateral IFG/insulae and the ACC is thus in

line with most of the research describing their role as a higher

cognitive function related to decision making, reasoning,

sorting ambiguous stimuli in difficult decisions, etc. The longer

reaction times and greater BOLD signal when presented with

the 50% ambiguous male--female voices provide evidence for

longer reasoning, increased attention, and more computation

for selection procedure when hearing gender-ambiguous

voices.

Finally, Andics et al. (2010) reported regions showing long-

term neural sharpening effects induced by the explicit

categorization feedback during training of voice identity

recognition. They interpreted this reduction of BOLD signal

as ‘‘trained category mean voice’’ representations, probably

involved in a longer term categorical representation of voice

identity (Andics et al. 2010). In a similar way, the prefrontal and

anterior cingulate regions, which showed BOLD signal reduc-

tions when 2 consecutive voices had peripheral perceptual

difference (either small or no change in voice gender or large

or complete gender change), could therefore also be an

indication of a long-term categorical representation of voice

gender.

The inverse pattern of activity that we observed in the IFG/

insulae and ACC was observed in the precuneus/posterior

cingulate cortex (Fig. 3b). One possible interpretation is in

terms of the ‘‘default network’’ (Shulman, Corbetta, et al. 1997;

Shulman, Fiez, et al. 1997; Raichle et al. 2001; McKiernan et al.

2003; Buckner et al. 2008). In this framework, the greater is the

stimulus complexity/ambiguity, reasoning necessity, task

demands, the more negative the BOLD signal is (Kalbfleisch

et al. 2007), consistent with our results.

Cerebral Organization of Voice Gender Perception

We observed an extraction of voice gender--related acoustical

features in regions overlapping with the TVAs (repetition

suppression as a function of physical difference—Figs 2 and

3—aSTS). This is in line with previous results where adaptation

to voice identity along the anterior portions of the STS was

reported (Belin and Zatorre 2003; Latinus et al. 2011). Recently,

the anterior STS has been described as carrying an ‘‘acoustic

signature’’ of sounds, in line with the processes of acoustic

feature extraction related to voice gender that we describe in

this experiment (Leaver and Rauschecker 2010). Second, we

observed higher level cognitive processes related to voice

gender perception in ACC/IFG/Insulae (repetition suppression

as a function of perceptual difference—Figs 2c and 3b).

We suggest that the activity observed in the prefrontal

cortex could be related to stimulus ambiguity and long-term

voice gender representations because ambiguous voices were

more difficult to rate as male or female, less categorically

defined as one or the other gender, thus requiring more energy

for decision making. Altogether, we suggest that the cerebral

processing of voice and voice gender involves multiple stages,

where acoustically relevant information is processed in the

anterior part of the STS followed by an involvement of the IFG

and ACC where higher level cognitive processes related to the

perception of voice characteristics influence the subject’s

decision making.
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