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Conventional electronics are based invariably on the intrinsic
degrees of freedom of an electron, namely its charge and spin.
The exploration of novel electronic degrees of freedom has im-
portant implications in both basic quantum physics and advanced
information technology. Valley, as a new electronic degree of
freedom, has received considerable attention in recent years. In
this paper, we develop the theory of spin and valley physics of
an antiferromagnetic honeycomb lattice. We show that by cou-
pling the valley degree of freedom to antiferromagnetic order,
there is an emergent electronic degree of freedom characterized
by the product of spin and valley indices, which leads to spin–
valley-dependent optical selection rule and Berry curvature–
induced topological quantum transport. These properties will en-
able optical polarization in the spin–valley space, and electrical
detection/manipulation through the induced spin, valley, and
charge fluxes. The domain walls of an antiferromagnetic honey-
comb lattice harbors valley-protected edge states that support
spin-dependent transport. Finally, we use first-principles calcula-
tions to show that the proposed optoelectronic properties may be
realized in antiferromagnetic manganese chalcogenophosphates
(MnPX3, X = S, Se) in monolayer form.

antiferromagnetism | valleytronics

The exploration of novel electronic degrees of freedom (1–4)
has been a fairly important topic recently because of their

potential in next-generation electronics. The intrinsic degrees of
freedom of an electron, namely its charge and spin, have been
the basis for the society-transforming information technologies,
i.e., electronics and spintronics. Additional electronic degree of
freedom, if present, will offer immense potential for information
encoding and manipulation at the microscopic level. The notion
of valleytronics (1) on honeycomb lattices has received consider-
able attention in recent years (5–10). When the centrosymmetry
of the honeycomb lattice is broken, such as in gapped graphene,
there arises an inequivalent, degenerate pair of valleys in the
momentum–space electronic structure. The valley excitations,
protected by the suppression of intervalley scattering, have con-
trasting optical and transport properties ensured by quantal hel-
icity (5, 6). In the most recent experimental progress in monolayer
group VI transition metal dichalcogenides, the identity of valleys
manifests as valley-selective circular dichroism (CD), leading
to substantial valley polarization with circularly polarized light,
offering a potential arena to the eventual realization of valley-
tronics (7, 9, 10).
Evidently, it is important to broaden the choice of materials,

beyond transition metal dichalcogenides (7–10), with which novel
degrees of freedom (beyond charge and spin) of Bloch electrons
may be accessed. Central to these endeavors are two tasks, namely
developing theoretical paradigms and subsequent materials dis-
covery, the latter of which makes possible experimental meas-
urements that put the theory (5–7) to test (7, 9, 10). In previous
theoretical and experimental developments, attention was paid
to the absence of an inversion center in the lattice space group.
Here, we show that the pseudospin symmetry in the initially sym-
metric honeycomb lattice hints at a nontrivial transformation,

which leads to an emergent degree of freedom characterized by
the product of spin and valley indices. We further propose that
such a fermionic system may be observed on a bipartite honey-
comb lattice that assumes the Néel antiferromagnetism (afm),
which may possess chiral electronic excitation concomitant to the
spin-density wave, as well as spin-dependent transport properties
on the edge states. In the last part of the paper, we use first-
principles calculations to show that the proposed physics may be
realized in antiferromagnetic manganese chalcogenophosphates
(MnPX3, X = S, Se) in monolayer form. We also analyze the
general consequence of symmetry in the afm fermionic honey-
comb lattice. A potential transition to the topologically nontrivial
quantum spin Hall state is briefly discussed.

