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Radiation-induced lung injury (RILI) presents a common 
and major obstacle in the radiotherapy of thoracic can-
cers. The aim of this study was to examine whether RILI 
could be alleviated by mesenchymal stem cells (MSCs) 
expressing soluble transforming growth factor-β  
(TGF-β) type II receptor via an adenovirus (Ad-sTβR). 
Here, we systemically administered male MSCs into 
female mice challenged with thoracic irradiation. The 
data showed that either MSCs or Ad-sTβR transduced 
MSCs (Ad-sTβR-MSCs) specifically migrated into radi-
ation-injured lung. Ad-sTβR-MSCs obviously alleviated 
lung injury, as reflected by survival and histopathology 
data, as well as the assays of malondialdehyde (MDA), 
hydroxyproline, plasma cytokines, and the expres-
sion of connective tissue growth factor (CTGF) and 
α-smooth muscle actin (α-SMA). Furthermore, MSCs 
and Ad-sTβR-MSCs could adopt the characteristics of 
alveolar type II (ATII) cells. However, the MSCs levels in 
the lungs were relatively low to account for the noted 
therapeutic effects, suggesting the presence of other 
mechanisms. In vivo, MSCs-conditioned medium (MSCs 
CM) significantly attenuated RILI. In vitro, MSCs CM 
protected ATII cells against radiation-induced apoptosis 
and DNA damage, and modulated the inflammatory 
response, indicating the beneficial effects of MSCs are 
largely due to its paracrine activity. Our results provide 
a novel insight for RILI therapy that currently lack effi-
cient treatments.
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IntroductIon
Radiation therapy (RT) is an important treatment for thoracic 
cancers, but could damage the lungs due to the generation of reac-
tive oxygen species and the subsequent inflammation and fibro-
sis.1 Radiation-induced lung injury (RILI) remains a common and 
major obstacle in the application of thoracic radiation, resulting in 
considerable morbidity and limiting the dose of radiation. Thus, 

alleviating RILI is critical to improve both tumor control and 
patient quality of life.1,2

RILI is a complex pathological process, resulting in an early 
radiation pneumonitis and late pulmonary fibrosis.3 One of the hall-
marks of RILI is the induction and activation of various cytokines, 
chemokines, and growth factors,2,4 including transforming growth 
factor-β1 (TGF-β1).5,6 TGF-β1 is a multifunctional cytokine that 
modulates the infiltration of inflammatory cells, production of 
cytokines, proliferation of fibroblasts, deposition of collagen, and 
epithelial-mesenchymal transition.7 Elevation of plasma TGF-β1 
levels during RT predicts RILI in patients with non-small cell lung 
cancer.8 In the present study, TGF-β1 was increased in the murine 
lungs upon irradiation (Figure 1a). TGF-β1 binds to the extracel-
lular domain of TGF-β type II receptor (Ex-TβRII) and activates 
the downstream signal transduction (Figure 1b).9,10 Blocking 
the binding of TGF-β1 to Ex-TβRII, by means of administration 
of soluble TGF-β type II receptor (sTβR)9–11 or the anti-TGFβ1 
antibody 1D11,12 has become an option for ameliorating RILI. 
Given the difficulties in achieving adequate delivery to the dam-
aged lungs without unacceptable systemic effects, it is necessary to 
develop a more specific approach to deliver sTβR.

Mesenchymal stem cells (MSCs) show significant potential 
for clinical utility, due to their convenient isolation and culture, 
low immunogenicity, regenerative and multiple differentiation 
abilities, and potent immunosuppressive effects.13 MSCs could 
home to the injured lungs and adopt the specific lung cell phe-
notypes,14 and alleviate lung injury induced by bleomycin, endo-
toxin, or hyperoxia.15–20 However, mechanisms for this protection 
are not restricted to the engraftment and differentiation of MSCs. 
Importantly, MSCs repair lung injury through secreting anti-
inflammatory and reparative growth factors, and also cell-to-cell 
contacts.16,17,19,20 These properties make MSCs as a promising can-
didate for the treatment of RILI.

