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Cells use general stress response pathways to activate diverse tar-
get genes in response to a variety of stresses. However, general
stress responses coexist with more specific pathways that are acti-
vated by individual stresses, provoking the fundamental question of
whether and how cells control the generality or specificity of their
response to a particular stress. Here we address this issue using
quantitative time-lapse microscopy of the Bacillus subtilis environ-
mental stress response, mediated by σB. We analyzed σB activation
in response to stresses such as salt and ethanol imposed at varying
rates of increase. Dynamically, σB responded to these stresses with
a single adaptive activity pulse, whose amplitude depended on the
rate at which the stress increased. This rate-responsive behavior can
be understood from mathematical modeling of a key negative feed-
back loop in the underlying regulatory circuit. Using RNAseq we
analyzed the effects of both rapid and gradual increases of ethanol
and salt stress across the genome. Because of the rate responsive-
ness of σB activation, salt and ethanol regulons overlap under rapid,
but not gradual, increases in stress. Thus, the cell responds specifi-
cally to individual stresses that appear gradually, while using σB to
broaden the cellular response under more rapidly deteriorating con-
ditions. Such dynamic control of specificity could be a critical func-
tion of other general stress response pathways.
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Cells must respond to, and anticipate, a wide range of stresses
that occur on multiple timescales. For this purpose, many

species use general stress response pathways, which activate a di-
verse set of target regulons in response to a variety of stresses. For
example, in mammals, p53 is activated by DNA damage (1–4) and
hypoxia (5, 6), among others, and activates genes that impact cell
cycle progression (7), DNA repair (8, 9), apoptosis, and angio-
genesis (10, 11). In yeast, Msn2/4 responds to nutritional stress
(12), as well as to salt (13), calcium (14), heat, and other stresses
(15). Bacteria also contain general stress response pathways,
including the alternative sigma factors RpoS in Escherichia coli
(16) and σB in Bacillus subtilis (17).
It has been proposed that general stress response pathways en-

able cells to cross-protect, by anticipating stresses that may not be
present at the moment, but are likely to occur soon (18). For ex-
ample, preexposure to specific stresses is known to enhance bac-
terial resistance to different stresses applied subsequently (19–21).
This raises a basic question: How do cells determine when to use
the general stress response rather than activating more specific
individual pathways?
The σB-mediated general stress response of B. subtilis provides

an ideal model system to address these issues. σB is activated by
diverse stresses through a well-characterized and conserved tran-
scriptional and posttranscriptional circuit mechanism (17). In re-
sponse to stress, it activates ∼200 target genes (22). Moreover, σB
activity can be quantitatively analyzed at the level of individual cells,
using time-lapse movies and fluorescent protein reporters (23).
The key interactions that control σB activation have been elu-

cidated (24–27). σB is directly regulated by RsbW, an anti-sigma
factor. Stresses lead to dephosphorylation of the RsbV anti–anti-

sigma factor. Desphosphorylated RsbV can bind to and be
rephosphorylated by RsbW, which also has kinase activity. When
RsbV is bound to RsbW, σB is released and can activate target
genes, including its own operon (Fig. 1A). Two different classes
of stress—energy stress and environmental stress—activate σB,
but they do so through distinct RsbV phosphatases: RsbQP and
RsbTU, respectively (24, 26).
In previous work, we showed that energy stresses generate

a sustained series of stochastic pulses of σB activation (23). Sto-
chastic fluctuations in the levels of RsbQP phosphatase cause
sudden increases in σB activation, due to an ultrasensitive switch in
the phosphorylation state of RsbV. These increases in active σB
are subsequently amplified and then terminated through autor-
egulatory feedback loops—including production of additional
RsbW kinase, to form distinct pulses.
Environmental stresses, including ethanol and salt, are mediated

by essentially the same circuit. However, they are first transduced
by the stressosome, a large multisubunit complex (28) that acti-
vates the RsbTU phosphatase to dephosphorylate RsbV. Here
we show that this difference causes a qualitatively different dy-
namic response compared with energy stress. An increase in
environmental stress leads to a single uniform pulse of σB acti-
vation, whose amplitude is modulated by the rate at which the
stress increases over time. The σB environmental stress response
pathway is thus a temporal filter, responding only to rapidly in-
creasing stresses. This filtering function allows the cell to activate
σB, and hence a broad set of stress response pathways, when any
environmental stress is growing rapidly, while retaining the
ability to track more slowly changing levels of salt, ethanol, and
other stresses with more specific pathways.

