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Next-generation sequencing is revolutionizing genomic analysis,
but this analysis can be compromised by high rates of missing true
variants. To develop a robust statistical method capable of identi-
fying variants that would otherwise not be called, we conducted
sequence data simulations and both whole-genome and targeted
sequencing data analysis of 28 families. Our method (Family-Based
Sequencing Program, FamSeq) integrates Mendelian transmission
information and raw sequencing reads. Sequence analysis using
FamSeq reduced the number of false negative variants by 14–33%
as assessed by HapMap sample genotype confirmation. In a large
family affected with Wilms tumor, 84% of variants uniquely iden-
tified by FamSeq were confirmed by Sanger sequencing. In chil-
dren with early-onset neurodevelopmental disorders from 26
families, de novo variant calls in disease candidate genes were
corrected by FamSeq as Mendelian variants, and the number of
uniquely identified variants in affected individuals increased pro-
portionally as additional family members were included in the
analysis. To gain insight into maximizing variant detection, we
studied factors impacting actual improvements of family-based
calling, including pedigree structure, allele frequency (common
vs. rare variants), prior settings of minor allele frequency, se-
quence signal-to-noise ratio, and coverage depth (∼20× to
>200×). These data will help guide the design, analysis, and in-
terpretation of family-based sequencing studies to improve the
ability to identify new disease-associated genes.

DNA sequencing | single-nucleotide variant | variant calling | disease–gene
study | Bayesian network

Challenges in using whole-genome sequencing (WGS) data for
identifying rare DNA variants responsible for heritable dis-

ease include high false negative (FN) rates and the need to
minimize the number of false positive (FP) variants to reduce the
total number of variants for subsequent validation. Family-based
sequencing designs have been applied to gene discovery for sev-
eral diseases (1–3). Methods for calling variant positions in DNA
sequence data include short oligonucleotide analysis package 2
(SOAP2) (4), sequence alignment/map tools (Samtools) (5), and
genome analysis toolkit (GATK) (6, 7). When assessing data from
related individuals, simple filtering can remove variants that do
not conform to Mendelian transmission expectations, thereby
reducing FPs. However, this approach does not reduce the
frequency of FNs, and it removes all de novo mutations (8).
There are approaches that borrow information across neighbor-
ing variants through family-based haplotype phasing (9, 10). As
an orthogonal approach, integrating Mendelian inheritance and
raw data of family members at a single position can reduce both
FPs and FNs and has been implemented in variant calling tools
for family trios (9, 11). In recent simulation studies, Li et al. (12)
showed that joint variant calling in data from extended families
will further improve detection of Mendelian variants and reduce
FP de novo mutations. However, a limitation of their study is that
simulations cannot incorporate many sources of variations that
are observed across millions of positions within a sample and
across samples and families. Their study did not evaluate variant
positions with base coverage greater than 40×, nor compare data

generated by targeted versus WGS; they did not compare the
performance of family-based calling for founder versus non-
founder or for common versus rare variants. Thus, evaluation of
a family-integrated method under real settings across many
individuals is required to prevent underestimation of its actual
contributions to identifying rare variants in families.
In addition, accurate variant calling and decreased FN rates

(FNRs) enable the development of more efficacious and efficient
studies that incorporate decisions about study design (who
should be sequenced first in a large family and at what sequencing
coverage), data analysis (setting up unknown parameters), and
results interpretation (distinguishing true variants from FPs for
functional association). Knowledge of factors contributing to
accurate variant calling in families facilitates these decisions.
We have developed a family-based variant calling program

(Family-Based Sequencing Program, FamSeq) that provides a
confidence measure for variant calls using data from all family
members and builds on Bayesian networks (13) and the Markov
chain Monte Carlo (MCMC) algorithm (14). We used this method
to perform simulation studies and analyze sequencing data from
28 families [one from the HapMap (Haplotype Map) project, one
with Wilms tumor (WT), and 26 with mitochondrial neuro-
developmental disorders] presenting various pedigree structures.
Compared with variant calling using a single-individual-based
method or using only a family trio (14%), FamSeq reduced FN
variant calls by 33% in the extended HapMap pedigree. In the
analysis of actual data from one family, FamSeq resulted in the
identification of an additional ∼300 to ∼1,200 new variant posi-
tions in WGS that otherwise would have been undetected using
the Single method.
Our goal is to provide a method for rare variant detection and

to guide the design and analysis of a family-based sequencing
study. We describe and validate our method, then describe sim-
ulations and analyses of 92 samples from 28 families. We present
a comprehensive investigation of factors that may determine the
improvements achievable by our family-integrated method on
a per-person and per-position basis. We also illustrate the effect
of annotating Mendelian variants in studying either dominant or
recessive traits.