Recent studies have demonstrated that therapeutic genes 
modified MSCs could efficiently deliver target genes to the injured 
sites and enhance therapeutic effects.21–25 In the present study, we 
combined two therapeutic strategies, namely MSCs treatment and 
sTβR overexpression, and identified the efficacy of genetically 
modified MSCs on treating RILI in a mouse model.
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results
lung radiation-increased tGF-β1 production
Radiation caused an elevation of TGF-β1 in the bronchoalveolar 
lavage fluid and plasma of C57BL/6 mice. There were two peaks in 
TGF-β1 in the bronchoalveolar lavage fluid: at 7–14 and 120 days 
after the irradiation (Figure 1a, upper panel), respectively. Plasma 
TGF-β1 also displayed two peaks (Figure 1a, lower panel).

Ad-stβr-Mscs remained the characteristics of  
plain Mscs
The cDNA sequences that encode extracellular domain of TβRII 
(Ex-TβRII) and IgG1 Fc fragment were fused by overlap PCR to 
generate the fusion gene sTβR (Figure 1c). A recombinant ade-
noviral vector expressing the transgene sTβR (Ad-sTβR) was 
constructed, and the adenoviral vector containing no transgene 
(Ad-null) was used as a control. The expression of the fusion pro-
tein sTβR was evident after Ad-sTβR transduction in 293 cells 
(Figure 1d). sTβR concentrations in bronchoalveolar lavage fluid 
were obviously elevated following administration of Ad-sTβR or 
Ad-sTβR-MSCs, and were very low or barely detectable follow-
ing administration of phosphate-buffered saline (PBS), Ad-null, 
or MSCs (Figure 1e).

The isolated male MSCs could be induced to differentiate into 
osteocytes, adipocytes, and chondrocytes (Figure 2a). Similar to 
typical MSCs, the MSCs derived in our experiments were positive 
for Sca-1, CD44, and CD29 and were negative for CD31, CD45, 
CD11b, and CD117 (Figure 2b), as revealed by fluorescence-ac-
tivated cell sorting.

The transduction condition in MSCs was optimized. A mod-
erate multiplicity of infection of 250 produced 75.9% transduction 
of MSCs on day 2 (Figure 2c) and without apparent effects on 
cell morphology (data not shown), and was used in the further 
experiments. Western blot analysis revealed the presence of sTβR 
protein in MSCs transduced with Ad-sTβR (Figure 2d).

Transduction of Ad-sTβR did not affect cell proliferation 
(Figure 2e), apoptosis (Figure 2f), differentiation ability and surface 
markers of MSCs, with the only exception of chondrogenic differen-
tiation (Figure 2a, b). TGF-β was essential in the differentiation of 
MSCs into chondrocytes, and Ad-sTβR blocked the effect of TGF-β 
and therefore affected the chondrogenic differentiation of MSCs.

