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Abstract
Objective—Cardiac manifestations of neonatal lupus, comprising atrioventricular conduction
defects and cardiomyopathy, occur in fetuses exposed to anti-Ro/SSA antibodies, and carry
substantial mortality. There is strong evidence of a genetic contribution to the risk. This study was
undertaken to evaluate single-nucleotide polymorphisms (SNPs) for associations with cardiac
neonatal lupus.

Methods—Children of European ancestry with cardiac neonatal lupus (n = 116) were genotyped
using the Illumina 370K SNP platform and merged with 3,351 controls. Odds ratios (ORs) and
95% confidence intervals (95% CIs) for association with cardiac neonatal lupus were determined.

Results—The 17 most significant associations with cardiac neonatal lupus were found in the
HLA region. The region near the MICB gene showed the strongest variant (rs3099844; Pdom =
4.52 × 10−10, OR 3.34 [95% CI 2.29–4.89]), followed by a missense variant within C6orf10
(rs7775397; Pdom = 1.35 × 10−9, OR 3.30), which lies between NOTCH4 and BTNL2, and several
SNPs near the tumor necrosis factor α gene, including rs2857595 (Padd = 1.96 × 10−9, OR 2.37),
rs2230365 (Padd = 1.00 × 10−3, OR 0.46), and rs3128982 (Padd = 6.40 × 10−6, OR 1.86). Outside
the HLA region, an association was detected at 21q22, upstream of the transcription regulator ets-

© 2010, American College of Rheumatology

Address correspondence and reprint requests to Robert M. Clancy, PhD, New York University Langone School of Medicine, 301 East
17th Street, New York, NY 10003. bobdclancy@aol.com.

The International Consortium on Systemic Lupus Erythematosus Genetics comprises lupus researchers who are dedicated to genetic
discoveries in systemic lupus erythematosus. Its members include John B. Harley, MD, Marta E. Alarcon-Riquelme, MD, Lindsey A.
Criswell, MD, MPH, Chaim O. Jacob, MD, PhD, Robert P. Kimberly, MD, Kathy L. Moser, PhD, Betty P. Tsao, PhD, Timothy J.
Vyse, MA, MRCP, PhD, and Carl D. Langefeld, PhD.

AUTHOR CONTRIBUTIONS
All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the
final version to be published. Dr. Clancy had full access to all of the data in the study and takes responsibility for the integrity of the
data and the accuracy of the data analysis.
Study conception and design. Clancy, Langefeld.
Acquisition of data. Kaufman, Adler, Harley, Buyon.
Analysis and interpretation of data. Marion, Ramos, Langefeld.

NIH Public Access
Author Manuscript
Arthritis Rheum. Author manuscript; available in PMC 2013 March 11.

Published in final edited form as:
Arthritis Rheum. 2010 November ; 62(11): 3415–3424. doi:10.1002/art.27658.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



related isoform 1 (rs743446; P = 5.45 × 10−6, OR 2.40). HLA notwithstanding, no individual locus
previously implicated in autoimmune diseases achieved genome-wide significance.

Conclusion—These results suggest that variation near genes related to inflammatory and
apoptotic responses may promote cardiac injury initiated by passively acquired autoantibodies.

Since the first reports of congenital heart block as an autoimmune disease published >30
years ago (1–3), the consistency with which the presence of maternal antibodies directed
against components of the Ro/SSA–La/SSB RNP complex has been demonstrated is
remarkable. Injury to the fetal heart most often occurs during weeks 18–24 of gestation and
is presumed to be dependent on IgG transport by neonatal Fc receptor of maternal IgG
autoantibodies (4,5). Maternal health status accompanying the production of the putative
autoantibodies is not a risk factor for fetal disease, since many mothers are clinically
asymptomatic at the time heart block is detected, and only then are antibodies sought and
identified (6). Although advanced conduction abnormalities are the signature phenotype of
cardiac neonatal lupus, the spectrum of injury can extend to the myocardium and
endocardium (7,8). Third-degree block is not reversible and carries a significant risk of
mortality (20–30%, primarily fetal and neonatal) and morbidity (with >60% of surviving
children requiring permanent pacing before adulthood) (9).

