Skip to main content
. Author manuscript; available in PMC: 2014 Apr 30.
Published in final edited form as: Stat Med. 2012 Oct 16;32(9):1524–1535. doi: 10.1002/sim.5641

Table 3.

Proportion of cases where each method fails to select any features is shown along with averages of operating characteristics calculated across 500 simulations for each of 6 methods and 5 simulation scenarios, SI-SV (described in the text). Standard errors are order 0.001. The method with the highest average validation performance is highlighted.

Method
Screening: SIS Lasso Average Index Index
Final Model: Lasso Lasso Lasso Lasso Count Lasso
Proportion of cases when method fails to select any features
SI 0.17 0.02 0.17 0.48 0.00 0.00
SII 0.05 0.00 0.19 0.00 0.00 0.00
SIII 0.11 0.00 0.14 0.00 0.00 0.00
SIV 0.05 0.00 0.12 0.45 0.00 0.00
SV 0.17 0.01 0.18 0.59 0.00 0.00
Correlation between true and predicted ranks
SI 0.26 0.21 0.18 0.00 0.13 0.20
SII 0.26 0.33 0.43 0.99 0.32 0.46
SIII 0.16 0.23 0.30 0.84 0.29 0.33
SIV 0.39 0.36 0.41 0.02 0.37 0.45
SV 0.17 0.20 0.23 0.01 0.23 0.24
Manhattan distance relative to all same rank.
SI 0.56 0.58 0.60 0.67 0.61 0.58
SII 0.56 0.53 0.48 0.06 0.53 0.47
SIII 0.60 0.57 0.54 0.25 0.54 0.53
SIV 0.50 0.51 0.49 0.66 0.51 0.47
SV 0.59 0.58 0.57 0.66 0.56 0.56
Misclassification in 10% tails
SI 0.29 0.32 0.38 0.50 0.40 0.36
SII 0.29 0.23 0.20 0.00 0.27 0.18
SIII 0.37 0.31 0.29 0.01 0.29 0.27
SIV 0.19 0.21 0.21 0.48 0.23 0.18
SV 0.35 0.33 0.34 0.50 0.34 0.33