Mscs migrated toward the lungs injured by radiation
To learn whether MSCs could specifically home to injured tissues, 
we quantified the rate of male MSCs in the lungs and other tissues 
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Figure 1 radiation-induced lung injury (rIlI) was associated with transforming growth factor-β1 (tGF-β1) expression. (a) The time course 
of active TGF-β1 levels in the bronchoalveolar lavage fluid (BALF) (upper panel) and plasma (lower panel) after thoracic irradiation, as measured by 
enzyme-linked immunosorbent assay (ELISA) (*P < 0.05, **P < 0.01, n = 6). (b) Schematic representation of action of sTβR. The active TGF-β1 initially 
binds to the extracellular domain of TGF-β type II receptor (Ex-TβRII), recruits and phosphorylates the type I receptor to form heteromeric complexes, 
thus triggering the subsequent activation of downstream signal transduction. sTβR competes with TβRII to bind with active TGF-β1, subsequently 
blocking the effects of TGF-β1, which plays a crucial role in collagen deposition and fibrosis. (c) Adenovirus construction. PCR products of Ex-TβRII, 
IgG1 Fc, and fusion gene sTβR were detected by agarose gel electrophoresis. (d) Western blot analysis of sTβR protein in 293 cells 48 hours after 
Ad-sTβR, Ad-null transduction. (e) The sTβR levels in BALF were assayed by ELISA after administrations of phosphate-buffered saline (PBS), Ad-null 
(1.25 × 108 PFU), Ad-sTβR (1.25 × 108 PFU), mesenchymal stem cells (MSCs) (5 × 105), and Ad-sTβR-MSCs (1.25 × 108 PFU, 5 × 105 cells) (*P < 0.05, 
**P < 0.01, Ad-sTβR-MSCs versus Ad-sTβR; n = 6).
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of female mice 30 days after the irradiation (Figure 3a). Standard 
curves of Y6 (representing male MSCs DNA) and GAPDH (rep-
resenting total mouse DNA), generated by diluting male genomic 
DNA into female genomic DNA, were used as reference controls 
(Supplementary Figure S1). Higher percentage of male MSCs 
was detected in the lungs as compared to in the hearts (0.10% 
 versus 0.02%), and even lower in other tissues (Figure 3b).

Only few MSCs were detected in the lungs of nonirradiated 
mice receiving MSCs and Ad-sTβR-MSCs. The irradiation induced  
20- and 15-fold increases of MSCs in the lungs in mice receiving  
MSCs and Ad-sTβR-MSCs, respectively (Figure 3c). In ex vivo exper-
iments, MSCs migrated toward the lungs collected on day 30 after RT 
(RT 30d lung) (Figure 3d). Transduction of Ad-sTβR did not alter the 
homing and migration capacities of MSCs (Figure 3c, d).

We next examined the roles of SDF-1α/CXCR4 axis, a sig-
naling pathway associated with the active recruitment of stem 

cells,13,26 in the homing of MSCs to irradiated lungs. On day 30 
after radiation, the SDF-1α levels in bronchoalveolar lavage fluid 
and plasma were significantly increased (Figure 3e). The number 
of MSCs in irradiated lungs was reduced by cotreatment with the 
CXCR4 antagonist AMD3100 (Figure 3f). In vitro experiments, 
SDF-1α induced marked migration of MSCs and Ad-sTβR-MSCs; 
cotreatment with AMD3100 blocked the migration induced by 
SDF-1α (Figure 3g). Furthermore, transduction of Ad-sTβR 
did not affect the migration of MSCs both in vivo and in vitro 
(Figure 3f, g). These data suggested that the increased MSCs in 
the lungs reflected active radiation-induced homing of MSCs 
rather than physical entrapment of circulating MSCs.

Ad-stβr-Mscs attenuated early lung injury
Exudation of inflammatory cells in the alveolar septa was apparent 
on days 30 after irradiation (Figure 4b). Such a change decreased 
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Figure 2 characterization of mesenchymal stem cells (Mscs) and Ad-stβr-Mscs. (a) The differentiation of MSCs and Ad-sTβR-MSCs into 
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over time in the mice treated with either MSCs or Ad-sTβR-MSCs. 
Treatment with Ad-sTβR-MSCs seemed superior to MSCs for 
decreasing the alveolar thickness (a measure of the lung damage) 
(Figure 4c), but the difference was not statistically significant.

Compared with the RT+PBS group, MSCs and Ad-sTβR-
MSCs treatments decreased malondialdehyde (MDA) concentra-
tions (a measure of the oxidative stress) in the lungs by 33% and 
49%, respectively (Figure 4d).

The irradiation induced obvious increases in representative 
proinflammatory and profibrotic cytokines in plasma, includ-
ing interleukin-1β (IL-1β), tumor necrosis factor-α, IL-6, and 
active TGF-β1. Treatment with either MSCs or Ad-sTβR-MSCs 
significantly decreased plasma concentrations of these cytokines 
(Figure 4e–g, i). Ad-sTβR-MSCs increased plasma levels of the 
anti-inflammatory cytokine IL-10 (Figure 4h). Compared with 
treatment with MSCs alone, Ad-sTβR-MSCs tended to be more 

potent in reducing the proinflammatory, profibrotic cytokines and 
increasing the anti-inflammatory cytokine, but the differences did 
not reach statistical significance.