Fetal exposure to maternal anti-Ro/SSA antibodies is a necessary but not sufficient
condition for cardiac neonatal lupus. Three prospective studies of women with the candidate
antibodies have estimated the risk of cardiac neonatal lupus to be 2% if the mother has had
no previously affected pregnancies (10–12). Accordingly, other factors must be required to
promote cardiac injury. Evidence of a fetal genetic factor in the development of cardiac
disease is empirically supported by an estimated recurrence rate in subsequent pregnancies
that is ~10-fold higher than the risk to the anti-Ro/SSA–positive mother with no affected
children (13). The estimated sibling recurrence risk ratio, λs, is ~3,000; that is, siblings of
affected infants have a 3,000 times higher risk than the population prevalence of cardiac
neonatal lupus per se, which is ~1:15,000 live births (14–16). Since the maternal anti-Ro/
SSA antibodies are required for disease expression, conditioning on maternal anti-Ro/SSA
antibodies yields a λs of ~10. Although supportive, data on concordance in monozygotic
twins are very limited. Of 6 twin sets in which maternal anti-Ro/SSA antibodies were
reported to be present and monozygosity stated, 2 (33%) were concordant for cardiac
neonatal lupus (9,17–20).

We posit that genetic polymorphisms influence the fetal response to maternal
autoantibodies. Herein, we report the first genome-wide association study in children with
cardiac neonatal lupus associated with maternal anti-Ro/SSA antibodies. The identification
of fetal genes predisposing to cardiac scar might provide insight into the pathogenesis of the
disease and delineate risk profiles.

PATIENTS AND METHODS
Patients

All cases included in this study (n = 116) were members of families enrolled in the US-
based Research Registry for Neonatal Lupus (RRNL) (9). A fetus, neonate, or child was
considered to have cardiac neonatal lupus if the following criteria were met: 1) the presence
of a conduction defect (first-degree, second-degree, or third-degree heart block) documented
by electrocardiogram (EKG) (in the case of first-degree block, a prolonged PR interval
detected solely by in utero echocardiogram was insufficient), echocardiogram, history of
pacemaker, or statement in the medical record; and/or presence of cardiac injury which
specifically included autopsy evidence of a mononuclear infiltrate in the endocardium,
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myocardium, and pericardium; and/or endocardial fibroelastosis on echocardiogram always
associated with cardiac dysfunction and 2) presence of antibodies to the 52-kd Ro/SSA, 60-
kd Ro/SSA, or 48-kd La/SSB RNPs in the maternal serum, as determined by enzyme-linked
immunosorbent assay using recombinant proteins or by a commercial laboratory (90% of
cases were tested in the research laboratory of JPB and RMC). The 116 cases with cardiac
neonatal lupus were compared with 3,351 Caucasian controls genotyped on the Illumina
HAP300 SNP chip (~317,000 single-nucleotide polymorphisms [SNPs]) from the
Consortium on Systemic Lupus Erythematosus (SLE) Genetics (21).

Genotyping
Genomic DNA samples (750 ng) isolated from RRNL cases (described above) were
genotyped on the Illumina BeadStation 500GX following standard manufacturing protocols.
Initially, 77% of the samples were genotyped on the Illumina HumanCNV370-Duo_v1 array
(370,404 SNPs), and 23% of the samples on the Illumina HumanCNV370-Duo_v3 array
(373,398 SNPs). There were 346,110 SNPs common to the HumanCNV370-Duo_v1 and
HumanCNV370-Duo_v3 arrays (92.7% overlap). Genotypes were called using the Illumina
BeadStudio 3.1 software package using previously generated cluster positions generated by
Illumina. Only samples with genotype call rates >93% were included in the genome-wide
association analysis. Cluster plots of the strongest associated SNPs were examined for
genotype calling quality.

Autoimmune disease loci
A set of 374 SNPs on the Illumina 317K SNP chip that had previously been implicated as
being associated with autoimmune diseases were identified from published genome-wide
association studies; 207 of these passed our statistical quality control standards. The
published genome-wide scans that were reviewed had data on ≥100,000 SNPs and are
available from the National Human Genome Research Institute’s Catalog of Published
Genome-Wide Association Studies (www.genome.gov/gwastudies) (22). All SNPs
considered were reported to have a P for association value of less than 1.0 × 10−5 or were
explicitly highlighted by the authors.