Results
Environmental Stress Induces a Single, Adaptive, Amplitude-Modulated
Pulse of σB Activity. To examine σB dynamics at the single-cell level
we used a reporter strain incorporating a yellow fluorescent re-
porter (yfp) for σB activity (23). To focus on the environmental
stress response pathways, and avoid potential cross-talk from the
energy stress pathways, we deleted the energy stress phosphatase,
rsbQP (26). We also deleted the blue-light sensor, ytvA, to avoid
inadvertent activation of σB by microscope illumination (SI Text)
(29, 30). We then used quantitative time-lapse microscopy to ex-
amine σB activation in individual cells of this strain over time on
agarose pads or using the CellASIC microfluidic culturing system
(31–33).
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We first examined the response of σB to ethanol, a known ac-
tivator of the environmental pathway (34). A step change in eth-
anol concentration led to a single pulse of σB activity (Fig. 1B, Fig.
S1 A and B), similar to population-level observations reported
previously (34). The pulse peaked ∼30 min after the addition of
stress before returning to and maintaining near prestress levels
(Fig. 1 C and D, Fig. S2 A and B, and Movie S1). We note that the
measured pulse duration could be extended by the maturation
time of the fluorescent reporter protein. To minimize the impact
of this effect, we used a fast-maturing fluorescent YFP protein
(maturation time ∼10 min) (35). The pulse was synchronized
across the cell population (Fig. S1) and consistent with dis-
tributions observed in liquid media conditions (Fig. S1E). In-
creasing the size of ethanol concentration step led to

a corresponding increase in the amplitude of the pulse, with
little effect on pulse duration (Fig. 1D). Other environmental
stresses such as NaCl (Fig. S2C) and butanol (Fig. S2D) showed
similar activation dynamics. Together, these results show that
environmental stresses regulate σB by adaptive pulse amplitude
modulation (APAM).

Mathematical Modeling Shows That the Stressosome Can Enable
Adaptive Pulse Amplitude Modulation. The dynamic response to
environmental stress differed qualitatively from the sustained
frequency-modulated stochastic pulsing previously observed in
response to energy stress (Fig. S1 C and D) (23). To understand
this difference, we adapted the mathematical model previously
developed to explain σB energy stress response to the case of
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Fig. 1. σB general stress response pathway shows adaptive pulse amplitude modulation (APAM) in response to environmental stress. (A) The σB environ-
mental stress response circuit (schematic). The stressosome (orange) controls the availability of RsbT (purple), the positive activator of RsbU. Active RsbU
dephosphorylates RsbV (blue), which can bind RsbW (red), releasing σB (green) to activate target promoters, including its own operon (shown). Activation of
the σB operon increases expression of RsbX phosphatase (gray), which counteracts activation of RsbT. Energy stress is transduced by a different RsbV
phosphatase (Fig. S3). (B) Time-lapse microscopy of cells containing a PsigB-yfp promoter reporter reveals a single pulse in response to sudden addition of
ethanol. (C) Time traces of PsigB-yfp promoter activity. Each curve represents the response of single-cell traces averaged over four colonies (two colonies on
2 d, n = 4). Error bars represent the single-cell variation (SD) in response. (D) Peak amplitude increases with increasing ethanol, whereas the duration of
the response remains approximately constant. Error bars represent SD of the average colony peak amplitude or duration.
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Fig. 2. Modeling predicts the σB pathway is rate responsive. (A) Minimal model of σB circuit where the unphosphorylated activator, A, directly activates
target genes, including its own operon. The activity of A is controlled by the phosphatase, P, and kinase K. (B) σB activity depends on the rate that free
phosphatase is increased. Fast release of phosphatase (Upper Left) results in a pulse of σB activity (Lower Left). Slow release of phosphatase (Upper Right)
results in attenuated σB activation (Lower Right). (C) Dependence of σB activation on ramp time, τ, and final ramp amplitude. Purple, red, and green curves
correspond to ramp amplitudes of 0.5, 1, and 2, respectively.
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environmental stress (Fig. 2A) (23). In that model, fluctuations in
the levels of RsbQP phosphatase due to transcriptional noise
triggered pulses of σB activity.
The environmental stress pathway contains two regulatory

