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Abstract

Functional MRI (fMRI) has previously been shown to be able to measure hundreds of

milliseconds differences in timings of activities in different brain regions, even though the

underlying blood oxygenation level-dependent (BOLD) response is delayed and dispersed on the

order of seconds. This capability may contribute towards the study of communication within the

brain by assessing the temporal sequences of various brain processes (mental chronometry). The

practical limit of fMRI for detecting the relative timings of brain activities is not known. We

aimed to detect fine differences in the timings of brain activities beyond those previously

measured from fMRI data in human subjects. We introduced known delays between the onsets of

visual stimuli in a controlled, sparse event-related design and investigated if the temporal shifts in

the corresponding average BOLD signals were detectable. To maximize sensitivity, we used high

spatial and temporal resolution fMRI at ultrahigh field (7 Tesla), in conjunction with a novel data-

driven technique for voxel selection using graph-based visualizations of self-organizing maps and

Granger causality to measure relative timing. This approach detected timing differences as small

as 28 ms in visual cortex in individual subjects. For signal extraction, the self-organizing map

approach outperformed other common techniques including independent component analysis,

voxelwise univariate linear regression analysis and a separate localizer scan. For relative timing

measurement, Granger causality outperformed time-to-peak calculations derived from an inverse

logit curve fit. We conclude that high-resolution imaging at ultrahigh field, signal extraction via

self-organizing map, and appropriate use of Granger causality permit the detection of small timing

differences in fMRI data, despite the intrinsically slow hemodynamic response.
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Introduction

Correct measurements of the timings of brain activities are critical for more fully

understanding the neural dynamics of brain processes. Functional MRI (fMRI) has shown to

be able to measure timing differences of the order of hundreds of milliseconds in brain

activations despite its generally poor temporal resolution. The ability to detect short timing

differences with fMRI may help to decode the sequential patterns of brain activity (mental

chronometry), providing further insights into the nature of brain function during complex

cognitive tasks.

FMRI is an indirect measure of neuronal activity. It does not measure neural, electrical or

chemical changes but instead detects hemodynamic effects using blood oxygenation level-

dependent (BOLD) responses that are delayed and dispersed in time. The hemodynamic

response to brief neuronal activity typically takes 5–8 s to peak and 15–30 s to return to

baseline, depending on the neurovascular coupling that may vary across brain regions. This

precludes accurate measurement of the absolute timing of neuronal activity. However,

hemodynamics can generally be assumed to be consistent and deterministic in time at a

given location which may allow robust measurement of relative timings of brain activities

for a given location using a simple sparse event-related design (Miezin et al. 2000; Liao et

al. 2002; Menon et al. 1998; Menon and Kim, 1999, Formisano and Goebel, 2003).

The practical limit of fMRI for detecting small differences in the timings of brain activities

is not known. Previous assessments of the temporal sensitivity of fMRI suggest that

detection of differences of the order of few hundred milliseconds is feasible. A BOLD

response timing difference down to 125 ms was detected for visual stimuli by fitting a linear

function to the early rise of the BOLD response (Menon et al., 1998). Raj (2001) estimated

time to half peak and detected differences down to 300 ms in the visual cortex at 1.5 T and

argued the accuracy was limited by the resolution and signal-to-noise (SNR) available.

Hernandez et al. (2002) resolved delays of the order of hundreds of milliseconds by

examining the time shift of the correlation between the data and the model while Henson et

al. (2002) used the temporal derivative of a canonical HRF to estimate the temporal

differences in BOLD responses with tasks involving lexical decisions and fame-judgment.

Formisano and Goebel (2003), in studies related to fMRI-based mental chronometry,

concluded that a sequence of cortical activations with the temporal resolution of the order of

a few hundred milliseconds was resolvable. Sigman et al. (2007) parsed a sequence of brain

activations at a resolution of a few hundred milliseconds for a reading task using a Fourier-

based method. Recently, Lin et al. (2011) measured a relative timing of 100 ms in human

visual cortex at a 10 Hz sampling rate using a novel magnetic resonance inverse imaging

(InI) technique that attains faster sampling by minimizing the time required to traverse k-

space. They used a canonical model to quantify time-to-half of the hemodynamic responses
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to measure the relative timing. Our own preliminary work showed that a timing difference of

112 ms could be detected in the visual cortex using fMRI and a Granger causality analysis

(Katwal et al., 2009; Rogers et al., 2010).

Several factors need to be taken into account when assessing the timing differences with

fMRI. The signals evoked by neuronal events are blurred by the hemodynamics, sampled at

relatively low temporal resolution, and include undersampled structured noise from cardiac

and respiratory sources. This may pose difficulties in detecting small differences in the

timings of brain activities from fMRI data. In addition, the low contrast to noise ratio and

low spatial resolution, typical of fMRI, make it difficult to identify task-related voxels

critical for detecting small temporal differences. Sometimes the actual timings may be

muddled by late signals through draining veins. In this context, a simple anatomic region of

interest (ROI) may not always work. A more involved voxel selection strategy may be

advantageous to extract signals containing critical timing information.

Recent advances in fMRI with ultrahigh field (7 T and beyond) image acquisition have

increased the available SNR, which in turn allows the use of higher spatial and temporal

resolutions. The use of an array of receiver coils for parallel signal acquisition also improves

SNR and spatial sensitivity. These together provide reduced intravascular signals and may

improve our ability to detect small differences in the timings of brain activities (Menon,

2012).

Here, we attempt to detect small differences in the timings of BOLD responses in visual

cortex using Granger causality. Granger causality measures the ability of one time series to

predict another and therefore can in principle be adapted to detect timing differences

(Granger, 1969; Deshpande et al., 2010). We introduce known timing differences between

left and right visual hemifield stimuli presentations and investigate if the temporal shifts in

the corresponding average BOLD signals are detected by Granger causality. In this work, we

use Granger causality analysis to measure temporal precedence in BOLD responses in visual

cortex; there are no causal interactions per se between the signals that we analyze. In

conjunction, we use an unsupervised data-driven approach for voxel selection to make

inferences on the minimum resolvable timing difference. We use a sparse event-related

visual task design using flashing checkerboards with known differences between left and

right hemifield stimulus onsets. We acquire brain images at ultrahigh field (7 T) and select

voxels from primary visual cortex using self-organizing map (SOM), an artificial neural

network model, combined with novel graph-based data visualization techniques that

incorporate density-based connectivity and correlation-based connectivity across the output

nodes of a learned SOM to visualize natural clusters in the fMRI data. This helps to

efficiently capture task-evoked signals critical in resolving small timing differences. We also

evaluate other methods for selecting voxels including i) independent component analysis

(ICA), a commonly used exploratory data-driven technique for fMRI analysis, ii) massively

univariate general linear model (GLM) based multiple regression, a hypothesis-driven

approach, and iii) a localizer scan in conjunction with GLM-based multiple regression. After

extracting fMRI time series from left and right visual cortex, we fit a bi-variate

autoregressive model on the average signals and compute Granger causality measures to

detect the temporal differences. Additionally, we fit curves to the average signals by
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modeling the hemodynamic response using inverse logit (IL) functions and estimate the

differences in time-to-peak to compare the temporal differences. We fit a linear mixed-

effects model on the measures and compare the slopes and intercepts of the fits to quantify

the performance of Granger causality and time-to-peak on signals from voxels obtained via

SOM, ICA, GLM and localizer scans.