Statistical analysis
Admixture and SNP statistical quality control—To account for the potential
confounding influences of population substructure, a principal components analysis (PCA)
was computed using all SNPs with <5% missing data, no differential missingness between
cases and controls (P < 0.05), no significant departures from Hardy-Weinberg equilibrium
expectations (P < 0.0001 for cases and P < 0.01 for controls), and minor allele frequency
>0.05. Due to the complexity of performing a PCA on >300K SNPs in ~3,500 individuals,
recent advanced numerical algebraic techniques were used to reduce computation time
(23,24). Velicer’s algorithm (25) and the Tracy-Widom test (26,27) were used to identify the
number of principal components. The association analyses (described below) were
computed adjusting for the first 3 principal components from this analysis. At the outset of
our study, genome-wide analysis was performed on 120 cardiac neonatal lupus cases. Four
individuals were removed due to relatedness (1 of each of 4 pairs of siblings).

Association analysis—Testing for association was completed using the program
SNPGWA (www.phs.wfubmc.edu). For each SNP, missing data proportions for cases and
controls, minor allele frequency, and exact tests for departures from Hardy-Weinberg
equilibrium were calculated. The following 5 tests of genotypic association were computed:
2df overall test for 2 × 3 tables, dominant model, additive model (Cochran-Armitage trend
test), recessive model, and lack-of-fit to an additive model. The genetic model and odds
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ratios (ORs) are defined relative to the minor allele. At least 10 individuals who were
homozygous for the minor allele were required before computing the recessive model. The
primary inference for this study was based on the additive genetic model, unless the lack-of-
fit to an additive model was statistically significant (P < 0.05). When the lack-of-fit test was
significant, then the minimum P value from the dominant, additive, or recessive models was
used. ORs, 95% confidence intervals (95% CIs), and P values were calculated for all
models.

RESULTS
The 116 cardiac neonatal lupus cases and 3,351 out-of-study controls were all of self-
reported Caucasian ancestry (Table 1), which was consistent with the PCA. The case group
was 51.7% female, and the control group was 65.7% female. Advanced heart block was
present in 96% of the cases. PCA suggested adjusting for 3 principal components. Adjusting
for these 3 principal components accounted for 9.8% of the genetic variation. To examine
the inflation of the test statistics due to potential sources of bias (e.g., population
substructure), the chi-square value from the additive genetic model adjusting for these 3
principal components via logistic regression was compared with its theoretical mean of 1.
An inflation factor of 1.026 was observed, suggesting little evidence of inflation in the test
statistic. Similarly, the Q–Q plot provided no evidence of systematic bias (Figure 1).

Combined association results for the entire genome are shown in Figure 2. The 17 SNPs
with the most significant associations resided in the HLA region at 6p21.3. As indicated by
the farthest outlier in the Q–Q plot (Figure 1), the strongest association across the entire
genome was found at rs3099844 (Pdom = 4.52 × 10−10, OR 3.34 [95% CI 2.29–4.89]), which
lies in a region of copy number variation (http://projects.tcag.ca/variation). Interestingly,
rs3099844 is near the class III major histocompatibility complex (MHC) region and 94 kb
from the tumor necrosis factor α (TNFα) gene, which contains a polymorphism rs1800629
(SNP not genotyped) that is associated with cardiac neonatal lupus (Figure 3). (See
Supplementary Table 1, available on the Arthritis & Rheumatism Web site at http://
www3.interscience.wiley.com/journal/76509746/home, for a list of the most significant
associations with cardiac neonatal lupus in the HLA region.)

The rs3099844 polymorphism is also near several flanking variants in the NFKBIL1–LTA–
TNF–LTB–AIF1 region, including a signal that is located between the NCR3 and AIF1
genes (rs2857595; Padd = 1.96 × 10−9, OR 2.37 [95% CI 1.79–3.14]). In addition, within this
region, there is evidence suggestive of association (rs2230365; P = 1.00 × 10−3, OR 0.46
[95% CI 0.29–0.74] and rs3128982; P = 6.40 × 10−6, OR 1.86 [95% CI 1.41–2.43]). Outside
of the NFKBIL1–LTA–TNF–LTB–AIF1 region, there is an intronic variant in HLA class III
in the MSH5 gene, which is the next strongest association in this region (rs3131379; Padd =
3.95 × 10−9, OR 2.59 [95% CI 1.89–3.56]).