Theory of the Antiferromagnetic Honeycomb Lattice
Model Hamiltonian. Valley as an electronic degree of freedom has
been suggested in a spinless fermion model on a honeycomb
lattice with a symmetry-breaking perturbation to the sublattices
(5, 6). A honeycomb lattice may be defined as a three-connected
2D net, with the connection vectors for bond length b pointing
toward its three nearest neighbors (NNs), d1;2 = ð±

ffiffiffi
3

p
x̂+ ŷÞb=2;

and d3 = − bŷ. The corresponding lattice constant a=
ffiffiffi
3

p
b. The

two sublattices of a honeycomb structure is conventionally
denoted A and B, respectively, which correspond to a binary
degree of freedom called isospin. The low-energy quasiparticle
states at K ± = ± 4π=3ax̂ are assigned a valley index τ = ±1, in-
dicating the valley contrasting physics. It is tied to physical meas-
urables, such as the orbital magnetic moment, MðK ± Þ= τμ*B,
where μ*B is the effective Bohr magneton (5). Concomitant to the
orbital magnetic moment are nonvanishing Berry curvatures (11),
Ω(K±) = h�M(K±)/ee(K±), where e and e(K±) are the electronic
charge and the band energy at K±, respectively (6).
When the spin degree of freedom (s = ±1/2) is taken into

account, spontaneous symmetry breaking becomes viable in the
dichromatic Shubnikov group. Imposing dichromatic coloring on
the spin and lattice, we propose a spin-full Hamiltonian for the
low-energy quasiparticles near K± of a honeycomb lattice,

HðsτÞ = vF s0
�
τz σx px + τ0 σy py

�
+msz τ0 σz; [1]

where p is the momentum operator and vF is the massless Fermi
velocity. Here, τα, σα , and sα (α = x, y, z, 0) are the Pauli matrices
for the valley, isospin, and spin degrees of freedom, respectively.
The mass term, m, corresponding to a symmetry-breaking per-
turbation, admits a band gap Δ = 2m for both spins. The rele-
vance of the model Hamiltonian will become clear shortly (Eq. 4).
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With the spin-dependent Hamiltonian, MðK ± Þ= 2sτμ*B. There-
fore, the product of spin and valley indices identifies a new de-
gree of freedom of electrons, which we call the coupled spin–
valley, s · τ, degree of freedom. The s · τ index bears the virtue of
a good quantum number, for so long as intervalley scattering is
suppressed it mimics the two spin states of an electron.
As the spinless fermion model describes a nonmagnetic system

(5), the dichromatic Hamiltonian of Eq. 1 represents an anti-
ferromagnetic system. Inspection of Hamiltonian (1) reveals that
the s · τ degree of freedom arises upon engaging the electrons
with a spin-dependent on-site Hubbard potential, UnðsÞj nð−sÞj ,
which characterizes the Coulomb interaction of opposite spins on
site j = A, B. Here, U is the on-site Coulomb parameter, and nðsÞj
the number operator of site j and spin s (12). Within the Hartree–
Fock approximation, the on-site Coulomb energy of two spins
can be decoupled as mðsÞnðsÞj +mð−sÞnð−sÞj , upon an immaterial
energy shift. We define a spin-dependent mass term,

mðsÞ = 2sm; [2]

where

m=
U
2

���
D
nð−sÞj

E
−
D
nðsÞj

E���; [3]

characteristic of an afm spin-density wave (Fig. 1A). It now is
apparent that with the afm order, each spin sees different
potentials on the two sublattices, as represented by m(s) (Fig. 1B)
and described by Eq. 1.
To pinpoint the essential physics of spin and valley on an afm

honeycomb lattice, we analyze a tight-binding Hamiltonian in-
voking the spin-dependent mass term above and an NN hopping, t,