Results
FamSeq. Fig. 1 describes the FamSeq framework. This method
provides a confidence measure for genotype calls, which is a
posterior probability Pr(GijD,P). Here G denotes genotype, i
denotes an individual, P denotes pedigree structure, and D is a
vector that denotes sequencing data, including read counts, base
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quality, and mapping quality, for all n family members (individual
i and relatives). Incorporating data from family members,
Pr(GijD,P) allows for accurate variant calling when the data from
person i are not informative, perhaps due to a weak signal-to-
noise-ratio, by borrowing strength from all relatives (Fig. 1B).
Here we measure the signal-to-noise-ratio using the ratios of the
likelihood estimates (Pr(DijGi)) for the twomost likely genotypes.
FamSeq has included probabilities of de novo mutations. It allows
for variable pedigree size (n > 3) and structure. In addition to
using the Elston-Stewart algorithm as in Li et al. (12) for pedigree
analysis, we implemented two unique approaches, Bayesian net-
work and MCMC. The Bayesian network approach directly cal-
culates joint probabilities for each combination of genotypes of
all family members and allows for analytic calculation in pedi-
grees with marriage loops and/or consanguinity, as long as they
form directed acyclic graphs. This method gives faster computa-
tion than the Elston-Stewart algorithm with or without loops in
pedigrees of size less than 7. The MCMC method allows for the
use of continuous probability density functions as priors on the
genotype probability PrðGiÞ and likelihood PrðDijGiÞ, instead of
designating the point mass a priori.

Motivating Example: Family with Inherited WT. Familial transmis-
sion of predisposition to WT, a childhood kidney tumor, is con-
sistent with an autosomal dominant mutation with incomplete
penetrance. Two predisposition genes have been localized by
genetic linkage studies, but neither gene has been identified (15).
We generated WGS data for five members of a large WT family
and focused on a 5.6 MB linkage region on chr19q. Because
genetic linkage has been previously demonstrated, the two dis-
tantly related individuals WTX524-708 and WTX524-000 are
expected to share the same Mendelian variants as individuals
WTX524-709 and WTX524-004 in the trio (Fig. 2). Comparing
FamSeq with GATK (with variant recalibration), we found that
both methods identified 4,920 positions with variant calls in all
four affected family members. FamSeq identified an additional
132 positions and GATK uniquely identified one position.

Sanger Validation. To assess the validity of the FamSeq uniquely
called variants, we performed Sanger sequencing on 57 of the
132 positions, which exist in a subregion and meet an additional
requirement of presenting reference calls in the unaffected fa-
ther. This four-variants-plus-one-reference filtering procedure is
designed to prioritize variants potentially important for WT and
was performed on both FamSeq and GATK-based calls. We
obtained reliable Sanger results on 38 FamSeq-unique positions
and confirmed that 32 (61 variant calls) are true (SI Appendix,
Table S1). Our validation rate is 61/73 = 84% (95% confidence
interval: 75–92%). Among the confirmed FamSeq-unique var-
iants, 17 (53%) are rare (not reported or at a minor allele
frequency of less than 5%). Other than one position where
FamSeq corrected a call from the variant by GATK to reference
in the unaffected father, the FamSeq-unique positions were
missed by GATK because they were (i) called as reference in one
affected individual, (ii) removed during variant quality score
recalibration, or (iii) had variant calls at a tranche level of 99.9–
100 or lower.
Using simulated and actual data, we identified variables that

determine the possible improvements from using our family-based

analysis. From here on, we compare FamSeq with the Single
method based on their posterior probabilities. First, we describe
the results based on simulations.