Ad-stβr-Mscs improved survival and lung fibrosis
No mice receiving irradiation plus PBS survived to 60 weeks 
(the period of observation). The survival rate at 60 weeks after 
the irradiation in mice receiving MSCs and Ad-sTβR-MSCs was 
40% and 80%, respectively. Ad-sTβR-MSCs seemed to be superior 
to MSCs alone, but the difference was not statistically significant 
(Figure 5a).

On day 120 after the irradiation, the lung injury was apparent in 
the RT+PBS group (Figure 5b, upper panel). The histopathological 
changes included thickening of alveolar septa, infiltration of inflam-
matory cells and interstitial hyperplasia. MSCs treatment, particu-
larly Ad-sTβR-MSCs, attenuated such changes. Ad-sTβR-MSCs 
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treatment was more effective than MSCs alone in attenuating the 
radiation-induced elevation of MDA levels (Figure 5c).

Fibrosis in the lungs was assessed by Masson’s trichrome stain-
ing and hydroxyproline detection. Radiation-induced marked 
collagen deposition, such changes were attenuated by MSCs treat-
ment, and more so by Ad-sTβR-MSCs treatment (Figure 5b, 
lower panel). Treatment with Ad-sTβR-MSCs, but not MSCs 
alone, also significantly reduced the radiation-increased hydroxy-
proline (Figure 5d).

Active TGF-β1 in plasma was elevated after radiation. This ele-
vation was attenuated by MSCs alone, and more so by Ad-sTβR-
MSCs (Figure 5e). Connective tissue growth factor (CTGF) and 
α-smooth muscle actin (α-SMA) are important downstream mol-
ecules in the TGF-β1 pathway, and participate in the process of 
fibrosis.27 Irradiation increased the relative mRNA and protein lev-
els of CTGF and α-SMA in the lungs (Figure 5f–h). Such an effect 
was significantly inhibited by MSCs alone or Ad-sTβR-MSCs.

Mscs adopted lung cell phenotypes in radiation-
injured lungs
To determine whether male MSCs assumed lung cell phenotypes 
in recipient female mice, alveolar type II (ATII), endothelial cells 
and myofibroblasts in the lungs of mice receiving RT, MSCs, 
RT+MSCs, or RT+Ad-sTβR-MSCs were isolated by fluorescence-
activated cell sorting with antibodies against proSP-C, CD31, 
and α-SMA, respectively.18,28 In mice receiving MSCs alone, the 
ratios of Y chromosome-derived cells (representing MSCs) were 

16% and 11% in ATII cells on days 30 and 120 after the irradia-
tion, respectively (Figure 6a). MSCs accounted for <2% endothe-
lial cells and 1% myofibroblasts (Figure 6b, c). Such percentages 
were similar in the lungs of mice receiving RT+Ad-sTβR-MSCs 
(Figure 6a–c).

The results were confirmed by in situ Y chromosome FISH 
analysis (green signal for hybridization) in isolated ATII cells 
(Figure 6d). The green signals were detected in a few cells from 
female mice receiving MSCs, either naive or transduced with 
Ad-sTβR previously.

We then costained lung sections for proSP-C (a marker of ATII 
cells29) and GFP (a marker for Ad-sTβR-MSCs). Deconvolution 
microscopy revealed proSP-C colocalization with GFP-labeled 
MSCs (Figure 6e). 