Materials and Methods

Experimental Setup

Visual stimuli comprising flashing checkerboards were created using E-prime programs (E-

prime® 2.0, Psychology Software Tools, Inc.) on an iMac running Windows XP and

projected on a screen with an Avotec SV-6011 projection system. Delays between right and

left hemifield onsets (stimulus onset asynchrony, SOA) were specified in fractions of the

screen refresh rate to permit accurate reproduction. Using photodiodes and a digital storage

oscilloscope, we verified that the system produced the requested delays.

The visual stimuli comprised a 2-s flashing of checkerboard images at a contrast reversal

rate of 8Hz followed by a 16-s long fixation cross for a total trial duration of 18 s. Seventeen

trials were included in each run for a total run time of 306 s. The task paradigm was based

on a sparse event-related design to allow maximum recovery of actual timing information

and robust statistical testing of the temporal shifts across trials. Fig. 1 shows the stimulus

paradigm and images of the checkerboards used to generate the visual stimuli. It comprised

two radial checkerboards separated by a fixation cross. We experimented with several

iterations of stimulus patterns, including variations of the half-field checkerboard pattern

with a center fixation point used by Menon et al. (1998). The full field pattern that we

eventually adopted provided better localization of specific regions of the primary visual

cortex. The delay between the left and right hemifield stimuli (SOA) ranged from 0 to 112

ms in steps of 28 ms (twice the time between screen refreshes of the projector). Five

experimental runs were created with 0, 28, 56, 84, and 112 ms delays. For 0 ms or no

stimulus onset difference, both hemifield stimuli appeared simultaneously.

Data Acquisition

After approval from the institutional review board (IRB) at Vanderbilt University, five

healthy volunteers with normal vision were recruited to participate in the study. The subjects

did not report any neurological or psychiatric conditions.

An initial whole-brain low-resolution PRESTO localizer (TR=2 s) was used to identify areas

of visual cortex that responded to the block design stimuli comprising 20 s of left hemifield

checkerboard flashing, 20 sec of right, and 20 sec of fixation cross (baseline) for five cycles.

For the event-related experiments with stimulus onset differences, single-shot gradient-echo

EPI (TR=250 ms, TE=25 ms, flip angle=30°, FOV=128 mm × 128 mm and voxel size=1mm

× 1mm × 2mm) was used to acquire two coronal slices (with no slice gap) around the

calcarine fissure region. The effective bandwidth in the phase encoding direction was 17 Hz

and in the EPI frequency direction was 1458 Hz. Minimum time to acquire one slice was

125 ms due to constraints imposed by the combination of pulse sequence parameters. The

Katwal et al. Page 4

Neuroimage. Author manuscript; available in PMC 2014 April 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



images were acquired on a Philips Achieva 7T MR scanner using sensitivity encoding

(SENSE factor=2) parallel imaging with a 16-channel receive coil and quadrature transmit

coil and halfscan (HS=0.8). Stimulus presentation and fMRI volume acquisition were started

at the same time. However, they were not synchronized trial-by-trial. Five functional runs

with 0, 28, 56, 84 and 112 ms differences between the left and right hemifield onsets were

acquired. The order of the runs presented to the subjects was randomized.

Data Preprocessing

We ran the data through a standard preprocessing pipeline, which included motion

correction, linear trend removal and high-pass filtering. Although pure in-plane motion was

unlikely to happen with coronal slices, it was necessary to ensure that any amount of motion

did not blur small timing measurements. We observed less than 1 mm (spatial resolution)

translational motion in the majority of runs. In some runs, the motion was above 1 mm.

Motion correction was performed using the automated functional neuroimaging (AFNI-

Robert Cox, Medical College of Wisconsin) software where the images in each run were

registered in-plane to the first image in the run. The extracted signals from the concatenated

runs were temporally filtered with a 120 s (0.0083 Hz) high-pass filter including detrending

to remove low-frequency drifts and linear trends in the data. Low pass filtering may reduce

the effects of cardiac and respiratory signals, but it may also remove important stimulus-

related BOLD transitions relevant to Granger causality analysis. Hence no low pass filtering

was performed. To preserve high spatial resolution, no spatial smoothing was performed.

Voxel Selection

Several methods for identifying task-related voxels in fMRI have been reported in the

literature. These methods can be broadly classified into two categories: hypothesis-driven

and data-driven methods. Statistical parametric mapping (SPM) is a commonly used

hypothesis-driven method that uses a univariate multiple regression analysis and assumes a

general linear model (GLM) for signals with a specific noise structure. It requires a priori

knowledge about task paradigm, precise timing of stimulus onsets and an assumed

hemodynamic response function (HRF) and performs linear convolution of the HRF with a

deterministic stimulus timing function to construct reference functions. These modeling

assumptions and the deterministic character assigned to the stimulus timing function may be

too restrictive to capture a broad range of activation patterns and variability in stimulus-

driven timings. SPM performs hypothesis testing on a voxel by voxel basis, which is

massively univariate. Due to spatial coherence and temporal autocorrelation between brain

voxels, meaningful activations occur in a cluster of voxels. So a multivariate approach may

be more appropriate than the voxel by voxel approach for fMRI data analysis.

Data-driven methods follow a multivariate approach for exploratory fMRI analysis. Two of

the most popular multivariate data-driven techniques applied for fMRI analysis are

independent component analysis (ICA) and data clustering (e.g. K-means clustering, fuzzy

clustering, hierarchical clustering, self-organizing map). They do not make any assumptions

about HRF shape or require any prior knowledge about task paradigms. ICA works with

higher-order statistics to separate maximally independent sources from fMRI data. It makes

assumptions about strong independence between components in terms of mutual information
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(entropy) or non-Gaussianity that may result in biased decomposition (McKeown et al.,

1998). K-means algorithm is limited by the assumption that the number of clusters is known

a priori and that the clusters are spherically symmetric and separable in the feature space,

which is not always applicable in the context of fMRI (Goutte et al., 1999). Self-organizing

map (SOM) is an artificial neural network model that transforms data from high-dimension

to low-dimension and reveals their natural cluster structures based on some similarity

measure. It uses unsupervised learning to delineate clusters in data without any assumptions

about their inherent relationships.