Within HLA class I, associated regions included PSORS1C1 (rs3130544; P = 1.94 × 10−7,
OR 2.77 [95% CI 1.89–4.07]) and missense mutations within transcription factor 19
(TCF19) (rs7750641; Pdom = 1.58 × 10−7, OR 2.79 [95% CI 1.90–4.09]). The most
centromeric side of the class I region contains a variant in proximity to the RING-finger
protein 39 (RNF39) (rs9261290; Pdom = 1.58 × 10−7, OR 2.65 [95% CI 1.79–3.93]). Within
HLA class II, there was a significant association between cardiac neonatal lupus and a
missense variant within C6orf10 (rs7775397; Pdom = 1.35 × 10−9, OR 3.30 [95% CI 2.24–
4.86]), which lies between NOTCH4 and butyrophilin-like protein 2 (BTNL2) in the class
III–class II boundary.
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Outside the HLA region, an interesting association was observed between rs743446 (21q22)
and cardiac neonatal lupus, near ets-related isoform 1 (ERG) (Prec = 5.45 × 10−6, OR 2.4
[95% CI 1.64–3.49]; minor allele frequency 0.64 in cases and 0.49 in controls) (Table 2).
Importantly, flanking SNPs were noted. Although they were not within the top 200
statistical associations, the multiple SNPs in proximity to rs743446 were within an extensive
linkage disequilibrium block providing weak evidence of association (P < 0.005) (see
Supplementary Table 2, available on the Arthritis & Rheumatism Web site at http://
www3.interscience.wiley.com/journal/76509746/home).

Associations outside the HLA region were also noted at rs2403106 (12q21; Padd = 2.62 ×
10−6, OR 2.48 [95% CI 1.70–3.61]) and rs1391511 (10p15; Padd = 6.6 × 10−6, OR 1.84
[95% CI 1.41–2.4]). Neither of these polymorphisms was in proximity to any known genes
or structural variation. Also, rs1890645, in a region of a known copy number polymorphism,
was associated with cardiac neonatal lupus (1q31; Prec = 3.52 × 10−6, OR 2.98 [95% CI
1.88–4.73]).

Given that this sample is the world’s largest for any genetic study of cardiac neonatal lupus
and the only genome-wide association study, it is important to highlight some suggestive
associations that others might use to attempt more focused association studies (see
Supplementary Table 1, available on the Arthritis & Rheumatism Web site at http://
www3.interscience.wiley.com/journal/76509746/home). In the context of the functional
category of cell adhesion, SNP rs2432143 is within an intron of ITGA1 at 5q11 (Pdom = 4.5
× 10−5, OR 2.31 [95% CI 1.54–3.45]). Within 1p34.2, rs9960 (Padd = 1.2 × 10−5, OR 1.94
[1.44–2.62]) is in the region containing the erythroblast membrane–associated protein
(ERMAP), a gene that also plays a role in cell adhesion. In proximity to the CD200 cell
surface glycoprotein receptor 2 (CD200R1L) resides rs6438101 (3q13.2; Prec = 2.5 × 10−5,
OR 2.29 [95% CI 1.56–3.36]). In a group related to membrane potential, at 1q43, rs1072319
and rs1578180 are 2 SNPs at an intron of the cholinergic receptor, muscarinic 3 (CHRM3),
with suggestive associations at Prec = 7.4 × 10−4 (OR 3.2 [1.63–6.4]) and Prec = 7.8 × 10−4

(OR 3.22 [1.63–6.37]), respectively.