Mscs adopted features of AtII cells when cocultured 
with injured lungs
MSCs could adopt immunophenotypic characteristics of ATII cells 
when cocultured with oxygen-damaged lungs.19 By using a cocul-
ture system (Figure 6f), we found that when cocultured with the 
lungs collected on day 7 after RT (RT 7d lung), MSCs expressed 
proSP-C mRNA in a time-dependent manner (Figure 6g, upper 
panel). However, MSCs expressed low levels of proSP-C when 
cocultured with the uninjured lungs or the lungs collected on day 
120 after RT (RT 120d lung). On day 14 after the coculture, proSP-C  
positive cells accounted for 6% in MSCs cocultured with RT 7d 
lung, and <1% in other groups (Figure 6g, lower panel).
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Immunofluorescence assay revealed the expression of proSP-C  
protein in MSCs cocultured with RT 7d lung for 14 days, and freshly 
isolated ATII cells were used a reference for proSP-C expression 
(Figure 6h, upper panel). Lamellar bodies are secretary organelles 
found in ATII cells.17 Transmission electron microscopy visual-
ized lamellar bodies in MSCs cocultured with RT 7d lung for  
14 days (Figure 6h, lower panel).

Mscs cM protected AtII cells against radiation injury 
and modulated the inflammatory response in vitro
The low rate of MSCs in injured lungs seemed insufficient to 
explain the therapeutic benefit. Increasing evidence suggests 
that the therapeutic benefit of MSCs is mediated by a paracrine 
mechanism, in which MSCs could secret some anti- inflammatory 
and reparative molecules. We therefore explored the potential 
effects of MSCs-conditioned medium (MSCs CM) on protecting 
against injury of ATII cells and modulating the inflammatory 
response.

Murine ATII cells were isolated and subjected to 14Gy 
 radiation, and then incubated in DMEM, MSCs CM, or cocul-
tured with MSCs for 24–48 hours (Figure 7a). Both MSCs and 
MSCs CM prevented radiation-induced ATII cells apoptosis 
(Figure 7b, c) and DNA damage (Figure 7d, e).

Keratinocyte growth factor (KGF) is a critical mediator 
for repairing the lung epithelial cells upon damage.23 MSCs are 
reported to secrete some reparative molecules, including KGF.30 
In our experiments, pretreatment of MSCs with KGF siRNA abol-
ished the protective effects of MSCs CM on injured ATII cells 
(Figure 7b–e and Supplementary Figure S2). Such protective 
effects were partially restored by adding recombinant KGF (rKGF) 
to the KGF siRNA-pretreated MSCs CM.

MSCs modulate the inflammatory response.16,31 Activated 
macrophages RAW264.7 were incubated/cocultured with DMEM, 
MSCs, or MSCs CM for 24 hours (Figure 7f). Both MSCs and 
MSCs CM inhibited the secretion of proinflammatory cytokines 
from activated RAW264.7, including tumor necrosis factor-α and 
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IL-1β (Figure 7g). Addition of KGF siRNA did not prevent the 
effects, suggesting the presence of other soluble factors that could 
mediate the effects of MSCs on inflammatory response.

Mscs cM protected against rIlI in vivo
Mice exposed to thoracic irradiation were injected intravenously 
on days 0 and 14 with MSCs, MSCs CM, or MSCs CM pretreated 
with KGF siRNA (Figure 7h). Thirty days later, the injury was 
estimated by lung histopathology, MDA levels in the lungs and 
active TGF-β1 in the plasma (Figure 7i–l). The thickness of 
alveolar septa (Figure 7i, j), lung MDA (Figure 7k) and plasma 
TGF-β1 levels (Figure 7l) significantly decreased in mice treated 
with either MSCs or MSCs CM. KGF siRNA seemed to attenu-
ate the protective effects of MSCs CM, but the difference did not 
reach statistical significance.

evaluation of possible tumorigenicity of Mscs
MSCs may transform to malignant cells.32,33 We examined the 
potential adverse effects of MSCs or Ad-sTβR-MSCs in female 
mice receiving whole thoracic irradiation (n = 15/group). The 
mice were examined every day and observed up to 24 months. 
Pathological examination of the lung, liver, spleen, brain, kidney, 
heart, and ovary immediately prior to imminent death revealed no 

gross or microscopic tumors in any subject (data not shown). Four 
out of the 15 mice (40%) receiving RT+Ad-sTβR-MSCs were still 
alive at the end of the experiment (24 months; Supplementary 
Figure S3).