In our work, voxels were selected using self-organizing map (SOM) with a novel graph-

based data visualization technique for cluster delineation (see Appendix B). This technique

detects fine structures of clusters in the data and helps to identify relevant signals for the

analysis (Katwal et al., 2011). We compared this approach with: a) independent component

analysis (ICA), b) a general linear model (GLM) based multiple regression analysis using

statistical parametric mapping (SPM8 - http://www.fil.ion.ucl.ac.uk/spm/software/spm8/),

and c) a separate localizer scan using a block design stimulus paradigm. Voxels were

selected from a single coronal slice to avoid slice-timing effects. For SOM, ICA and GLM

methods, the functional runs were concatenated and voxels were selected from the

concatenated time series. We manually selected a region around the calcarine fissure to

exclude non-V1 voxels and assigned the selected voxels into right and left hemisphere

categories. We made sure approximately equal numbers of voxels were picked from the left

and the right hemispheres. For the localizer method, voxels responding to the on/off block

stimulus from the block-design localizer scan were applied across all runs. Then we

computed an average signal for each hemisphere. These average time course signals were

used to assess their relative timings.

Voxel selection Using Self-organizing Map (SOM)

The preprocessed signals were used as inputs to the SOM algorithm to detect voxels

responding to the task. The basic theory and description of the SOM algorithm are detailed

in Appendix A. The total number of nodes, N, initial learning rate, α, and number of

iterations for the SOM algorithm were chosen using the test for convergence procedure

described by Peltier et al. (2003). A total number of 100 nodes (arranged in a 10×10, 2-D

lattice grid), an initial learning rate of 0.2 and total 100 iterations were chosen for the

analysis. We initialized the weight vectors associated with the nodes with first two principal

components of the input data from the brain region. The winner node (best matching unit)

was selected using the correlation coefficient metric:

Eq. (2.1)

where corr(x, mi) denotes the correlation coefficient between the input x (fMRI time series)

and the weight vector of the ith node, and corr(x, mc) represents the correlation coefficient

between the input x and mc, weight vector of the best matching unit. The initial value of the

full width at half maximum (FWHM) of the Gaussian kernel (σ) in the neighborhood

function was set to be seven nodes, equal to the radius of the lattice (Peltier et al. 2003).
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Both learning rate (α) and neighborhood size (σ) were decreased exponentially with the

increase in the learning iteration.

The training resulted in a 10×10 map of output nodes with a prototype and a voxel map for

each node. Using our visualization scheme (see Appendix B), we delineated clusters on the

map and picked the one whose voxel map included the calcarine fissure region.

Voxel selection Using Independent Component Analysis (ICA)

Independent component analysis (ICA) seeks to reveal spatiotemporal structures in fMRI

data by discovering spatially (spatial ICA) or temporally (temporal ICA) independent

components. Spatial ICA transforms each fMRI dataset into maximally independent

components and identifies spatially non-overlapping and temporally coherent regions in

brain (Calhoun et al., 2009). We used GIFT (Medical Image Analysis Lab, MIALAB),

which implements spatial ICA, to extract task-related signals from the fMRI dataset. We

concatenated sessions for each subject and ran the independent component analysis on the

concatenated image using the FastICA algorithm incorporated in GIFT. At the end of the

analysis, GIFT produced a number of components and their corresponding voxel map. The

number of components was determined by the minimum description length (MDL)

principle. To pick the task-related component, we examined the spatial map for each

component and selected the one whose voxel map included the calcarine fissure region.

Brain signals from the corresponding spatial map were extracted using a suitable threshold

so that the total number of voxels from the region around the calcarine fissure matched the

number obtained with SOM.

Voxel Selection Using Univariate General linear Model (GLM)

In this method, voxels were chosen from the concatenated time series for each subject using

the GLM analysis of the event-related experiment. We constructed the regressor by

convolving the event-related stimulus time series of the concatenated trials with a canonical

hemodynamic response based on gamma variate functions. The model was fitted to the

response using SPM8 and the regression parameter was estimated. A suitable threshold for

the t-statistic was chosen so the total number of voxels from the activated region around the

calcarine fissure was about the same as with other methods.

Voxel Selection with Localizer

A block stimuli comprising five cycles of right hemifield checkerboard (20 s), left hemifield

checkerboard (20 s) and rest (fixation cross for 20 s) were presented to the subjects. The

block stimulus time series was convolved with the hemodynamic response function using

statistical parametric mapping (SPM8) to create an appropriate design matrix. The model

was fitted to the response and regression parameter was estimated using SPM8. Activated

regions in the left and right primary visual cortex were identified by contrasting left versus

rest and right versus rest and using a FWE corrected p-value (<0.05). We used MarsBaR

(Brett et al., 2002) to select a region of interest (ROI) each from the right and the left

primary visual cortex regions including activated areas around the calcarine fissure. The

MarsBaR selected only activated voxels from the selected region. We selected spherical

region where the radius was chosen so the total number of activated voxels selected matched
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with other methods. The ROIs were applied across all functional runs to extract the signals

for each session.

Detection of Timing Differences Using Granger Causality

A first order bi-variate autoregressive (AR) model was fitted to the average time series, x
and y, from right and left hemispheres of V1, respectively. The Granger causality difference

(GCD) Fx→y − Fy→x was then computed to assess the overall ability of x to predict y
(Roebroeck et al., 2005 and Appendix C). In the absence of any overall temporal

precedence, the GCD should be zero. A positive value of the GCD implies an ability of x to

predict y or precedence of x over y and a negative value means the opposite. It should be

emphasized the Granger causality measure was used to detect temporal shifts in BOLD

responses and not to quantify any direct neuronal influences in this work.

Detecting Timing Differences Using Inverse Logit (IL) Model

To compare the results from Granger causality analysis, we used inverse logit (IL) functions

to model the hemodynamic response. We fitted the model on the average BOLD responses

from right and left hemispheres and estimated the timing parameters to compare the

temporal differences.