SNP rs6767890, a candidate involving lipid metabolism, was associated with cardiac
neonatal lupus (3p24; Pdom = 1.2 × 10−5, OR 2.25 [95% CI 1.54–2.30]) and is within the
raft-linking protein (RFTN1). RFTN1 is expressed in B cells, may regulate B cell antigen
receptor–mediated signaling, and may be important in the formation and maintenance of
lipid rafts. With regard to a function of signal transduction, an example is rs1913342, which
is located at locus 1q42, within intron 1 of CDC42BPA (Prec = 6.55 × 10−4, OR 4.12 [95%
CI 1.81–9.23]). Also within this group, SNP rs3746314 (19q12; Pdom = 1.3 × 10−5, OR 2.37
[95% CI 1.61–3.48]) is near the Pleckstrin homology domain-containing family F member 1
(PLEKHF1) gene, an apoptosis-inducing protein gene that is expressed in the heart and
placenta. In a category of candidates with unknown function, the SNP rs29911 (5q15; Padd =
1.2 × 10−5, OR 2.17 [95% CI 1.53–3.07]) is in the region containing KIAA0825 and is
located in a known copy number region. At 21q22.3, a variant is in proximity to WD repeat
domain 4 protein (WDR4) (rs2839586; Prec = 2.0 × 10−4, OR 4.63 [95% CI 2.04–10.53])
and rs2839597 (11 kb downstream from rs2839586, in the promoter region of WDR4) (Prec
= 9.5 × 10−4, OR 3.94 [95% CI 2.08–9.68]).

To test whether polymorphisms implicated in other autoimmune diseases might influence
the risk for cardiac neonatal lupus, 204 SNPs reported in genome-wide association studies of
autoimmune diseases that passed our quality control filters were screened for evidence of
association (Table 3). (For additional data, see Supplementary Table 3, available on the
Arthritis & Rheumatism Web site at http://www3.interscience.wiley.com/journal/76509746/
home.) Not surprisingly given the overall sample size, the data did not support a significant
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association of any previously described autoimmune-associated polymorphisms with cardiac
neonatal lupus. The highest association was displayed by 3 SNPs in the IRF5 region, which
is one of the genes with a most robustly established association with SLE (21) (rs10239340;
Padd = 2.40 × 10−3, OR 0.64 [95% CI 0.48–0.85]). It is interesting to note that if the
autoimmune disease loci do not correlate with cardiac neonatal lupus, then the expected
inflation factor for these loci should coincide with that of the rest of the genome (i.e., 1.01).
However, the observed inflation factor for the autoimmune-associated SNPs was
significantly larger (i.e., 1.22; P < 0.03), suggesting collectively an enrichment of
association with these loci. Whether this pattern reflects maternal enrichment of these risk
variants and/or cardiac neonatal lupus loci requires further study. As noted above and
consistent with many autoimmune diseases, the HLA region contained several strong
associations (Figure 3 and Supplementary Table 1, available on the Arthritis & Rheumatism
Web site at http://www3.interscience.wiley.com/journal/76509746/home).

DISCUSSION
Through the application of genome-wide association methods and subsequent replication
studies, it is anticipated that validated markers will emerge that can be used as novel
diagnostic and prognostic tools for risk stratification in counseling mothers with anti-Ro/
SSA antibodies. In this first genome-wide association study of 116 Caucasian children with
cardiac neonatal lupus, the most strongly associated variants (MICB region at class I,
NFKBIL1–LTA–TNF–LTB–AIF1 at class III, and C6orf10 at class II) were found in the
MHC region, a locus with extensive linkage disequilibrium. Outside the HLA locus, an
association was identified at locus 21q22, 22 kb upstream of ERG. With the exception of the
HLA region, no locus previously implicated in autoimmune diseases was found to have
genome-wide significance in children with cardiac neonatal lupus.