Genotype Configurations. FamSeq improved the accuracy in all
Mendelian genotypes (15 scenarios for a family trio, Fig. 3A) and
made substantial improvements in two scenarios: (i) at positions
where all family members have reference genotypes, FamSeq
corrected FP calls (∼30%; SI Appendix, Fig. S1), and (ii) at
positions where a single parent and child carry heterozygous
variants, FamSeq corrected FN calls (20–40%; SI Appendix, Fig.
S1). FamSeq identified true Mendelian positions that were er-
roneously called as variants by the Single method, as shown by
the red cells in the heatmap of Fig. 3A. For example, at truth = 000,
FamSeq reduced discordant calls of 001; at truth = 101, again
FamSeq reduced discordant calls of 001 and 102, made by the
Single method. When the de novo mutation rate is high [1 × 10−5,
compared with variants with minor allele frequency (MAF) of
0.01; SI Appendix, Fig. S1B], FamSeq missed 34% of true de novo
mutations correctly called by the Single method, suggesting
possible underestimations. We made similar observations with a
family quartet.

MAF. The MAF parameter is used for computing prior probabil-
ities of genotypes, Pr(G), in FamSeq and the Single method and is
mostly unknown (Fig. 3B). Setting different values of MAF (from
10−5 to 0.5) switches the balance between the FNR and FPR in
the Single method. As MAF increases, FNRs decrease and FPRs
increase. With FamSeq, not only are both error rates lower at all
values, but as the MAF varies, the changes in FNRs and in FPRs
in the children, and changes in FNRs in the parents, are much
attenuated; that is, error rates are less dependent onMAF values.
Therefore, by jointly calling variants in all family members, we can
set the sameMAF at all base positions, for example 0.001, without
compromising the detection of true variants.

Family Size and Pedigree Structure. Starting from a parent–child
pair, FamSeq reduced both FNR and FPR when we included the
second parent (family size = 2 to size = 3), and then added
another sibling (size = 3, 4) (Fig. 3C). Interestingly, adding more
children (size = 4, 5, 6) did not further reduce error rates,
whereas adding the grandparents (size = 5–7) made additional
reductions in both FNR and FPR. When the parental data are

A B Fig. 1. Illustration of variant calling using Fam-
Seq. (A) FamSeqvariantcallingframework. (B)Two
examples in a family trio. We use 0 to denote ref-
erence and 1 to denote heterozygous variant. The
orderofgenotypespresented in theparentheses is
father, mother, and child. In both cases, FamSeq
gives the child a high posterior probability (>0.9)
for the true genotype even when the child has
a relatively low log10 LLR. This is done in FamSeq
by borrowing strength from data of the parents.
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Fig. 2. A family with Wilms tumor for genomic sequencing of 19q13-linked
region. The family trio is affected mother (WTX524-004), unaffected father
(WTX524-029), and affected child (WTX524-709). Two affected distant rela-
tives (WTX524-708, WTX524-000) are also sequenced.
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not available, we also observed improvements made by FamSeq
in analyzing all siblings together (size = 3, FNR 23.5% vs. 13.3%,
FPR 0.5% vs. 0.4%). This has important implications when
prioritizing individuals from a larger pedigree to accurately and
comprehensively detect rare DNA variants.

Contribution to Family Members. The reduction in error rates using
FamSeq is membership-dependent (Fig. 3 B and C). FNRs are
better controlled in parents than in children. FPRs are better
controlled in children than in parents (founders), which reduces
the cost of subsequent sequence verifications. Both reduce the
FPs in calling de novo mutations in children. Accordingly, when
grandparents’ data are available, the FPRs in the corresponding
parent (nonfounder) decrease substantially, which improves the
detection of de novo mutations in children.
Next, we present results from the analysis of sequencing data

in extended families (SI Appendix, Table S2).

WGS Data Analysis. We analyzed a three-generation HapMap
WGS dataset of five samples. In the whole genomes of HapMap
samples, FamSeq found 1,179, 317, and 494 new variant positions
across all samples when analyzing pedigrees g3 (grandparent trio),
c3 (child trio), and a5 (all five).Within each sample, FamSeq called
∼7,000 to ∼32,000 more variants than the Single method. Samples
with lower coverage (NA12892 at ∼25×; SI Appendix, Tables S2
and S3) benefited most from FamSeq analysis, exhibiting a greater
percentage of increased variant calls.

HapMap Sample Validation. In three samples (mean coverage ∼25–
30×), we compared FamSeq calls with HapMap calls at ∼1
million single-nucleotide polymorphism (SNP) positions (16) (SI
Appendix, Table S3). Homozygous genotypes are more easily
identified than heterozygous variants (17). Using known SNP
data, we combined all homozygous SNP positions as true neg-
atives and used all heterozygous SNP positions as true positives,
from NA12878, NA12891, and NA12892 (∼400,000 true pos-
itives for each sample). As expected, FamSeq called more posi-
tions at high confidence (7–29% fewer no call positions) and
identified more true variants with percent reduction in FNs of
14–33%, and without substantially increasing the number of false
discoveries (1–3%; Fig. 4A and SI Appendix, Table S3). In par-
ticular, comparing pedigrees c3 and a5, we observed a statisti-
cally significant difference in the percent reduction of FNs (15%
vs. 33% in NA12878, P < 0.0001). This result is consistent with
simulations comparing sizes of 5 and 7 in the parent (Fig. 3C).