To model the hemodynamic response function (HRF), a superposition of three inverse logit

(sigmoid) functions, L(x)= (1+ e−x)−1, was used. The first function modeled the rise after

activation, the second modeled the subsequent fall and undershoot, and the third function

modeled the stabilization or return to baseline (Lindquist et al., 2009). The model of the

HRF was given by:

Eq. (2.2)

Each function had three variable parameters representing the amplitude, position and slope

of the response. The αi parameter controlled the amplitude and direction of the curve, Ti

controlled the position and Di controlled the angle of the slope of the curve. We constrained

the values of α2 and α3 (so that the fitted response begins at zero at the time point t=0 and

ends at magnitude zero) and used a four parameter model where only the position of each

function and the total amplitude were allowed to vary. We used following constraints for the

amplitude:

Eq. (2.3)

and

Eq. (2.4)

We used a gradient descent solution to fit the model and used the parameter estimation

procedure described by Lindquist et al. (2009) to calculate the height (H), time-to-peak (T),

and full width at half maximum (W) from fitted HRF estimates. The difference in time-to-

peak (TTPD) between right and left hemispheres was used to compare the temporal shift.
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Statistical Inference

Conclusions about the significance of the GCD (Fx→y − Fy→x) and difference in time-to-

peak (TTPD) measures were obtained by estimating the 95% confidence intervals using the

time series block bootstrap (Efron and Tibshirani, 1993). This allows robust testing of the

null hypothesis that GCD is equal to zero at the specific stimulus onset difference (SOA) for

each subject. The time series were divided into individual trials and 1000 independent

bootstrap samples were drawn randomly with replacement from the set of trials. The

measures were then calculated on the reconstructed time series and 95% confidence

intervals were determined. We used a bias-corrected accelerated (BCa) interval that adjusts

the percentiles to correct for bias and skewness (Efron and Tibshirani, 1993).

We fitted a linear mixed-effects model to compare the GCD and TTPD measures with the

stimulus onset differences (SOA). Granger causality in general is not a linear function of

timing difference (Roebroeck et. al., 2005); however, in the time range of interest, the linear

model is suitable for Granger causality difference. The GCD and TTPD yield measures of

BOLD timing differences in different units. To allow direct comparison, the t statistic for the

linear slope of the model was calculated to compare the precision of each method in terms of

the standardized effect size. The precision compares the strength of the linear relationship

against the amount of variability in the data. Similarly, the t statistic for the linear intercept

was measured to compare the bias of the fits. The bias should be zero indicating that a zero

BOLD timing difference produces a zero value of the measurement. Confidence intervals on

the precision and bias estimates were generated using the case-resampling bootstrap.

Results

Identifying Task-related FMRI Signals

Analyses were conducted on the datasets for five subjects using four voxel selection

methods to extract signals related to the fMRI task. Fig. 2 shows the 10×10 SOM output

map with traces of node prototypes for a subject after applying the self-organizing map

(SOM) algorithm. There are 100 nodes and their corresponding prototype time series

arranged in a 2D map. In order to identify prototypes representing task-related signals, we

used graph-based visualizations of the SOM output map. We used the combined

connectivity (Fig. 3 (c)) obtained by merging the density-based connectivity (Fig. 3 (a)) and

the correlation-based connectivity (Fig. 3 (b)) between node prototypes (described in

appendix B) to reveal clusters in the data. The cluster containing task-related signals was

identified from its voxel map. The cluster whose prototypes are shown in red traces in Fig. 3

(d) constituted voxels in the calcarine fissure region and chosen for our analysis. Voxels that

were mapped to these prototypes are shown in Fig. 4 (a) after manual division into right

hemisphere (red) and left hemisphere (blue) categories. The area denoted by ‘R’ is right V1.

Voxels identified by other methods for the same subject after manual division into

respective hemispheres are also shown in Fig. 4. The signals from voxels in these right and

left hemisphere regions were averaged to create right and left hemisphere time series for

further analysis. Fig. 5 shows average BOLD responses (averaged across trials) extracted by

SOM from a subject when the stimulus onset difference was 112 ms.
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Granger Causality Can Detect Sub-100 ms Timing Differences From FMRI

We fitted a bivariate AR model of first order to the average time series from right and left

V1 and calculated the Granger causality difference measures (GCD) Fx→y − Fy→x for

different stimulus onset asynchronies (SOAs). Fig. 6 (a) shows the plot of the GCD

measures versus SOA in five subjects for voxels selected by SOM. GCD was approximately

zero at zero SOA and increased linearly with SOA as indicated by the linear mixed-effects

model (dark line, p<0.00001). The color code represents results from 95% time series block

bootstrap confidence intervals on each measure: blue indicates a “correct” conclusion and

red “incorrect” for a test of the null hypothesis that GCD=0 for the specific subject at the

specific SOA. For zero SOA, blue means the confidence interval included zero and for other

SOAs, blue means its confidence interval excluded zero. Red indicates otherwise.

Differences down to 28 ms were detectable in at least three subjects.

Fig. 7 (a) shows the GCD measures for voxels identified by ICA. GCD increased linearly

with the increase in SOA (p=0.0006). However, there was a loss in sensitivity of GCD

towards the stimulus onset differences when compared to results from SOM in Fig. 6 (a).

Differences down to 84 ms were detectable in three out of five (60%) subjects while four

subjects produced positive (greater than zero) GCD measures for differences down to 28 ms.

Fig. 8 (a) shows the corresponding results with signals obtained from GLM. The 112 ms

difference was detected in four (80%) subjects and differences down to 56 ms were detected

in two (40%) subjects. The linear relationship of GCD with SOA for GLM was statistically

weaker (dark line, p=0.008) than the relationship for SOM and ICA. For the localizer, 112

ms was detected in all subjects and differences down to 28 ms were resolved in two out of

five (40%) subjects using GCD measures (Fig. 9 (a)). GCD was approximately zero for zero

SOA and increased linearly with SOA (dark line, p=0.0001).

In summary, GCD could resolve sub-100 ms differences. Differences as short as 28 ms, the

shortest timing difference investigated, were resolved in individual subjects and most

consistently with voxels selected by SOM.

Time-to-peak Difference (TTPD) Not As Consistent As Granger Causality Difference

Fig. 6 (b) shows the time-to-peak difference (TTPD) measures from inverse logit fits on the

average signals obtained from SOM. The color code indicates results from 95% time series

block bootstrap confidence intervals on each measure (same as in Fig. 6 (a)) for statistical

inference. The estimated TTPDs did not follow the corresponding stimulus onset differences

in absolute sense. However, the linear fit on the timing measurements indicated increase in

measures with the increase in SOA. TTPD had a positive linear relationship with SOA but it

was statistically weak (dark line, p=0.27). The linear relationship trend was evident with

results for ICA (Fig. 7 (b), p=0.08) and localizer (Fig. 9 (b), p=0.02). With GLM (Fig. 8

(b)), the linear relationship between TTPD and SOA was obscure (p=0.83).