Hk = t′ks0σx + t″ks0σy +mszσz; [4]

which in the neighborhood of K± may be linearized to Eq. 1. The
NN hopping is given as

tk =
X3

j= 1

−t exp
�
−ik · dj

�
≡ t′k + it″k;

where dj are the vectors pointing toward the three NNs. We use
that notation where t′k and t″k are the real and imaginary parts
of tk, respectively. The band structure is shown in Fig. 1C. The
bands are spin degenerate at each k-point. Band gaps Δ = 2m
indeed are opened at the valleys. An ad hoc spin–valley coupling
may be introduced with the parameter δ, as HðSOÞ

k = δszτzσz. The
spin–valley coupling preserves the spin degeneracy, but leads
to a renormalization of the valley gaps. The band gaps become en-
larged at one valley and reduced at the other, that is,Δ = 2(m − τδ).
The fact that spins remain degenerate in this system has to do with
the invariance of the Hamiltonian under simultaneous time re-
versal ðT̂ Þ and spatial inversion ðP̂Þ, although neither T̂ nor P̂
alone commutes with the Hamiltonian. We revisit this symme-
try, Ô≡ P̂T̂ , later in Discussion.

Physics of the Spin–Valley Degree of Freedom. A few interesting
experiments immediately become compelling, to probe and ma-
nipulate the s · τ degree of freedom. When the spin–valley coupling
is absent or weak, the two valleys may be considered degenerate
(Fig. 2A). The system will have s · τ–selective CD, owing to the two
spins adopting opposite masses. That is, the optical selection rule
at Kτ has η(s, τ) = 2sτ, where η is the degree of circular polari-
zation (6, 7), in contrast to gapped graphene (6) and monolayer
MoS2 (7–10), where the optical selectivity depends only on valley.
As illustrated in Fig. 2A, when left-polarized light (σ+) illumi-
nates the sample, spin-up electrons are excited to the conduction
band at K+, as well as the spin-down electrons at K−. On the
contrary, when a right-polarized photon is absorbed, it excites
down-spins of K+ and up-spins of K−.
Berry curvature also induces topological quantum transport

that allows for electric detection of s · τ polarization, via the
anomalous velocity of Bloch electrons, va ∼ E × Ωk, where E is
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Fig. 1. The antiferromagnetic honeycomb lattice. (A) Néel afm of a honey-
comb lattice. ↑ and ↓, staggered spin-density wave. (B) Spin-dependent
lattice potential corresponding to the afm order. (C ) Low-energy quasi-
particle bands of an NN hopping afm Hamiltonian. Solid lines assume zero
spin–valley coupling, whereas dashed lines take into account the spin–
valley coupling. With the hopping parameter t as the energy unit, the mass
and the spin–valley coupling parameter are set to m = 0.4t and δ = 0.2t,
respectively. The zero of energy is set to midgap, the Dirac point energy
when m = 0 and δ = 0. (Inset) Brillouin zone and high-symmetry points.

A B
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Fig. 2. Spin and valley physics of an afm honeycomb lattice. (A) s · τ–
selective CD in the absence of spin–orbit coupling. (B) When spin–valley
coupling is present, the valleys can be doped asymmetrically. (C) Electron
spin (bottom of conduction bands) fluxes under the action of Berry curvature
of the Bloch bands and in-plane electric field. The spin-up and spin-down
currents are shown in blue and green, respectively. Solid and dashed lines
stand for the currents from K+ and K−, respectively. The spin and valley, (s, τ),
indices are indicated in parentheses. E is an applied in-plane electric field.
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the applied in-plane electric field (11). In the above dynamical
polarization of charge carriers, the spin or spin holes under the
action of Berry curvature, Ω(k, s), of the Bloch bands will exhibit
a CD Hall effect (CDHE). Because of the relation with orbital
magnetic moments, both Berry curvature and transversal con-
ductivity (σxy) depend on s · τ. Charge carriers with s · τ = ±1/2
(excitable by left- and right-polarized lights, respectively) will
have opposite transversal conductivity, as shown in Fig. 2C.
Therefore, CDHE is a nonequilibrium charge Hall effect in the
presence of a circularly polarized radiation field.
If we dope the system with electrons or holes at equilibrium,