We also observed low sensitivity to varying MAF values in var-
iant calling when using FamSeq (SI Appendix, Fig. S2). In con-
trast to the simulations, we did not observe a decrease in FPs in
the child (NA12878 in g3). One explanation is we derived the
input likelihood estimates from GATK, which may aggressively
filter out FPs, but at a price of missing some true positives.
This validation was performed at HapMap SNP positions,

including all common SNPs whose known genotypes may have
been used for calibration by GATK. Additionally, most of these
SNPs (98%) are located in the noncoding region. Therefore, we
look for larger improvements from using FamSeq for finding rare
DNA variants at sequence sites where variant calling in the
Single method has not been optimized.

Targeted Sequencing Data Analysis in Families with Mitochondrial
Neurodevelopmental Disorders. These families vary in size from 2
to 7 and include single-parent, nuclear, as well as three-generation
families (SI Appendix, Table S2). In each individual, we sequenced
524 nuclear-encoded mitochondrial candidate genes (18, 19) and
focused our analysis on 962 Kb of coding regions in autosomes.
We observed a significant increase in new variants called by
FamSeq in the parents (Fig. 4B and SI Appendix, Table S4;
FamSeq vs. Single method at size = 3: Kolmogorov-Smirnov test
P < 0.001; FamSeq vs. Single method at size = 4: P < 0.001;
FamSeq at size = 3 vs. size = 4: P < 0.001, FamSeq at size = 4 vs.
size > 4, P = 0.06). We measured the significantly increased
number of variants as related to family size in a total of 45 indi-
viduals from 25 different families, thus accounting for biological
and technological variations between different sequenced indi-
viduals. We are currently validating these positions using Sanger-
based sequencing, which may facilitate finding the unknown gene
defects in these families. We did not observe significant increases
in variants in the children (Fig. 3C and SI Appendix, Fig. S3).
However, the approximate reduction in FNRs (estimated by %
FamSeq-unique variants) in the three-generation pedigree was 1–
5%, which is substantially larger than the 0.1% observed at HapMap
SNP positions (SI Appendix, Table S5) indicating the power of
FamSeq in detecting rare variants. In three of these families, we
found 15 unique variant positions (SI Appendix, Table S5) that are
not reported in the Single Nucleotide Polymorphism Database
(dbSNP) or the 1,000 Genomes Project, nine of which are non-
synonymous. We also analyzed family MTF04 in three ways: trio,
trio plus either pair of grandparents, and trio plus both pairs of
grandparents. Interestingly, compared with the Single method for
this family, only the extended pedigree (size = 5 or 7) analysis

A B C

Fig. 3. Simulation results. (A) Highlighted results from a full simulation of all possible genotype configurations of a family. Each row is the simulated
genotype for the family trio (father, mother, child). Here, 0 is homozygous reference, 1 is heterozygous variant, and 2 is homozygous variant. Each heatmap
entry is the percent reduction in discordance from using the Single method to using FamSeq. The values on the diagonal are equal to the sum of all other 63
values in the same row. Only 27 columns are shown. Additionally, there are 37 columns with genotypes containing “no calls.” The corresponding complete
results can be found in SI Appendix, Fig. S1. The barplot on the right presents the frequency for observing each configuration. (B) Targeted simulation to
evaluate effect of MAF. F stands for FamSeq and S stands for single method. (C) Targeted simulation to evaluate effect of pedigree size and structure.
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found new positions in the affected child. This illustrates the
limitation of the Single method in detecting rare DNA variants
and demonstrates the power of using multigeneration pedigrees
to detect rare variants.