In summary, time-to-peak difference (TTPD) measures from inverse logit fits were not as

stable and as consistent as the Granger causality difference measures in interpreting the

temporal shifts in the signals.
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Performance Comparison Using Precision and Bias Plots

To compare the performance of GCD and TTPD timing measurements from four voxel

selection techniques, we fitted linear mixed-effects model on the timing measures and

computed precision and bias of the fit for each method as described in the Methods section.

Fig. 10 shows (a) precision and (b) bias of the fits for GCD and TTPD measures from all

voxel selection techniques. The error bars indicate 95% confidence intervals from 2000

bootstrap samples. Two conclusions can be made from the precision plot: 1) Precision

measures for GCD were higher than for TTPD for all voxel selection techniques. This meant

that the sensitivity of the timing measurements for the stimulus-induced differences (SOA)

and their linear relationship were stronger for GCD than for TTPD and 2) Voxels selected

by SOM produced the highest precision value followed by localizer, ICA and GLM, in that

order. The bias plot indicated that signals selected by SOM might be prone to higher bias

than other techniques, especially with GCD timing measures. However, no strong

conclusions can be made from their confidence intervals (Fig. 10 (b)). Localizer seemed to

produce the least amount of bias with GCD measurements but a strong negative bias with

TTPD measurements. We made an assessment of the impact of threshold or the number of

voxels on the detectability of timing differences. The new results were in agreement with the

presented results.

In summary, GCD outperformed TTPD in the relative timing measurements and SOM

outperformed ICA, GLM and localizer approach in selecting voxels contributing to the

timing measurements in visual cortex.

Discussion

In this article, we assessed the ability to detect short BOLD timing differences from fMRI

data. Brain images were acquired at ultrahigh field (7 T) and voxels responding to the task

were identified with a multivariate data-driven approach using a novel visualization scheme

for self-organizing map. We used a controlled slow even-related design that modulated the

timing differences by controlling the visual stimuli onset delay. Based on our results, we

reached the following conclusions: 1) Differences as small as 28 ms (the shortest

investigated) were detectable in individual subjects in visual cortex using Granger causality

as a measure of relative timings in conjunction with self-organizing map (SOM) as a voxel

selection method, 2) Granger causality difference (GCD) outperformed time-to-peak

difference (TTPD) from inverse logit fits for the detection of relative timings of BOLD

responses in visual cortex, and 3) Self-organizing map (SOM) outperformed ICA, GLM and

localizer approach in identifying task-related voxels for the detection of timing differences.

Benefits of Self-organizing map (SOM) on Detectability

The ability to detect small timing from fMRI data depends on the ability to identify task-

related voxels in the data. FMRI data typically comprise a large noisy dataset where the

magnitudes of detectable signals may be very low and signals of interest may be confined to

a few voxels in the high-dimensional image space. The low contrast to noise ratios and

spatial resolutions of fMRI challenge our ability in identifying task-related voxels critical for

detecting small temporal differences. This demands a robust voxel selection strategy. A
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simple fixed anatomical region of interest (ROI) may not always ensure selection of

important task-related signals constituting critical timing information, especially when the

timing differences to be measured are small. The timing information in the task-induced

signals may also have been muddled by late signals coming though draining veins.

For voxel selection in this study, we used two univariate methods: general linear model

(GLM) and localizer scan that followed hypothesis-driven approach and two multivariate

data-driven techniques: self-organizing map (SOM) and independent component analysis

(ICA). The localizer and the GLM methods followed the conventional GLM-based multiple

regression analysis using statistical parametric mapping (SPM) which performed linear

convolution of the canonical double-gamma hemodynamic response function with the

deterministic stimulus timing function to construct the reference function. These modeling

assumptions and deterministic characteristics of the reference function may have been

restrictive to capture the range of stimulus-driven BOLD transitions (Liao et al., 2008). This

may have in effect diminished the power of Granger causality into detecting BOLD timing

differences. Additionally, GLM and the localizer followed a voxel by voxel hypothesis

testing approach that was massively univariate and unable to capitalize on neighborhood

relationships or inter-voxel dependencies to improve sensitivity.

Our implementation of SOM used neighborhood correlation to group data based on

similarities in their temporal patterns. The neighborhood function made use of inter-voxel

relationships that increased its sensitivity. We used graph-based visualization scheme that

delineates small structures of clusters in the data and helps in making correct timing

assessments in fMRI by distinguishing early BOLD signals from late signals coming

through draining veins etc. (Katwal et al., 2011). The other advantage of SOM, especially

over GLM or similar model-based approach, is that it is unsupervised. It does not need the

model of the response or stimulus timing information a priori but uses a machine learning

approach for data analysis that is unsupervised and without any biases from assumptions.

For ICA, we used spatial ICA that determined maximally independent components from the

data by maximizing non-Gaussianity. This ensures segregation of task-related signals from

other non-relevant signals and noise. Although data-driven, ICA made a strong assumption

of independence between components which may have introduced bias and decreased its

ability to detect task-related signals (Meyer-Bäse et al., 2004, McKeown et al., 1998). This

may have resulted in the reduced power of ICA (compared to SOM) in capturing important

BOLD transitions related to crucial timing information, which may in turn have produced

lower sensitivity of ICA as suggested by the results (Fig. 7).

Importance of Granger Causality on Detectability

Granger causality has typically been formalized in terms of a multivariate autoregressive

process that captures the temporal evolution of signals and reveals their interrelationships.

This allows detection of small temporal shifts in signals from fMRI data, as shown by our

results. However, regional variability in the HRF can affect the detectability of timing

differences (Deshpande et al., 2010, Smith et al. 2011). Previous studies have suggested that

the HRF shape and magnitude can vary across brain regions and individuals (Aguirre et al.,

1998; Handwerker et al., 2004). On this premise, Deshpande et al. (2010) investigated the
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sensitivity of Granger causality analysis to HRF variability in single subjects concluding that

fMRI could infer delays on the order of tens of milliseconds using Granger causality in the

absence of HRF confounds (delay) across regions while an HRF delay can reduce the

sensitivity of Granger causality to hundreds of milliseconds. In addition to this loss in

sensitivity for true positives, the HRF variability may cause Granger causality analysis to

result in spurious connection (false positive) between regions. In the assessment of temporal

precedence in this work, the spurious connections may lead to the conclusion that signal A is

preceding or following signal B when they have no temporal relationships in reality. While

modulation of the activity (delays in this study) by experimental demands could cancel out

the effect of hemodynamic variation and rule out such spurious findings (Roebroeck et al.,

2005), results from simulation conducted by Schippers et al. (2011) using practical HRF

models from Handwerker et al. (2004) suggested that such findings are actually rare and

non-significant in a statistical sense.