then an applied in-plane electric field will drive a transversal
“valley” current. Spin currents from all s · τ = ±1/2 contribute
to the transversal transport, resulting in a net accumulation of
valley moments and orbital magnetization at the upper and
lower edges of the sample (Fig. 2C) with zero transverse charge
current. This is the valley Hall effect. In the case of strong spin–
valley coupling, the gaps at K± become different and thus have
different levels of doping. Suppose we dope the system, say, at
K+ with electrons (Fig. 2B). Under an in-plane electric field,
the carriers will produce a net transversal spin current without
charge current, that is, the pair of currents with (s, τ) = (±1/2, 1)
in Fig. 2C. This is the anomalous spin Hall effect (SHE). When
we switch from n-doping to p-doping (Fig. 2B), the SHE will
be characterized by a transversal spin current in the opposite
direction, arising from spin holes.

Domain Walls. Also to be assessed is the topological domain walls
that occur naturally with the afm order, the band structure of
which is shown in Fig. 3A. There are two spin-polarized bands
that arise at the domain wall and intersect to yield a pair of Dirac
points, whereas the bulk states are always spin degenerate. The
spin and momentum clearly are locked at individual Dirac points.
Unlike the edge states in a topological insulator, these edge states
cannot offer the spin-selective channels. However, if a spin is
injected into the edge with a prescribed direction of momentum,
it can migrate ballistically, enjoying the suppression of back
scattering offered by valley protection. It is also of interest to
note that the wavefunctions (Fig. 3B) at the same Dirac points
have opposite parity for opposite spins. The odd and even parity
boundary states may be used as spin and/or valley filters, as linear
defects in graphene (13).

Antiferromagnetic MnPX3

Taking one step from the above theoretical exposition, here we
suggest actual materials in which the proposed spin and valley
physics may be observed. The selection of materials should meet
a few criteria. The candidate materials must (i) have characteristic
afm order on a honeycomb lattice; (ii) be a semiconductor, with
direct band gaps at high-symmetry K+, K−; and (iii) have interband
transitions in the neighborhood of valleys that exhibit CD.
These criteria then lead us to manganese chalcogenophos-

phates, MnPX3, X = S, Se (14), in monolayer form. Manganese
chalcogenophosphates are layered crystalline materials, in which
the interlayer coupling is the relatively weak van der Waals inter-
actions. In principle, all van der Waals–bonded layered compounds
can be thinned to the monolayer limit by the micromechanical
exfoliation technique (15, 16). Hence, monolayer MnPX3 in all
likelihood can be produced. As shown in Fig. 4A, each unit cell
in the monolayer MnPX3 is composed of two Mn2+ and one
[P2X6]

4− cluster, the latter isostructural and isoelectronic to mo-
lecular ethane (C2H6) in the staggered conformation. The most
crucial feature of these compounds is that each Mn2+ ion,
assuming an S= 5

2 high-spin state, is antiferromagnetically
coupled to its three NNs, forming the afm honeycomb lattice.
The spin-density isosurfaces for MnPS3, computed with the

density functional theory (refer to Methods for computational
details), are displayed in Fig. 4B. The spin densities for the up-

and down-spins show little difference on the [P2X6]
4− framework.

However, the densities for two spins on Mn are indeed well
separated and localized on the two Mn ions, providing the
expected spin-contrasting asymmetric potential (Fig. 1B). The
band structures of monolayer MnPX3 are shown in Fig. 5A. We
observe that the band widths near the band gap are quite narrow
for MnPX3, between 0.17 and 0.63 eV. The ratio of U to the
band widths (a measure of U/t) for MnPX3 is greater than 7,
indicating that the afm insulating state is expected to be stable
in the monolayer limit (12). MnPS3 and MnPSe3 both show di-
rect band gaps at K± (2.53 and 1.87 eV, respectively), falling well
within the optical range. This is advantageous for the realization
of optical polarization of charge carriers. Within the collinear
treatment of magnetism, the Bloch states of two spins are de-
generate everywhere in the momentum space. When treating
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Fig. 3. Spin-polarized edge states. (A) Band structure in the presence of
a zigzag magnetic domain on the afm honeycomb lattice, derived from
NN hopping Hamiltonian. A model of a zigzag domain wall is used, which
extends 50 unit cells on both sides. The bulk states are lumped into shaded
blobs. With the hopping parameter t as the energy unit, the mass is set to
m = t/2. The edge states of two spins are shown in blue and green. (B)
Wavefunctions of two spins at the same Dirac points. The amplitudes are
convolved on 2D Gaussians centered on lattice sites for visualization (scale
bar in arbitrary units).
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A