Coverage and Log Likelihood Ratios. FamSeq improved variant
calling in both WGS and targeted sequencing (TS) data at mean
base coverages from 25× to 1,200×. In the HapMap WGS data
(mean coverage 25–60×), FamSeq improved accuracy primarily
at positions with low-to-moderate coverage (15–20×; Table 1 and
SI Appendix, Fig. S4). NA12892 had the lowest mean coverage
(25×) and presented the biggest reduction in error rates among
the three samples (Fig. 4A). Compared with the WGS data, the
TS data have a wider range of mean coverage (200–1,200×).
However, FamSeq still called 1.2% more variants overall, at
coverage from 11 to 600× (median 24×; Fig. 4C and SI Appendix,
Fig. S3). To explore why, we correlated base coverage with log
likelihood ratio (LLR) (input for FamSeq) in all sequence data.
We expected a genotype-specific linear relationship between LLR
and coverage (SI Appendix, Fig. S5, r = 0.87 for heterozygotes, r =
0.80 for homozygous positions), which can be derived analytically
from the underlying binomial distribution used by Samtools and
GATK (20). FamSeq strengthens signals at positions with a low
LLR (LLR < 10). Therefore, it can improve variant calling in
sequencing data at positions with coverage 20× or lower. How-
ever, in TS data where most positions are at high coverage,
FamSeq called more variants in 381 positions, 234 (61%) of which
have high coverage (>20×) but still low LLR (<10), and thus show
a relationship that varies from the expected linear relationship
(Fig. 4C and SI Appendix, Fig. S5).

Discussion
We have developed a family-integrated method, FamSeq, which
uses Mendelian transmission information to inform the calling of
variants in raw sequence data. Such joint variant calling has been
reported to improve variant detection using simulated data (12).
In simulations, we identified factors that may affect the level of
improvements made by FamSeq, including family genotype con-
figurations, the prior setting of MAF, as well as pedigree size and

structure. Using actual sequence data from 28 families, we also
evaluated the performance of FamSeq in practical settings, using
WGS (WT family) or TS (families with mitochondrial disorders)
to determine the effect of variables such as known SNPs versus
unknown variants and moderate (20×) versus high sequencing
coverage (>200×). By looking across 45 samples from 25 families,
we accounted for biological and technical variations in real data
and observed a statistically significant increase in variant de-
tection with an increase in family size. From our comparative
analysis of data with truth from two different studies using WGS,
we found that FamSeq increased the sensitivity of variant calling,
while still maintaining specificity. We project that the application
of FamSeq to sequencing data for rare variant detection in fam-
ilies with heritable diseases will yield significant improvements at
low, moderate, and high sequencing coverage.
To be of practical use, variant calling algorithms that use

family data should be computationally efficient and also account
for marriage loops and/or consanguinity. FamSeq uses a Bayes-
ian network to compute posterior probabilities, which results in
fast computation (in minutes for analyzing WGS data) with a
family size less than 7. The use of parallel probability calculations
will extend the utility of the Bayesian network approach to larger
families.
To allow for uncertainty in the estimates of LLRs, which will

further improve variant calling accuracy, FamSeq includes an
MCMC approach. The LLRs represent the signal-to-noise in-
formation from each family member. In 3,600 SNP positions
where both the Single method and FamSeq made mistakes, the
coverage as well as LLRs are higher than the average values,
suggesting a possible bias in the LLR estimates (SI Appendix, Fig.
S4). Thus, when variances on the LLR estimates are available,
our MCMC approach may be useful to correct variant calling at
more positions. Similarly, variances on the MAF estimates can
be incorporated when available.
The overall improvement by FamSeq is measured on a con-

tinuous scale as increased confidence in the correct call for a
variant or reference position. FamSeq gives a posterior prob-
ability as the confidence measure for variant calls. We compared
this with two confidence measures derived from GATK. First, we

A B C

Fig. 4. Analysis of sequencing data in extended pedigrees. (A) HapMap SNP validation (SI Appendix, Table S3). (B) FamSeq-unique variants found in 45
people (parents) in 25 families affected with mitochondrial disorders. (C) Coverage versus LLR in TS samples. All positions called concordantly by the Single
method and FamSeq are shown in the background as a smoothed scatterplot. Red circles represent FamSeq-unique variants; black triangles represent
Single-unique variants.