The Granger causality difference (GCD) may reflect actual neuronal timing differences if a

change in the experimental context (delays in our studies) modulates the measured

differences ruling out hemodynamics as the cause of the results. The apparent linear

relationship between SOA and BOLD timing measurements in this study is compelling

evidence that the results are not an artifact of the hemodynamic variability and the measured

BOLD timing differences can be attributed to the stimulus timing differences. This shows

that Granger causality is capable of reflecting the relative timings of neuronal activities in

visual cortex although it does not give absolute values of the timing differences in physical

units. Results from the study conducted by Roebroeck et al. (2005) suggested that Granger

causality is capable of revealing temporal precedence even if the time scale and delay is

smaller than the sampling interval (TR). In this case, Granger causality may lose much of its

sensitivity. But it still possesses enough power to detect interactions at a finer time scale

(Roebroeck et al., 2005, Abler et al., 2006, Deshpande et al., 2010). This was indicated by

successful measurements of delays smaller than the sampling time in our study as well.

These findings validate the use of Granger causality in detecting short timing differences

from fMRI data.

Detectability with Time-to-peak from Inverse logit Fit

The Granger causality difference compares signals and indicates their temporal precedence.

A limitation of the method is that it does not measure timing differences in physical units.

We wanted to see if the measured timing differences could follow the actual delay between

the stimulus onsets. Our estimates of difference in time-to-peak (TTPD) parameters obtained

from inverse logit fits did not reflect the corresponding stimulus onset differences, SOA

(Figs. 6(b)–9(b)). Although there was some linear trend in the relationship between the two

(as indicated by the linear fits), the measured values had some strong, random biases and

variability. This is due to the fact that the hemodynamic response function is a complex,

non-linear function of the neuronal or vascular changes and the HRF model (inverse logit

functions) is limited in terms of its statistical accuracy for accurate recovery of the true

response parameters (time-to-peak, width and height). This restricts accurate representation

and may lead to unsystematic biases and confusion among the estimated response

parameters (Lindquist et al., 2009). We examined the width and the height parameters (not
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shown here) for the right and left V1 BOLD responses. They matched closely for both

hemispheres although not without some random bias and variability.

Previous studies suggest why time-to-peak measure from a hemodynamic model could be

useful in the studies of timing in fMRI. Miezin et al. (2000) investigated hemodynamic

response timing parameters and found that the time-to-peak estimate is stable across

separate datasets for the same region within a subject and is a reliable measure of the

hemodynamic response. A comparative study of the hemodynamic response models

conducted by Lindquist et al. (2009) suggested that the inverse logit model is immune to a

large degree of model misspecification and provides the least amount of bias and confusion

between the response parameters than other models including canonical gamma and finite

impulse response. Also, the use of a sparse event-related design helps to recover true

response parameters. However, the presence of bias and confusion between estimated

response parameters may challenge and deter accurate estimation, especially in the

measurement of small timing differences.

The multivariate autoregressive model regresses the current value of a response onto its past

values without having to estimate the shape of the hemodynamic response. This may have

resulted in higher sensitivity of Granger causality measures than time-to-peak difference

estimates in detecting small timing differences in this work.

Implications

The Granger causality analysis can be applied in conjunction with self-organizing map

(SOM) for voxel selection to achieve higher sensitivity for detecting small temporal

precedence in signals across brain regions. Our results showed that even sub-100-ms

temporal differences could be resolved in visual cortex. Such capabilities may qualify fMRI

for timing studies normally performed using EEG or MEG (Menon, 2012). This has

important implications for decoding the temporal sequence of brain activations to better

understand the neural dynamics of brain processes using fMRI. Our results may not

generalize to studies involving different experimental conditions and regions of brain. A

naïve computation of Granger causality to quantify temporal precedence across various

regions in brain could be misleading. In particular, the variability in hemodynamic delay

across brain regions could give misleading inferences on the actual delay. Our study focused

on one region (calcarine fissure) of brain where voxelwise variability in hemodynamics may

not have had much impact on measurement and interpretation of the actual delay. This may

have increased sensitivity in measuring small delays in this study. However, the effect of

hemodynamic variability may be more severe as we apply these methods in other cortical

regions, e.g. between visual and motor cortex (Miezin et al., 2000). This will lead to loss in

much of the sensitivity and accuracy in timing measurements. In this case, modulation of the

delay by experimental demands and cognitive context become more relevant to rule out

hemodynamics as the cause of the results and validate the measured timing differences. In

summary, with careful consideration of experimental design, these methods may be adapted

to studies related to detecting relative timings of brain activity using fMRI.
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Conclusions

In this work, we assessed the ability to detect small differences in the timings of brain

activities from fMRI data. High-resolution fMRI data were acquired from primary visual

cortex (V1) with a 7 T MR scanner. A data-driven approach using graph-based

visualizations of self-organizing map (SOM) was used to identity voxels responding to the

task. Voxels were also selected using independent component analysis (ICA), a general

linear model (GLM) based multiple regression analysis and localizer scans in conjunction

with GLM. Granger causality analysis was performed to detect temporal differences on the

average signals. Additionally, we fit curves to the average signals using inverse logit

functions and measured time-to-peak differences to compare temporal differences in the

signals. The combination of SOM and Granger causality outperformed others by detecting

timing differences as small as 28 ms between left and right hemispheres in individual

subjects. This combination also generated highest precision at a moderate bias. In summary,

sub-100 ms (as small as 28 ms) timing differences were detected in BOLD responses in

visual cortex. SOM outperformed ICA, GLM and localizer methods in identifying task-

related voxels and Granger causality offered highest sensitivity for detecting small timing

differences from fMRI data.
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Appendix A. Self-organizing Map

The self-organizing map (SOM) is an artificial neural network model that maps high-

dimensional input data into a set of nodes arranged in a low-dimensional (often a 2-D) rigid

lattice using unsupervised learning (Kohonen, 1990; Kohonen, 2001). A weight vector of the

same dimension as the input data vector is associated with each node of SOM. The SOM

algorithm constitutes a series of training steps that tune the weight vectors of the nodes to

the input data vectors. At each step, the input vector is compared with each of the nodes to

find the best matching unit (BMU). The BMU refers to the node whose weight vector is the

closest match of the input vector. Once the best matching unit is determined, the weights of

the BMU and its surrounding nodes are adjusted. The magnitude of this adjustment

decreases with time (iteration) and for nodes away from the BMU. This results in an

effective visualization and abstraction of high-dimensional data for exploratory data

analysis.