In recent genome-wide association studies of SLE patients, the most significant association
was found in the HLA region at 6p21.3. In this 7.05-Mb region, 93 SNPs had a P value of
less than 10−6, a result which represents the long-range linkage disequilibrium related to the
extended HLA–A1;B8;DR3 haplotype (28). The association of this extended haplotype with
the generation of antibodies to Ro/SSA and La/SSB in the context of Sjögren’s syndrome
and SLE has been consistently demonstrated (29,30). The class III TNFα polymorphism at
position −308 (TNFα, rs1800629, TNFα –308A polymorphism-TNF2 allele,
proinflammatory), which is also part of the extended haplotype, is associated with a number
of autoimmune diseases, including Sjögren’s syndrome (31), SLE (32), subacute cutaneous
lupus erythematosus (33), rheumatoid arthritis (34), and ulcerative colitis (35). In earlier
limited studies of families enrolled in the RRNL (36), the TNF2 allele was significantly
overrepresented in the mothers as well as the affected and unaffected siblings compared with
healthy controls. The present study corroborated these findings in children with cardiac
neonatal lupus. Specifically, 2 SNPs, which are in proximity to rs1800629, reached genome
wide-significance (rs3099844 [Pdom = 4.5 × 10−10] and rs2857595 [Padd = 1.96 × 10−9]).
Notably, there is strong linkage disequilibrium between rs3099844 and rs1800629 (r2 =
0.64) and between rs2857595 and rs1800629 (r2 = 0.86). What is yet to be established is
whether the HLA candidates reflect the inheritance of maternal associations expected in
women with anti-Ro/SSA and anti-La/SSB antibodies. Association analysis in these families
using the transmission disequilibrium test (TDT) will help to elucidate this relationship.

The genetic factors may represent a dual hit by differentially influencing disease in this
maternal/fetal dyad. On the maternal side the genes promote the necessary autoantibodies,
and on the fetal side the genes promote tissue inflammation in a permissive in utero
environment, e.g., hypoxia. The functional biology is supported by an in vitro model of

Clancy et al. Page 6

Arthritis Rheum. Author manuscript; available in PMC 2013 March 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www3.interscience.wiley.com/journal/76509746/home


cardiac neonatal lupus in which TNFα was secreted by macrophages cocultured with anti-
Ro/SSA–bound human fetal cardiocytes (37).

The identification of associations with HLA class I genes in the present study is consistent
with the results of a prior study of 40 children with cardiac neonatal lupus that revealed an
enrichment of HLA-Cw7 (38). HLA-Cw7 is inclusive of the PSORS1 region (which is
associated with psoriasis [39]). In the present study, associations in this region were found
for rs3130544 and rs7750641. The functional effects of these candidate genes within
PSORS1 may relate to stimulation of receptors for class I MHC and dysfunction of natural
killer (NK) or T cell self tolerance. A combination of class I MHC and ligand (on NK or T
cells) may augment susceptibility to autoimmune injury during pregnancy.

Cardiac neonatal lupus was also associated with non-HLA regions, including loci at 21q22,
12q21, 1q31, and 10p15. A cluster of associated SNPs at 21q22 is in proximity to ERG-
ETS2/WDR4. ERG is a transcription factor that serves as a “brake” to both apoptosis and
inflammation, components previously described in the cascade to injury and replacement of
the atrioventricular node by fibrosis (36,40,41). Yi and coworkers demonstrated that ERG
protects fibroblasts against apoptosis induced by serum deprivation (42). Recently, Yuan
and coworkers demonstrated that ERG plays a role in repressing the expression of
interleukin-8 (IL-8) (43), a mediator of inflammatory cell accumulation produced by
numerous cell types, including macrophages and fibroblasts. In addition, it has been
demonstrated that ERG plays a role in augmenting the expression of transforming growth
factor β (TGFβ) receptor type II (44). Thus, a polymorphism associated with low expression
or diminished function of the encoded protein may represent the absence of a needed
protective factor for fetuses exposed to maternal anti-Ro/SSA antibodies.

In psoriasis, risk alleles also reside at non-HLA genes such as chromosomes 1 and 5 (45),
which include IL23R and IL13, respectively. Although they did not reach genome-wide
significance, SNPs associated with each of these genes were associated with cardiac
neonatal lupus. IL-13 is a prototypic Th2 cytokine that is also strongly profibrotic. Mice
deficient in IL-13 are protected against a fluorescein isothiocyanate–induced model of lung
fibrosis, and IL-13 can stimulate fibroblast collagen production independently of TGFβ (46).
However, it has recently been demonstrated that signaling through IL-13Rα2, initially
thought to be a decoy receptor for IL-13, results in the production of TGFβ (47). Moreover,
in vivo gene silencing of IL-13Rα2 using small interfering RNA attenuates bleomycin-
induced lung fibrosis, with decreases in TGFβ1 secretion and collagen formation (48).