Table 1. Mean base coverage of all loci with HapMap heterozygous calls in FamSeq
performance categories

FamSeq

Single Concordant Discordant N

Concordant 32 (sd = 10, n = 1.3M) 51 (sd = NA, n = 1) 16 (sd = 7, n = 126)
Discordant 16 (sd = 7, n = 254) 25 (sd = 11, n = 1784) 14 (sd = 8, n = 74)
N 15 (sd = 7, n = 658) 16 (sd = 8, n = 55) 14 (sd = 7, n = 758)

Cells in bold are where FamSeq improved on Single method (sd, standard deviation; n, the number of loci in
each category).
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examined the quality tranches that used HapMap SNP truths to
define cutoffs; second, the individual-based posterior probability
at positions that passed our hard-filtering criteria. We used the
quality tranches in analyzing the WGS data for the WT family
and used a cutoff at the last tranche level: 99.9–100 (less specific
than other levels). We used posterior probabilities in the other
analyses and a cutoff at 90%, because these analyses are either
for comparison with HapMap SNPs or for TS data (where quality
tranches cannot be reliably generated). We considered any call
with a confidence measure at or below the cutoff as a “no call.” In
the HapMap data, FamSeq reduced the overall no call rate at the
SNP positions by giving reference or variant calls at higher con-
fidence (SI Appendix, Table S3). Changing cutoffs can shift the
balance between the FNR, FPR, and no call rate in the Single
method and in the comparison with FamSeq. Regardless of the
cutoffs, FamSeq provides a confidence measure that incorporates
family information and, compared with the Single method, better
describes the uncertainty of individual genotype calls, which
improves the overall accuracy.
We identify two key questions for balancing cost with ob-

taining adequate data to identify the disease variant of interest.
(i) Who should be selected from a large family for initial se-
quencing? (ii) At what coverage depth should selected family
members be sequenced? FN variant calls are of great concern in
these types of gene identification studies. We found that adding
both parents and then grandparents before adding more siblings
was most effective. One explanation is when the LLRs for the
parents are similar but only one parent has a heterozygous var-
iant, adding data from one set of grandparents (the parents of
one parent) can break the tie and help identify which parent
carries the variant, whereas adding data from more children
cannot. Additionally, we determined that WGS data generated at
an average of 25–30× coverage per person will most benefit from
FamSeq analysis. While overall coverage in the WT data were
∼30×, about 5–20% of all base positions had a coverage of <20×
nevertheless. FamSeq was highly beneficial in correcting calling
errors made at these positions (Table 1). In sequencing data
(especially TS data) generated at an overall high coverage (200–
1,200×), FamSeq is still valuable for variant calling as there will
still be positions with low coverage and also positions with high
coverage but small LLR (<10). These outlier positions are likely
caused by sequence-specific technical errors, allelic imbalance, or
other unobservable factors.
We identified factors that can facilitate the analysis and in-

terpretation of family sequencing studies. Using simulations with
FamSeq analysis, we showed the choice of MAF had little effect
on the FNRs and FPRs in children, and the FNRs in parents, but
can still affect the FPRs in parents (Fig. 3C). This remaining
effect can be alleviated in two ways: (i) setting an MAF of 0.001
or less to control for the FPR, while maintaining the power to
detect true variants by using FamSeq, and (ii) prefiltering FP
positions, which appear to be implemented in GATK for
HapMap SNPs (SI Appendix, Fig. S2; little reduction in FPR by
FamSeq was observed with the HapMap sample originally pro-
cessed by GATK). For comparison, we observed FamSeq sub-
stantially reduced the FPR in HapMap SNPs on data generated
by Samtools, which is less suited to removing FPs.
In both simulations and real data (Fig. 3A and SI Appendix,

Figs. S1 and S4 and Table S3), we showed that FamSeq can
mistakenly change calls from the individual-based method, al-
though this happens rarely compared with the corrections it
makes (1–3% vs. 14–33% in HapMap SNPs, P < 0.001). There-
fore, when comparing results from the Single method and FamSeq,
we suggest giving high priority to positions at which FamSeq
changed a de novomutation to either aMendelianmutation or to a
reference position, or added variant calls in parents or removed
them in children. This prioritization needs to be integrated into the
generation of lists of validation variants. In general, family-based
analysis improves both sensitivity and specificity of calling Men-
delian mutations. However, in the case of de novo mutation calls,
this decrease in FPs may increase FNs in some occasions.