The SOM Algorithm

The self-organizing map (SOM) algorithm constitutes two major steps: 1) determining the

best matching unit (BMU) and 2) updating the weight vectors associated with the BMU and

some of its neighbors. Prior to training, the weight vectors associated with each node of the

map are suitably initialized. For a profitable initialization, the vectors can be sampled evenly

from the subspace spanned by the two largest principal components eigenvectors (Kohonen,

2001). The training expands over several iterations and is based on competitive learning. In

each iteration, a vector x =[x1, x2, …, xn]T (where n is the length of fMRI data in this work)

is chosen from the input space. The weight vectors of the nodes mi = [mi1, mi2, …, min]T

(where i=1, …, N ; N being the total number of nodes) are compared with x to determine the

best matching unit (BMU) based upon a similarity metric. The most commonly used metric

is the Euclidean distance:

Eq. (A.1)

where || || represents the Euclidean norm, x is the vector under consideration, mi denotes the

weight of the ith node on the map and mc represents the weight of the BMU. Once the BMU

is determined, the weight vectors associated with the BMU and some of its neighbors in the

map are updated using:

Katwal et al. Page 17

Neuroimage. Author manuscript; available in PMC 2014 April 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Eq. (A.2)

where t is the current iteration number; hci(t) is defined as the neighborhood kernel which

controls the number of neighboring nodes to be updated and the rate of update in each

iteration. As the iteration progresses, the neighborhood function shrinks the neighborhood

size. In general, the neighborhood kernel takes the form of a Gaussian function:

Eq. (A.3)

where ri and rc are spatial co-ordinates of the ith node and the winner node (BMU),

respectively, in the output space; σ is the full width at half maximum (FWHM) of the

Gaussian kernel that determines the neighboring nodes to be updated. α denotes the learning

rate which controls how fast the weights get updated. Both σ and α decrease monotonically

with the increase in the learning iteration, t. The iteration continues until convergence is

reached when further iterations produce no node changes. At the end of training, it generates

a learned SOM. Each node in the SOM has an associated weight vector, also called

prototype, and its input vectors map. As applied to our fMRI data, the input vectors were the

voxel time series and the output nodes each had an associated time series (prototype) and its

voxel map.

Appendix B. Graph-based Visualizations of SOM

The SOM maps high-dimensional data into a low-dimensional lattice grid through an

adaptive vector quantization that results in orderly arrangement of the prototypes in the

output space based on their similarities. However, a postprocessing scheme is required to

capture cluster boundaries in the data via SOM. In this work, we identified voxels of interest

from fMRI data using a combination of two graph-based visualization techniques that

incorporated i) local density distribution across SOM prototypes (density-based

connectivity) and ii) local similarities (correlations) between the prototypes (correlation-

based connectivity) (Katwal et al., 2011). The combined connectivity visualization

effectively captures cluster boundaries and delineates task-related signals and their

connectivity structures.

Visualization of Density-based Connectivity

The density-based connectivity visualization is realized by draping the connectivity matrix,

CONNDD, over the SOM lattice (Taşdemir, 2010). The existence of an edge between two

prototypes mi and mj on the graph indicates that they are neighbors in the input data space

and the weight of the connection between them gives its connectivity strength:

Eq. (B.1)

|RFij| denotes the number of input vectors in the receptive field of prototype mi for which m

j is the second BMU (mi being the first BMU). The connectivity strengths can be normalized

to one by dividing each value with the mean of the strongest connection of each prototype
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(Taşdemir, 2010). Any stronger connections will be assigned a value of one. Fig. 3 (a)

shows the visualization of density-based connectivity on the output map (Fig. 2). The

strength of the connection was indicated in gray scale and binned width where wider and

darker connections represented strong connectivity strengths. Any connectivity strengths

smaller than the mean connectivity strength of the sixth strongest connections were omitted

to discard noise and outliers (Taşdemir, 2010). The mean connectivity strength dropped

sharply after the sixth rank.

Visualization of Correlation-based Connectivity

The correlation coefficient matrix, CONNCC, which includes temporal similarities

(correlation coefficients) of neighboring prototypes, can be visualized graphically to display

correlation-based connectivity. We used the normalized correlation coefficient values

between prototypes as measures of their local similarities (Fig. 3 (b)). The strength of the

connection between prototypes was visualized in gray scale where dark lines represented

strong correlations.

Combined Connectivity Visualization

For combined connectivity visualization, the two connectivity matrices: CONNDD and

CONNCC are multiplied (element-by-element).

Eq. (B.2)

The resulting visualization, obtained by draping CONNDDCC, suppresses the visualization

of noise and delineates detailed connectivity structures of task-related signals (Katwal et al.,

2011). The combined connectivity visualization on our data delineated clusters shown in

Fig. 3 (c).

Appendix C. Granger Causality

Granger causality gives the measure of directed influence one signal or a region exerts over

another. Originally introduced by Granger for causality analysis in econometric models

(Granger, 1969) and later mathematically formalized in terms of vector autoregressive

(VAR) models by Geweke (1982), Granger causality is based on the idea of temporal

precedence. If the past values of signal in region A help in predicting the future values of

signal in region B, then A is said to Granger-cause B. Granger causality was introduced for

brain connectivity studies by Goebel et al. (2003) and since has been used in many fMRI

related brain connectivity studies. A more detailed review of Granger causality in fMRI

could be found in Deshpande et al. (2010) and Schippers et al. (2011). Granger causality

analyzes temporal precedence to reveal the direction of influence across brain areas. By

showing whether the signal change in one area precedes or follows the signal change in

another area, Granger causality may indicate temporal differences between signals.

A vector time series x[n] (where n represents time) can be modeled by a vector

autoregressive (VAR) process (Goebel et al., 2003) as:
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Eq. (C.1)

where Ax[k] are the autoregressive (AR) coefficients which regress x[n] onto its own past; p

is the model order and u[n] is white noise whose cross-covariance matrix is given by:

Eq. (C.2)

In the same manner, a second vector time-series y[n] can be modeled as:

Eq. (C.3)

where

Eq. (C.4)

The bivariate model for  is given by:

Eq. (C.5)

where

Eq. (C.6)

The residual covariance matrices Σ1, T1 and T2 are useful in quantifying the ability to

predict the current values of x and y based upon their past values. In terms of VAR model,

the measure of degree to which the time-series x predicts (Granger causes) y is given by:

Eq. (C.7)

where T1 and T2 are residual variances of y in the univariate model and the bivariate model,

respectively.