Fig. 4. Structure and afm of monolayer MnPX3. (A) Structure showing the
unit cell. Purple spheres are Mn, yellow X, and gray P. Some of the computed
bond lengths are P–P = 2.22 Å, P–S = 2.04 Å for MnPS3, and P–P = 2.24 Å,
P–Se = 2.22 Å for MnPSe3. (B) Spin densities in one unit cell, presenting the
antiferromagnetic configuration (the isosurface of 0.4 e/Å3). (Left) up-spin;
(Right) down-spin.
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the spins in the noncollinear formalism to account for possible
spin–orbit (or spin–valley) interactions, the spins remain de-
generate, but band gaps become renormalized as expected. For
MnPS3, the gap difference between K± is negligibly small. How-
ever, for MnPSe3, the gaps atK± differ by up to ∼43 meV, offering
a window for realizing the SHE with equilibrium n- or p-doping
(compare Fig. 2B).
To assess the optical selectivity of valleys by circularly polar-

ized light, we compute the spin-dependent degree of circular
polarization, η(s)(k) (6, 7), between the top of valence bands
and the bottom of conduction bands. This quantity is computed
using the density functional linear response approach, defined as

ηðsÞðkÞ=

���PðsÞ
+ ðkÞ

���
2
−
���PðsÞ
− ðkÞ

���
2

���PðsÞ
+ ðkÞ

���
2
+

���PðsÞ
− ðkÞ

���
2; [5]

where PðsÞ
± ðkÞ are the interband matrix elements of, respectively,

left- and right-polarized radiation fields for spin s at k, defined
for a vertical transition from band n to band n′, as PðsÞ

± ðk; n; n′Þ=
hn′k; sjpx ± ipyjnk; si, assuming spin flip is absent in the optical
processes. The value of η(s)(k) quantifies the relative absorption
rates of left- and right-handed photon. As shown in Fig. 5B,
monolayer MnPX3 is computed to have perfect CD in the
neighborhood of K±. For one spin component, they show the
valley-selective CD as previously found for MoS2 (7), and for

opposite spins they show a spin–valley dependent selectivity
lending corroboration to our theoretical model. The computed
selectivity decays as we move away from the high-symmetry K±,
yet substantial polarization is achievable owing to the sizable
regions of nonvanishing selectivity.

Discussion
The optical selectivity of valley interband transitions was dis-
cussed in earlier papers (see, e.g., refs. 6–8). Here, we phrase it
in the language of group theory. Central to the selectivity is the
rotational symmetry, Ĉ3, and the associated pure rotational group,
C3. The point group of a staggered honeycomb lattice (A and B
sites are inequivalent) is C3v (i.e., for MnPX3 there is no in-plane
mirror reflection). The symmetry at K±, however, is C3; i.e., this
is an abelian group that does not allow degeneracy (apart from
spin degeneracy). Because band degeneracy is absent, when we
operate Ĉ3 on an eigenstate at a k that respects C3 rotational
symmetry, we have Ĉ3jnk; si= expðiφnkÞjnk; si, where φnk= lnk2π/3.
The azimuthal quantum number, lnk, is an integer determined up
to modulo 3. Consider the following transform:

P± =
D
n′k; s

���Ĉ−1
3 Ĉ3

�
px ± ipy

�
Ĉ

−1
3 Ĉ3

���nk; s
E

= e

�
−i
�
φn′k−φnk ±

2π
3

��
P± : [6]