components that are not involved in the response to energy stress
(Fig. S3): First, environmental stresses are transduced by a ∼1.8-
Mda supramolecular complex, called the stressosome (28). In
the unstressed state, the stressosome sequesters RsbT, a required
cofactor of the phosphatase RsbU. This cofactor is released
upon exposure to stress, leading to dephosphorylation of RsbV
and consequent activation of σB (SI Text). Second, an additional
negative feedback loop controls phosphatase activity: σB acti-
vates expression of RsbX (36), which enables the stressosome to
sequester RsbT, reducing σB activation.
To incorporate the stressosome into the model, we assumed

that the phosphorylation-based stressosome dynamics were much
faster than those of the σB-dependent transcriptional feedback
loop, where σB activates its own operon. In this regime, a step in
stress leads directly and instantaneously to a corresponding in-
crease in RsbTU phosphatase activity (purple line, Fig. 2B). This
activates σB, increasing production of kinase (RsbW, or K in the
model) (red line, Fig. 2B, Left). Eventually kinase activity
exceeds the higher level of phosphatase activity, shutting the
system back off, after producing a single, adaptive pulse (black
and yellow lines, Fig. 2B). In contrast to the sustained pulses that
occur in the energy stress model, the one-time release of RsbT
from the stressosome due to the step in stress results in a single
adaptive pulse of σB, as observed experimentally (Fig. 2B). The
model also predicts that the pulse amplitude depends on the
level of stress applied, which is again in close agreement with
experimental results (Fig. S4).
This model predicts that the amplitude of a pulse should de-

pend strongly on the rate at which stress levels increase. This
“rate-responsive” property can be analyzed by reducing the speed
of phosphatase release in the model. When phosphatase release is
sufficiently slow, σB activation of its own operon causes RsbW (K)
to accumulate, shutting off σB activity before all of the phospha-
tase has been released and thereby reducing σB pulse amplitude
(Fig. 2B, Right). Thus, different rates of stress increase generate
different levels of σB activation (Fig. 2C).
In the model, the RsbX-mediated feedback loop was not

required to produce dynamics similar to those observed ex-
perimentally. To test this prediction, we constructed a strain
(ΔFBrbsX) where the endogenous rsbX gene was replaced by an
isopropyl β-D-1-thiogalactopyranoside (iptg)-inducible copy
(Fig. S5A). When RsbX was induced to levels that produced
similar σB activity to that of the reporter strain, the σB pulse
dynamics were strikingly similar (Fig. S5 B and C). Thus, the
absence of the RsbX feedback loop does not affect the dy-
namics of environmental σB activation under the conditions
tested. However, the RsbX feedback does play other roles:
First, it increases the input dynamic range of the system, ef-
fectively making the response to ethanol more linear than it
would otherwise be (Fig. S6A). Second, it reduces gene ex-
pression noise in σB activation (Fig. S6B). Both of these roles
are consistent with previous analysis of negative feedback loops
(37–39).
To further test this model, we examined a strain expressing an

inducible σB operon, but lacking rsbW (40) (Fig S7A). As pre-
dicted, this strain exhibited sustained activation of σB (Fig. S7B).
In a different strain containing an inducible sigB operon (40), the
response to ethanol showed reduced adaptation, suggesting that
feedback through rsbW expression is necessary for full adapta-
tion, although other interactions could also contribute, as partial
adaptation occurs in the absence of rsbW (Fig. S8). Together,
these results show that the simplified σB model is sufficient to
reproduce the qualitative difference between energy and envi-
ronmental stress dynamics.