dIscussIon
Stem cell-based gene delivery could achieve selective expres-
sion in the target tissue, improve the efficacy of gene therapy and 
reduce therapeutic toxicity.34 The results of the present study have 
demonstrated the homing and therapeutic efficacy of implanted 
Ad-sTβR-MSCs in a mouse model of RILI. More strikingly, MSCs 
repair the lung injury via adopting ATII cells characteristics and 
largely through a paracrine mechanism.

The irradiation results in a 20-fold increase in male MSCs 
 levels in the injured lungs. MSCs are able to selectively migrate 
to the injured lungs. The increased number of MSCs in irradiated 
lungs may be partially explained by the increase in vascular perme-
ability induced by radiation, which in theory should increase the 
passage of MSCs through the lung capillaries. However, a recent 
report has shown that few MSCs could be found in perivascular 
sites after radiation and suggested that increased vascular perme-
ability is not the dominant reason for the homing of MSCs to the 
irradiated sites.35 Previous studies have demonstrated that some 
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cytokines and their receptors (e.g., SDF-1/CXCR4, MCP-1/CCR2, 
VEGF/VEGFR, PDGF-BB/PDGFR-β) are responsible for the 
active homing of MSCs to injured sites. The injured cells secrete 
various cytokines, which in turn increase the expression of these 
chemokine and/or their receptors on MSCs, eventually facilitating 
the migration of MSCs to the injured sites.26,34–36 Our data suggest 
that the SDF-1α/CXCR4 axis could facilitate the MSCs homing to 
the injured lungs upon irradiation and that the homing of MSCs is 
an active process rather than just passive trapping. The involvement 
of other potential cytokines/receptors axes needs further study.

The microenvironment influences the in vivo fate of MSCs. In 
bleomycin-induced lung injury, early (but not late) injection of 
MSCs ameliorates inflammation and collagen deposition.17 MSCs 
administrated immediately after radiation differentiate into func-
tional lung cells, while MSCs administrated 2 months after radia-
tion mainly differentiate into myofibroblasts.28 Our in vivo and 
ex vivo studies reveal that exposure the MSCs early after the injury 
could facilitate the MSCs to acquire the ATII cell characteristics.

A recent study has shown that MSCs could reduce the mor-
tality rate of mice with RILI.37 No oncology progression and 
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significant adverse changes are observed when MSCs are tested 
in a clinical trial enrolling of 11 patients with RILI.37 ATII cells 
have been thought to be the stem cells of alveolar type I cells,29 
and thereby are the main target cells in RILI. In our study, MSCs 
could acquire the characteristics of ATII cells in vivo. Ex vivo 
experiments show that MSCs express proSP-C and lamellar bod-
ies when cocultured with injured lungs. These findings are com-
patible with previous reports that MSCs or bone marrows cells 
could acquire the ATII cell markers.18,19,28,38 Specific mechanisms 
may include differentiation of MSCs into ATII cells, fusion of 
MSCs with resident ATII cells or a combination of both. Cellular 
fusion is not evident in our ex vivo coculture experiments, but we 
could not rule this possibility in vivo, as previous described.17,18 
Bone marrow cells are reported to contribute to the lung epithe-
lium independent of cell infusion.39 The precise mechanisms on 
how MSCs adopt the phenotype of ATII cells remain unclear and 
need further study.