Clearly, the optical selection rule is moduloðlnk − ln′k; 3Þ= ± 1 for
left- and right-polarized radiation fields, respectively (SI Sym-
metry Analysis of the Optical Selectivity). This is a mere restatement
of the conservation of angular momentum in the absorption of
a single photon absent spin flip. The azimuthal quantum num-
ber of the Bloch state, lnk = lL + lM, is the sum of two terms—(i)
lL arising from lattice phase winding of the Bloch phase factor,
eik·r (6), and (ii) lL = ml, where ml is the magnetic quantum
number of the local atomic basis sets (or, Wannier-like func-
tions)—that contribute an additional phase under Ĉ3. The
effect of the local orbital symmetry and orbital ordering at the
two valleys has an important role in determining the selection
rules, as demonstrated in previous work (7). Because of the
multiband nature of the states across the band gaps in MnPX3,
an effort that is currently underway is to develop a more elabo-
rate model to appreciate the symmetry of the valley states, be-
yond the two-band model in Eq. 1.
We also note how the spin–valley optical selection rule de-

velops as a consequence of symmetry breaking in a fermionic
honeycomb lattice. The threefold rotational invariance of the
Hamiltonian implies PðsÞ

± ðKτÞ= 0 for either left- or right-handed
(±) polarization field, when conduction and valence bands are
separately nondegenerate (this is not the spin degeneracy, and
is ensured when the point group is abelian) (7). The antiferro-
magnetic Hamiltonian of Eq. 1 violates both time-reversal sym-
metry and parity, but accommodates the joint operation Ô≡ T̂ P̂
as a symmetry; that is, ½HðsτÞ; Ô�= 0. When operating on a Bloch
state, Ô preserves its wavevector while inverting the spin. Con-
sequently, the Bloch states of the same k and opposite spins are
degenerate. Moreover, Ô changes the chirality of light, which
implies PðsÞ

± ðKτÞ=Pð−sÞ
∓ ðKτÞ, to within a phase factor. This is con-

cordant with the notion that the spin–valley index s · τ constitutes
a degree of freedom, which defines chiro-optical selectivity (as
well as orbital moments).
Of note, the proposed optical selectivity may be a convenient

assay for antiferromagnetic order in an extremely thin sample,
e.g., a monolayer or few-layer sample. This is especially rele-
vant to the recent interest in the yet-to-be-uncovered spin liquid
phase on a honeycomb lattice in the intermediate U regime
(12). The neutron-scattering technique commonly used to de-
termine the antiferromagnetic order will become impractical
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Fig. 5. Electronic structure of manganese chalcogenophosphates from
density functional theory (DFT) calculations. (A) The band structures of
MnPX3 (X = S, Se) near the band gaps. The energy scales are zeroed to the
Fermi level. (B) The momentum-resolved degrees of circular polarization of
MnPX3 (X = S, Se), η(s)(k), between the top of valence bands and the bottom
of conduction bands. Only the values of one spin are presented, as in our
calculations the other spin takes values equal in magnitude but with op-
posite signs over the Brillouin zone. At Γ, the computed optical selectivity is
nonzero. This is a numerical artifact because of indeterminacy in η(s)(k) in the
presence of band degeneracy (apart from the spin degeneracy) in the valence
bands (A).
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for thin samples. The circularly polarized photoluminescence, on
the contrary, works well for these atomically thin samples, with
sufficient sensitivity (7, 9, 10). In the spin liquid phase, ground-state
fluctuations are incessant at T = 0 K, whereby obliterating the
afm order and, hence, the optical selectivity will be absent.
Entrance into the symmetry-broken afm ordered regime, on the
other hand, is accompanied by the proposed optical selectivity.
A nontrivial variation of the proposed Hamiltonian of Eq. 1