Environmental Pathway Is Rate Responsive, Enabling Cells to Activate
σB Under Fast, but Not Slow, Stress. To test whether σB activation is
indeed rate responsive, we grew our reporter strain in a micro-
fluidic device that allowed precise dynamic modulation of envi-
ronmental conditions (Materials and Methods). We then compared
the σB response to an instant or gradual (ramped) increase from
0 to 2% (vol/vol) ethanol, with ramp times varying from 0 to 400
min (Fig. 3). We found that both the peak and total σB were rate
responsive (Fig. 3C and Fig. S9), similar to model predictions.
Some differences were noted at longer ramp times. For example, a
400-min ramp resulted in almost no detectable σB activity. Overall,
the agreement between model and experiment is remarkable,
considering cells have undergone a few cell divisions over the
longer ramps times. σB-independent cell cycle effects do not ap-
pear to affect rate responsiveness. Moreover, this rate-responsive
property was not specific to ethanol, as similar behavior was ob-
served with salt stress (Fig. S10).
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What functional role could the rate-responsive activation of σB
provide for the cell? We hypothesized that the cell uses σB to
provide rate-responsive activation of target genes that should
be activated by rapidly increasing environmental stresses of any
kind, while using σB-independent regulators to provide rate-in-
dependent regulation of genes that are more specific to a partic-
ular stress. In this scheme, σB would enable cells to cross-protect
under fast, but not slow, stresses. In fact, stress response genes can
be classified into distinct groups depending on their response to σB:
There are pure σB target operons, σB-independent stress response
operons, and mixed target genes that are activated by both σB
and another regulator (Fig. 4 and Table S1).
To test this hypothesis, we examined the stress activation dy-

namics of OpuE, a mixed stress response gene encoding a trans-
porter. opuE expression is controlled from σB and σA promoters,
both of which are activated under salt stress (41). The presence of
the σB-independent regulatory pathway should make activation of
OpuE under salt stress less rate responsive than a pure σB-de-
pendent target. As predicted, a PopuE-yfp reporter was rate in-
dependent, showing similar levels of activation in response to
a step or a 400-min ramp from 0 to 0.4 M NaCl (Fig. S11). This
contrasted with a pure σB reporter, which was activated more
weakly by the ramp than by the step (Fig. S10). Critically, when
a different stress (ethanol) that activates only the σB promoter was
applied, PopuE-yfp was again rate responsive (Fig. S12). Thus,
consistent with the hypothesis, opuE is activated by fast and slow
increases in salt stress, but only by fast increases of other stresses.
To test whether this type of rate-dependent cross-regulation

occurred more broadly, we analyzed the genome-wide tran-
scriptional response of cells to a step or a 400-min ramp in salt
(0–0.36 M NaCl) or ethanol (0–1%). We used RNAseq to ana-
lyze the resulting changes in gene expression (Fig. 4A). In both
datasets, annotated σB target genes were far more likely to be
rate responsive than other genes, and the strongest rate-re-
sponsive genes were mainly found among known σB targets (Fig.
4A), consistent with rate-responsive activation of the σB regulon.
Genes not categorized as σB target genes, which displayed sig-
nificant rate responsiveness, were examined in further detail
(Table S2). Only one, katX, was heavily up-regulated and rate

responsive in both stresses, consistent with previous reports (42),
suggesting it may be directly regulated by σB.
Using these data, we tested the hypothesis that fast stress, by

inducing σB, leads to greater cross-regulation and that slow stress,
by minimizing σB activation, conversely, leads to more specific
responses. We identified the subset of genes that were up-regu-
lated in response to each of the four conditions (a step or ramp of
ethanol or salt). As expected, steps in stress level produced a
much greater overlap in the regulatory response than ramps (Fig.
4B). Furthermore, this overlapping response was highly enriched
for σB targets (49 of 64 overlapping genes are σB targets). These
results show that the rate-responsive property of σB enables the
cell to generate a more similar response to fast stresses, while
responding more specifically to the same stresses when applied
slowly (Fig. 4C).

Discussion
Several dynamic features of the σB environmental response are
notable. First, it shows a clear adaptive response to step increases
in stress, with the magnitude of stress controlling the amplitude of
the response (Fig. 1). This type of behavior has been seen in other
bacterial systems, such as chemotaxis, which are sensitive to
changes in their inputs, rather than to absolute levels (43, 44), as
well as in mammalian signaling pathways (45, 46). Second, unlike
the strikingly heterogeneous response to energy stress, the re-
sponse to environmental stress is homogeneous across cells (Fig.
S1). Third, the system is rate responsive, with faster stresses
leading to larger and sharper activation of σB (Fig. 3).
This dynamic behavior can be achieved with a strikingly simple