Similarly, the ability of y to predict x is given by:

Eq. (C.8)

Σ1 and Σ2 being residual variances of x in the univariate and the bivariate models,

respectively. Fx→y and Fy→x take the values in the interval [0, Inf) and are non-negative.
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Highlights

We detect small differences in the timings brain activities using fMRI.

We follow data-driven approach for voxel selection using self-organizing map.

SOM outperforms ICA, GLM and localizer approaches for signal extraction.

Granger causality can detect timing differences as small as 28 ms in visual cortex.
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Fig. 1.
Event-related task paradigm for left (top row) and right (bottom row) hemifields and the

corresponding checkerboard stimuli. The stimuli comprised two radial checkerboards

separated by a fixation cross. To introduce delay in the onsets or the stimulus onset

asynchrony (SOA), the left hemifield stimulus was presented d ms before the right. The

SOA, d ranged from 0 to 112 ms (including 0, 28, 56, 84 and 112 ms) in steps of 28 ms,

which was twice the time between screen refreshes of the projector.
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Fig. 2.
The 10×10 matrix of prototypes from SOM output nodes. The arrows show labels of each

block of the matrix. Each node is associated with a different set of voxels from the image

slice, and the prototype traces correspond to the associated fMRI time series. The prototypes

corresponding to task-evoked fMRI signals are towards the lower right-hand corner of the

map. Note: The average of trials (18 seconds) of the prototype time series is shown here.
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Fig. 3.
(a) Density-based connectivity visualization: Visualization of node connectivity based on

local density distribution on the 10×10 SOM lattice. Connectivity is interpreted in gray scale

where darker and wider lines mean strong connections. (b) Correlation-based connectivity

visualization: Visualization of connectivity based on local correlation (correlation

coefficient between the neighboring prototypes) on the SOM lattice. (c) Combined

connectivity visualization: Visualization of connectivity based on local density distribution

and local correlation on the SOM lattice. (d) The output map showing traces of prototypes in

different colors for different clusters. The cluster shown in red traces whose voxel map

included the calcarine fissure regions was chosen for our analysis.
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Fig. 4.
Voxels selected from V1 via (a) SOM (Voxel count: Right – 103, Left – 101), (b) ICA

(Voxel count: Right – 102, Left – 103), (c) GLM (Voxel count: Right – 112, Left – 103),

and (d) localizer scan (Voxel count: Right – 103, Left – 96). Voxels are shown after manual

division into right hemisphere (red) and left hemisphere (blue) categories. (e) All activated

voxels on the entire slice obtained using GLM analysis of the event-related experiment

(SPM8).
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Fig. 5.
Average trial BOLD responses from right and left hemispheres extracted by SOM for a

subject at 112 ms SOA.
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Fig. 6.
(a) Granger causality difference (Fx→y − Fy→x) versus stimulus onset asynchrony (SOA) for

voxels selected via SOM. GCD was approximately zero at zero SOA and increased linearly

with SOA as indicated by the linear mixed-effects model (dark line, p<0.00001). The color

code represents results from 95% time series block bootstrap confidence intervals on each

measure: blue indicates a “correct” conclusion and red “incorrect” for a test of the null

hypothesis that GCD=0 for the specific subject at the specific SOA. For zero SOA, blue

means the confidence interval included zero and for other SOAs, blue means its confidence

interval excluded zero. Red indicates otherwise. Difference down to 28 ms was detectable in

at least three subjects. (b) Time-to-peak differences (TTPD) from inverse logit (IL) fits on

signals obtained via SOM. TTPD had a positive linear relationship with SOA (dark line) but

it was statistically weak (p=0.27).
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Fig. 7.
(a) GCD (Fx→y − Fy→x) versus SOA for voxels selected via ICA. The color code represents

results from 95% time series block bootstrap confidence intervals on each measure (same as

in Fig. 6). GCD was approximately zero at zero SOA and increased linearly with SOA as

indicated by the linear mixed-effects model (dark line, p<0.0006). Loss of sensitivity of

Granger causality in detecting timing differences in signals chosen from ICA (when

compared to those from SOM in Fig. 6) was evident. Difference down to 84 ms was

completely detected in three out of five (60%) subjects. Four subjects resulted in positive

(greater than zero) GCDs for differences down to 28 ms. (b) TTPD from inverse logit (IL)

fits on signals obtained via ICA. The linear relationship of TTPD with SOA (dark line) was

stronger for ICA (p=0.08) than for SOM.
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Fig. 8.
(a) GCD (Fx→y − Fy→x) versus SOA for voxels selected via GLM. The color code

represents results from 95% time series block bootstrap confidence intervals on each

measure (same as in Fig. 6). GCD at 0 ms stimulus onset asynchrony indicated positive bias

in one subject. The 112 ms difference was detected in four (80%) subjects. Difference down

to 56 ms was detected in two (40%) subjects. The linear relationship between GCD and

SOA indicated by the linear mixed-effects model was weaker (dark line, p=0.008) than for

SOM and ICA. (b) TTPD from inverse logit (IL) fits on signals obtained via GLM. The

linear relationship between TTPD and SOA was statistically very weak (dark line, p=0.83).
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Fig. 9.
(a) GCD (Fx→y − Fy→x) versus SOA for voxels selected via localizer. The color code

represents results from 95% time series block bootstrap confidence intervals on each

measure (same as in Fig. 5). GCD was approximately zero at zero SOA and increased

linearly with SOA as indicated by the linear mixed-effects model (dark line, p=0.0001).

Differences down to 28 ms were detectable in two out of the five (40%) subjects. The 112

ms difference was detected in all subjects. (b) TTPD from inverse logit (IL) fits on signals

obtained via localizer. The dark lines are linear mixed-effects model on the measures. TTPD

increases linearly with SOA with p=0.02 (dark line).
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Fig. 10.
Performance comparison of the voxel selection methods using results from the linear mixed-

effects modeling. (a) Precision was measured with the t statistic for the slope (linear term of

the fit) describing the relationship to stimulus onset asynchrony. (b) Bias was measured with

the t statistic for the intercept of the fit. The error bars indicate 95% confidence intervals

from 2000 bootstrap samples generated using the case-resampling bootstrap.
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