occurs when the spin–orbit interaction becomes overwhelming,
compared with the afm order,m. Clearly, when jδj =m (Fig. 1C),
the band gap closes in one of the valleys. When jδj > m, band
inversion of one valley will drive the system into a topological
quantum spin Hall state (17, 18). In the limit m = 0, the model
reduces exactly to that of Kane and Mele (17), which affords
time-reversal symmetry-protected edge states. However, when
m is finite but smaller than jδj, time reversal is lost. The corre-
sponding topological classification depends on detailed symme-
try of actual crystal. If the x–y plane is a mirror plane, then the
system may be classified by the mirror Chern number. If, on the
other hand, the x–y mirror symmetry is absent, the system may
be classified by its spin Chern number (19). This topic and the
strategy for tuning the ratio jδj/m in real materials are issues
worth further pursuit.
We also note that bilayer or few-layer MnPX3 also may have

similar optical selectivity, similar to a spontaneous symmetry-
broken few-layer graphene system (20). Different kinds of
stacking and magnetic order of bilayer MnPX3 (X = S, Se) with
intralayer afm and ferromagnetism are evaluated in our calcu-
lations (SI Bilayer Manganese Chalcogenophosphates). Two AA-
stacked bilayers with intralayer afm are nearly degenerate in
energy and more stable than other stacking and magnetic orders.
They differ by the interlayer magnetic configuration; that is, the
two layers can couple ferromagnetically or antiferromagnetically.
By computing the momentum-resolved spin-dependent degree
of circular polarization, we find that the s · τ CD is present in
the ferromagnetically coupled bilayer, which has no inversion
center in the magnetic space group. The chiral optical selection
rule is absent in the case of antiferromagnetic interlayer coupling,

as expected. The computed perfect spin–valley-dependent opti-
cal selectivity of both monolayer and ferromagnetically coupled
bilayer MnPX3 attests to the emergent electronic degree of freedom
presented in the foregoing mode. It is, therefore, of interest to
study these materials in monolayer and few-layer forms experi-
mentally, to characterize their optoelectronic and transport behav-
iors and to explore their potential for application in novel operating
paradigms for advanced electronics.

Methods
We use density functional theory (21) calculations within the generalized
gradient approximation (GGA) (22) to investigate the basic electronic structure
of monolayer and bilayer MnPX3. For monolayer MnPX3, we use the Perdew–

Burke–Ernzerhof exchange-correlation functional (23). To consider different
kinds of stacking and magnetic order of bilayer MnPX3, van der Waals cor-
rections within GGA are included by the optB86b-vdwDF method (24, 25).
The projector-augmented wave potentials are used, as implemented in the
Vienna Ab initio Simulation Package (26, 27). A planewave cutoff of 600 eV
and a Monkhorst–Pack k-point mesh of 30 × 30 × 1 per reciprocal unit cell
are adopted. Vacuum slabs at least 15 Å thick are inserted between mono-
layer MnPX3 to minimize interaction between periodic images. Structure
optimizations are performed with a convergence threshold of 0.01 eV/Å on
the interatomic forces. To account for the magnetic structure of the divalent
transition metal Mn, we use a GGA+U approach to describe the on-site
electron–electron Coulomb repulsion (28). The value of the isotropic U is set
to 5 eV, as suggested by a previous assessment of this parameter for the
divalent Mn2+ (29). As a calibration for the choice of U, the band gap of
2.4 eV is obtained for bulk MnPS3, to be compared with the experimental
band gap of bulk MnPS3 of 2.7 eV (30). For both bulk and monolayer MnPX3,
the antiferromagnetic order of MnPX3 is indeed the more stable in our calcu-
lations, compared with the nonmagnetic and ferromagnetic states by at least
45 meV per unit cell. The magnetic moment on each Mn is computed to be
about 4.6 Bohr magnetons, in good agreement with the experiments (14).
Therefore, the choice of U is reasonable and used in all calculations. We
compute the interband transition matrix elements using density functional
theory at the linear response level (7, 31).
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