We studied two diseases, one with a dominant trait and one
with suspected recessive inheritance. For the family affected with
WT (autosomal dominant), we took advantage of the large ped-
igree (Fig. 2) and previous linkage mapping and used a 3+2 de-
sign: a family trio with affected parent and child and two affected
distant relatives. Sequence variants identified in the affected
mother and son and two other relatives but not in the unaffected
parent are candidates for follow-up analysis. For further se-
quencing, we prioritized the grandparents of the trio to uncover
additional variants. Linkage information was not available for the
families with mitochondrial disease, which is a genetically and
clinically heterogeneous (18) group of disorders, making disease-
related gene discovery very challenging. One approach relies on
filtering against public SNP databases for genes with two rare
functional variants (homozygous or compound heterozygous)
present only in the affected individuals (1). Notably, an analysis
of our targeted sequence data of 524 genes identified relatively
more recessive candidate genes in the larger families (e.g.,
MTF04) compared with smaller families. These positions are
being validated.
Our method is implemented in a C++ based software called

FamSeq, which is freely available. It can process variable pedi-
gree structures and accommodate de novo mutations. It contains
three approaches: a Bayesian network, an MCMC algorithm, and
the Elston-Stewart algorithm. For a variant call format (VCF)
file containing 3.5 M variant positions for a pedigree of seven
members without loops [on an Intel(R) Xeon(R) processor
with a CPU at 2.93 GHz], the respective computing times are 550
s, 550 s, and 10,000 s (10,000 iterations) for the Bayesian net-
work, Elston-Stewart, and MCMC, respectively. When a loop is
added to this pedigree, we observe little change in computing
times for the Bayesian network and MCMC methods, but can
increase time of at least 20–50% for loop-cutting within the
Elston-Stewart algorithm (21). FamSeq is a stand-alone module
that can be integrated with existing analysis pipelines of data
generated from different high-throughput platforms, both se-
quencing-based and array-based data (5–7, 17). Our method can
be extended to give joint posterior probabilities for calling short
indels in sequenced families (6). Thus, FamSeq provides a fascile
and flexible means of reducing FN sequence calls, and will greatly
aid in identifying disease-causing variants in next-generation
sequencing studies.

Methods
Individual-Based (Single) Method. Let Di denote the raw sequencing
measurements—that is, read counts, read quality, and mapping quality—
and Gi denote the genotype for sample i. For a family of nmembers, we use D
to denote a vector {D1;D2; . . . ; Dng and G a vector {G1;G2; . . . ; Gng. GATK5

provides likelihood estimates PrðDi jGiÞ in VCF files. By following Bayes’ rule,
the genotype posterior probabilities are calculated as PrðGi jDiÞ∝PrðDi jGiÞ
PrðGiÞ, where the prior PrðGiÞ is the expected genotype frequency in the
population, and is calculated based on the MAF and Hardy-Weinberg
equilibrium.

Family-Based Method (FamSeq). Let P denote the pedigree structure. We
calculate a genotype posterior probability PrðGi jP; DÞ, which incorporates
the actual pedigree structure and raw sequencing data and accommodates
de novo mutations. We use three methods to compute PrðGi jP; DÞ: a Bayesian
network, and Elston-Stewart and MCMC algorithms. FamSeq provides an
updated VCF file that includes the family-based variant calling results and
posterior probabilities.

Bayesian Network. By treating the entire pedigree as a Bayesian network, we
write the posterior probabilities as PrðGjP;DÞ∝∏n

i = 1PrðDi jGiÞPrðGi jGfi ;Gmi Þ,
where Gfi and Gmi denote the genotype of sample i’s father and mother. If
sample i is the founder of the family, PrðGi jGfi ;Gmi Þ= PrðGiÞ. If sample i is not
the founder, we calculate PrðGi jGfi ;GmiÞ through Mendelian transmission.
We allow for de novo mutations by assigning to each parental allele a
probability ofm for acquiring a new alteration in the germline. For example,
when both parents’ genotypes are homozygous reference, the probability of
their child having a heterozygous variant would be 2mð1−mÞ, rather than 0.
We set the default mutation rate m as 1e-7 (11).
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MCMC Method. We used the Gibbs sampler (22) to derive posterior proba-
bilities. The full conditionals are shown below:

PrðGi jG−i ;DÞ= Pr
�
Gi

��Gfi ;Gmi ;Gci ;Gsi ;Di
�

∝ Pr
�
Gi

��Gfi ;Gmi

�
∏
Ji

j= 1
Pr
�
Gcij

��Gsij ;Gi

�
PrðDi jGiÞ;

where G−i is all possible genotypes for all relatives of sample i in the pedi-
gree; Gcij denotes the genotype of sample i’s jth child, Gsij denotes the
genotype of the other parent of sample i’s jth child, and Ji denotes the total
number of children of sample i. This method allows us to sample PrðGiÞ and
PrðDi jGiÞ from probability distributions, rather than set them at fixed values.