There are contrasting reports concerning the engraftment 
and differentiation of MSCs in the lungs. Systemic or intratra-
cheal administration of MSCs may lead to engraftment and/or 
differentiation into the lung epithelium.17–19,28,40 Other investiga-
tors report that bone marrows cells are unable to engraft into lung 
epithelium.41,42 This discrepancy may reflect the differences in 
experiment design, and more specifically, different cell isolation 
and enrichment, animal strain, lung injury model, time course to 
transplant and the methods to evaluate engraftment.19,43

In our study, only 0.1% lung cells are derived from trans-
planted MSCs. Obviously, such finding could not fully support 
the noted protective effects, suggesting other factors are involved. 
Accumulating evidence shows that the beneficial effects of MSCs 
are due to their capacity to secret paracrine factors that repair 
injured cells and modulate inflammatory responses.14,44 MSCs 
inhibit the lipopolysaccharide-induced lung inflammatory 
response independent of lung epithelium replacement.15,16 MSCs 
protect lungs against bleomycin-induced injury by reducing two 
fundamental proinflammatory cytokines tumor necrosis factor-α 
and IL-1β in a paracrine way.31 MSCs CM prevents O2-induced 
ATII cell apoptosis and hyperoxia-induced lung injury.19,20 Our 
results further support the notion that MSCs CM could attenu-
ate RILI in vivo and protect ATII cells against radiation-induced 
injury in vitro, as well as modulate the inflammatory responses 
in vitro.

IL-1RA,31 IL-10,16 PGE2,45 TSG-6,46 KGF,30 G-CSF, and 
GM-CSF18 are implicated in the therapeutic effects of MSCs. KGF 
is a critical factor that mediates the repair of injured-lung epithe-
lial cells, and MSCs are reported to repair epithelial cell damage 
via secreting KGF.23,30 The abrogation of the protective effects of 
MSCs CM against ATII cells by a KGF siRNA in the present study 
indicates the crucial roles of KGF. However, KGF siRNA pretreat-
ment does not significantly abrogate the anti-inflammatory effects 
and lung protection of MSCs CM, indicating the presence of other 
important molecules.

Fibrosis after lung irradiation is a perplexing process involv-
ing activation of various proinflammatory and profibrotic cytok-
ines produced by damaged alveolar epithelial cells, endothelial 
cells and activated interstitial cells.2 Strategies that alleviate the 
initial lung cell damage and acute inflammation could prevent 

the ensuing lung fibrosis. MSCs are reported to alleviate the lung 
inflammation and fibrosis in many experimental models.17–18,28 In 
the present study, MSCs alone could significantly decrease some 
markers of fibrosis (TGF-β1, CTGF, and α-SMA), but do not 
significantly decrease the hydroxyproline content, a direct index 
reflecting the fibrosis in the lungs, suggesting the limited effects of 
stem cell therapy on fibrosis.

At least three factors contribute to the benefits of Ad-sTβR-
MSCs on RILI in our study. First, MSCs deliver sTβR to injured 
sites, and thus effectively inhibit the TGF-β signaling pathway. 
Second, MSCs acquire the ATII cell phenotypes upon irradiation 
despite the paucity of this finding. Third, MSCs protect against 
injury of ATII cells and modulate the inflammatory response in 
a paracrine way.

Long-term in vitro culture of MSCs could lead to malignant 
transformation, even generating sarcoma in the recipient lungs.32,33 
To minimize unexpected transformation, MSCs from passage five 
are used in our experiments. No sarcoma or other tumor type is 
observed in a time period up to 24 months.

In conclusion, our experiments reveal that MSCs selectively 
target injured lungs and allow higher treatment efficiency of the 
delivered gene therapy. MSCs, either plain or genetically modi-
fied to carry the sTβR gene could repair the lung injury via adopt-
ing the ATII cell phenotype and through a paracrine manner. The 
combined strategy is promising in the treatment of RILI.

MAterIAls And Methods
All are available in the Supplementary Materials and Methods.

suPPleMentArY MAterIAl
Figure S1. Negative linear relationship between threshold cycle (Ct) 
of PCR amplification and the logarithm of male DNA dilution ratios in 
female DNA standards.
Figure S2. Expression and secretion of KGF by MSCs transfected with 
KGF siRNA for 24 hours.
Figure S3. Long-term observation of mice treated with MSCs and 
Ad-sTβR-MSCs.
Materials and Methods.
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