circuit design. A key feature is a transcriptional negative feed-
back loop based on up-regulation of RsbW by σB, which leads to
adaptation in response to increased stress. Other interactions
could also contribute to the adaptive behavior observed here
(Fig. S8). For example, it was reported that RsbT could become
unstable once released from the stressosome, which would pre-
vent the system from maintaining a strong activation level after
a step increase in stress (47). Activation of σB requires an ele-
ment that can transduce the total level of stress rapidly enough to
“outrun” this negative feedback loop. The stressosome appears
to provide this critical function. Its role as a signaling hub has
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been discussed previously, but the present work suggests that an
important additional role is its ability to rapidly release a strong
bolus of phosphatase to activate the system before transcrip-
tional activation of RsbW shuts it off again.
A simple mathematical model of the σB circuit demonstrates

that the key features of the σB pathway described above can
generate the experimentally observed adaptive pulse response to
stress (Fig. 2). The parameters (e.g., transcription rate, phos-
phorylation rate) used in this model are the same as those used
to model the response of the σB circuit to energy stress (23).
Thus, our simulations are a prediction of the circuit behavior
under environmental stress and not just a fit to the data. This
demonstrates how simple “toy” models of gene regulatory net-
works can make experimentally testable predictions.
As shown above, these dynamic features make the system re-

sponsive to the rate at which stress increases and thereby enable the
cell to broadly activate diverse stress response pathways in response
to a single stress. However, under what circumstances should a cell
activate all responses rather than just respond to the particular
stress immediately present? Our results suggest that the σB re-
sponse is overlaid on the more specific stress responses, with a mag-
nitude that increases with the speed at which stress levels increase.
To implement this strategy, the cell must effectively choose

a timescale such that stresses faster than this timescale activate
the broad response whereas slower ones preferentially activate
only the more specific responses. Biologically, this timescale
reflects an evolved “expectation” about how far in advance the
cell needs to prepare for an upcoming stress. It will be interesting
to try to understand what selective forces affect this timescale
and whether it varies among stresses and between species.
In fact, it will be particularly interesting to explore the dynamic

behavior of general stress response pathways in other species. σB
has orthologs in diverse Gram-positive bacteria that may respond
to different stresses and with different dynamics. A particularly
interesting case is Streptomyces coelicolor, which contains nine
distinct σB paralogs, responding to different stresses (48), pro-
voking the question of how this system controls the overall

response of the cell to stresses of varying types and speeds. Finally,
general stress response pathways in eukaryotes have also been
observed to be highly dynamic (4, 49), but their responses to time-
varying stress levels have not yet been explored. It will be in-
teresting to see whether the ability to broaden genetic responses to
stresses in a rate-responsive way is a conserved function of general
stress response pathways.

Materials and Methods
Strains and Growth Conditions. B. subtilis strains were PB2 derivatives. Most
strains included knockouts of rsbQP, the mediator of energy stress, and ytvA,
the light-activated stressosome sensor (SI Text). Cells also contained a fluo-
rescent reporter of σB activity. Strains were started from glycerol stocks and
grown in Spizizen’s minimal media (50) and prepared for microscopy using
agarose pads (31) or analyzed using a Cellasic ONIX microfluidic platform
with cells in logarithmic phase growth. For more details regarding the strain
construction and growth please refer to SI Text.

Microscopy. Cells were imaged with a Nikon Ti-E inverted microscope, using
an automated time-lapse imaging platform. During ramp experiments, cells
were loaded onto a Cellasic bacterial plate (B04A) and exposed to increasing
concentrations of stress via the microfluidic system. Fluorescent Images were
captured using a CoolSnapHQ2 and analyzedwith customMATLAB software.

RNAseq. For experiments in Fig. 4, cells were prepared by step or ramped
addition of either salt or ethanol. RNA was harvested 15–20 min after the
final addition of either stress. Subsequently, a transcriptome library was
created using the Epicentre ScriptSeq v2 kit and submitted for sequencing at
the California Institute of Technology (Caltech) Sequencing Core Facility.
Libraries were sequenced using the Illumina(Solexa) protocol and pipeline,
aligned with Maq and Cisgenome, and analyzed using DESEq (51) and
MATLAB. For more details, see SI Text.
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