Full Simulation. To evaluate the contribution of family-based analysis to
improving variant calling accuracy, we simulated all genotype configurations
for a family trio and a family quartet. First, we simulated the two parents’
genotypes at known MAFs. Then based on the parents’ genotypes, we
simulated the children’s genotypes according to Mendelian transmission and
allowing for de novo mutations. We then simulated likelihoods from the
density functions of bivariate normal distributions for each genotype [where
μ is equal to (1.7,1.7), (0,0), and (−1.7, −1.7) for the three genotypes, and Σ is
equal to (0.3,0.15; 0.15,0.3) for homozygous and (0.45,0.225; 0.225,0.45) for
heterozygous genotypes]. We performed this simulation using two settings:
(i) MAF = 0.2, m = 1e-3, 10 million iterations, and (ii) MAF = 0.01, m = 1e−5,
100 million iterations. We then calculated likelihoods PrðDi jGiÞ at the true μ’s
and Σ* at (0.1,0.05; 0.05,0.1). We used different variance matrices to account
for additional technical effects that cannot be observed and estimated.

Targeted Simulation. To evaluate the impact of pedigree size, structure, and
MAF, we fixed the genotype configurations to extensions of (father = 0,
mother = 0, child = 0) and (father = 0, mother = 1, child = 1), and simulated
the raw intensity data based on bivariate normal distributions for each ge-
notype. For pedigree size and structure, we considered the following sce-
narios: size = 2, parent–child pair; size = 3, family trio; size = 4, nuclear
family with two children; size = 5, nuclear family with three children; size =
6, nuclear family with four children, or nuclear family with three children
and one grandparent; and size = 7, two grandparents, two parents, and
three children. For MAF, we considered 0.5, 0.2, 0.1, 0.05, 0.01, 1e−3, 1e−4,
and 1e−5. For each scenario, we repeated the simulation for 1 million times.
There are two different groups, one for computing the FPRs and one for
computing the FNRs. We computed the FPRs in individuals carrying homo-
zygous references and computed the FNRs in individuals carrying hetero-
zygous variants. When there is only one parent/grandparent, the parent/
grandparent is 1. When there are two parents/grandparents, one parent/
grandparent is 1 and the other is 0.

WGSData.Wedownloaded theWGSdata ofNA12891, NA12892, andNA12878
from the 1000 Genomes Project (www.1000genomes.org), and NA12877
and NA12882 sequence data from the Sequence Read Archive (www.ncbi.
nlm.nih.gov/Traces/sra). The data for the first three samples are generated
using GAII and those for the other two are generated using HiSeq2000. We
downloaded the consistent calls from the HapMap Phase II and III merged
genotype data for NA12891, NA12892, and NA12878 (http://hapmap.ncbi.
nlm.nih.gov). Using HiSeq2000, we also conducted WGS of five samples
(one trio plus two distant relatives) from a large pedigree that presented
with Wilms tumor. Our analysis focused on a 5.6 MB linkage region in
Chr19q. In WGS analysis, we filtered out bases that are noted as simple
repeats or segmental duplications by the University of California, Santa Cruz
human genome assembly hg19, and those with total allelic counts less
than 10.

TS Data. We performed DNA sequence capture of 524 nuclear-encoded mi-
tochondrial genes (19) from 92 samples in 26 families (SI Appendix, Table S2)
and multiplex-sequenced all capture libraries using Illumina HiSeq2000, ex-
cept for MTF04-b, c, and d, which were sequenced using MiSeq. Our analysis
focused on a 762 KB region of autosomes.

Methods Evaluation.We calculated the FNR as the rate of reference or no calls
for a true variant genotype, and the FPR as the rate of variant calls for
a reference genotype. We defined concordance as having genotype calls that
are identical to the HapMap truth, and discordance as having genotype calls
that are different from the HapMap truth.

Unique Variant Calls of FamSeq and the Single Method. We combined the
posterior probability of the heterozygous variant with that of the homo-
zygous variant to evaluate the number of unique variant calls added by either
FamSeq or the Single method. We designated a call as a unique variant call
if the method of interest changes the calls from those of the alternative
method in the following ways: reference to variant, no call to variant, or
reference to no call. See SI Appendix for further information on sequencing
data analysis pipeline and Sanger experiments.
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