In this passively acquired autoimmune disease, with the exception of HLA, there were no
significant genome-wide associations with identified polymorphisms that have been
implicated in other autoimmune diseases, such as SLE, in which there are genetic
contributions relating to dysfunction of the acquired immune system. Overall, however,
there was an inflation factor of 1.22 for these autoimmune SNPs in cardiac neonatal lupus,
compared with an inflation factor of 1.01 for the entire genome. Specifically, the enrichment
of a variant of IRF5 is intriguing, and the variation at 7q32 has attracted a substantial
amount of attention (21). However, it is acknowledged that maternal inheritance may
account for some of these genes for which the associations are just below the level of
significance. There are several possible and non–mutually exclusive interpretations. First,
the associations may simply reflect the maternal enrichment of the genome for
autoimmunity risk alleles, given the autoantibody state of the mother. Second, there may be
an enrichment in autoimmunity-predisposing risk alleles in children with cardiac neonatal
lupus independent of the maternal state. Third, there may be no significant enrichment,
consistent with the relative immaturity of the human fetal immune system, which relies
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almost exclusively on adaptive maternal immunity, and the genetic contribution to cardiac
injury may be restricted to the innate immune system and tissue reactivity.

These data require careful consideration and recognition of their inferential limits. As
discussed above, maternal inheritance may be a limitation. Specifically, at 6p21, it is
difficult to distinguish whether inheritance reflects transmission of genes related to maternal
autoimmunity or whether these genes represent enrichment of genes that are biologically
important. TDT will be informative. The limited power of the study is another limitation.
However, the strength of the study is in the precise clinical phenotyping of the cases, with
96% having advanced atrioventricular block, the most characteristic cardiac manifestation
associated with maternal anti-Ro/SSA antibodies. Given the rarity of the disease, the study
included 4 cases of first-degree block, persisting after birth in 3 as shown by EKG,
suggesting sustained injury, and 1 case of isolated cardiomyopathy. Arguably, combining
cases expressing full progression of disease with those having less advanced disease may
also represent a limitation.

Given the current interest in identifying a biomarker to predict more serious lifelong injury,
isolated in utero prolongation of the PR interval has become an important focus of attention
(10,49,50). As such, these cases could provide potential candidates to increase the power of
the study of a rare disease. However, given the uncertainty as to the pathologic significance
of transient first-degree block, we did not include these children in the analysis due to
concerns of underestimating the genetic influence. Thus, unlike SLE, in which the
manifestations are heterogeneous with regard to organ system, severity, and temporal
course, cardiac neonatal lupus represents a more homogeneous phenotype.

This study represents the first large-scale investigation of genes associated with cardiac
neonatal lupus. Identification of risk alleles is an incremental step toward the discovery of a
fetal genetic component that contributes to the development of lifelong cardiac damage in
newborns exposed to maternal anti-Ro/SSA antibodies. These analyses support the potential
of this first cohort to provide clues that are immediate and of high impact in the study of the
genetics of cardiac neonatal lupus, with candidates identified in several pathways relevant to
the pathogenesis of disease, antigen presentation, apoptosis, and inflammation. The absence
of a significant association with genes previously identified as being associated with
autoimmune diseases emphasizes the passive nature of this unique disease.
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Figure 1.
Q–Q plot of the genome-wide association study of cardiac neonatal lupus. The number and
magnitude of observed associations (data quantile) were compared with expectations under
no association (normal quantile). Each point represents 1 single-nucleotide polymorphism
(of 346,110).
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Figure 2.
Combined association results for the entire genome. Each point represents 1 single-
nucleotide polymorphism (of 370,000) versus the P value.
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Figure 3.
Graphic analysis of the HLA–A and HLA–B single-nucleotide polymorphisms with P < 0.1.
OR = odds ratio.
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Table 1

Demographic characteristics of the 116 patients from the Research Registry for Neonatal Lupus*

Caucasian 116 (100)

Female†   60 (51.7)

Second-degree or third-degree heart block 107 (92)

Second-degree or third-degree heart block and cardiomyopathy     2 (1.7)

Second-degree heart block     2 (1.7)

First-degree heart block     2 (1.7)

Isolated cardiomyopathy     1 (0.8)

First-degree heart block and cardiomyopathy     2 (1.7)

*
Values are the number (%) of patients.

†
The control group was 65.7% female.
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