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Abstract
Purpose—Nearly half of cancer metastases become clinically evident five or more years after
primary tumor treatment; thus metastatic cells survived without emerging for extended periods.
This dormancy has been explained by at least two countervailing scenarios: cellular quiescence
and balanced proliferation; these entail dichotomous mechanistic etiologies. To examine the
boundary parameters for balanced proliferation, we performed in silico modeling.

Experimental Design—To illuminate the balanced proliferation hypothesis, we explored the
specific boundary probabilities under which proliferating micrometastases would remain dormant.
A two-state Markov chain Monte Carlo model simulated micrometastatic proliferation and death
according to stochastic survival probabilities. We varied these probabilities across 100 simulated
patients each with 1,000 metastatic deposits and documented whether the micrometastases
exceeded one million cells, died out, or remained dormant (survived 1,218 generations).

Results—The simulations revealed a narrow survival probability window (49.7 – 50.8 percent)
that allowed for dormancy across a range of starting cell numbers, and even then for only a small
fraction of micrometastases. The majority of micrometastases died out quickly even at survival
probabilities that led to rapid emergence of a subset of micrometastases. Within dormant
metastases, cell populations depended sensitively on small survival probability increments.

Conclusions—Metastatic dormancy as explained solely by balanced proliferation is bounded by
very tight survival probabilities. Considering the far larger survival variability thought to attend
fluxing microenvironments, it is more probable that these micrometastatic nodules undergo at least
periods of quiescence rather than exclusively being controlled by balanced proliferation.
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INTRODUCTION
The dormancy dilemma impacts millions of cancer patients worldwide. Certain epithelial
carcinomas such as from breast or prostate tissues can recur years or decades after primary
tumor ablation (1). This late recurrence afflicts nearly 50% of breast cancer patients that
develop metastases; other carcinomas exhibit similar late recurrence rates (2). This
recurrence is most problematic within metastatic organs such as the liver, lung, and brain
where tumor resection may not be possible and chemotherapeutic agents appear to be
ineffective in most cases (3, 4). For instance, aggressive treatment (e.g. adjuvant
chemotherapy) of breast cancer after surgical removal of the evident primary tumor may
reduce 10-year recurrence by less than one-third. Consequently, ostensibly cured cancer
patients harbor unseen metastases for decades that eventually emerge into untreatable, lethal
tumors. This long period between primary tumor treatment and metastatic appearance is
referred to as metastatic latency though the tumor cell behavior during this period is
unknown.

Metastatic latency allows disseminated tumor cells to avoid clinical detection and withstand
aggressive and toxic neoadjuvant treatment (5). How the disseminated carcinoma cells
maintained a long-term, clinically undetectable state in an ectopic site such as the liver is
unknown (6). Although extravasation of carcinoma cells from the primary tumor is
common, but most of these cells seem not to establish metastases (7, 8), it is likely that the
pre-metastatic microenvironment contributes to whether carcinoma cells will seed, survive,
and either proliferate to prompt tumor formation or exhibit a dormant phenotype.

Because in vitro and in vivo experimental systems are not sufficiently malleable to
consistently and reliably recapitulate the metastatic latency phenotype, in silico models have
evolved to explore the mechanisms of metastatic competency, dormancy and emergence (9–
11). Many of these in silico models predominately simulate metastatic latency according to
the theory of balanced proliferation among micrometastases of greater than one million
cells. Therefore they introduce various biological factors such as angiogenesis, immune
response, hypoxia, and growth factor availability and deduce through partial differential
equations what impact these have on the ability for the micrometastases to emerge or
maintain a dormant state. A major limitation to this approach is that little empirical
biological data are available to make these models translatable to the in vivo response.
Moreover, such studies often assume that latent metastases experience balanced
proliferation, meaning additional biological data, even if available, would not resolve
latency as being due to balanced proliferation, cellular quiescence or a combination of both.

Notwithstanding these limitations, in silico models are becoming increasingly important to
offering insights in prioritizing the landscape of contributing metastatic factors. By using an
Approximate Bayesian Computation model applied to empirical patient data Willis et al
inferred that metastatic breast cancer late relapse evolved from just 1 to 6 micrometastases
that escape from dormancy (12). Other approaches used the Gompertzian growth function to
calculate periods of metastatic growth and growth arrest to fit clinical data as presented in
the Munich Cancer Registry (13). These results predicted that metastatic seeding occurred
before the clinical detectability of the primary tumors. Computational models have also been
used to predict the metastatic response according to primary tumor removal and front line
chemotherapy (14).

Biologically, the issue of metastatic dormancy has been approached as balanced
proliferation and death, quiescence, or a combination of both. In arguing for balanced
proliferation and death, investigators invoke various constraints, such as the ‘angiogenic
switch’, prior to which the metastatic nodule is constrained to a certain mass in the absence
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of a vascular supply (2, 15). In other considerations, multiple feedback mechanisms are
invoked to maintain a small, but cycling cell population (16). The cellular and/or molecular
mechanisms behind tumor dormancy present with an absence of solid clinical data, though
emerging evidence of phenotypic plasticity suggests some other possible routes to dormancy
and may suggest quiescence of the disseminated tumor cells.

Thus, the situation remains unsettled as to which behavior predominates during these latent
periods. To take an unbiased approach, we modeled metastatic growth dynamics by
invoking a two state, Markov chain Monte Carlo (MCMC) simulation where only cell-
survival probability and starting metastasis populations were varied. As depicted in Figure 1,
the MCMC method assigns a survival probability for each cell in each metastasis during
each replication cycle. Cells will then either proliferate or die as statistically influenced by
the survival probabilities allowing for metastases to exhibit a range of outcomes not
predetermined. If metastatic dormancy can emerge across a wide spectrum of survival
probabilities then balanced proliferation may be the dominant contributor. However, if the
latent phenotype via balanced proliferation is only manifest within a narrow probability
window we propose that cellular quiescence would likely participate nontrivially in
protracted metastatic survival.

METHODS
Markov Chain Monte Carlo (MCMC) Model Overview (Figure 1)

Markov chain Monte Carlo simulation is a computational method that samples from a
probability distribution in order to assign system outcomes commensurate with the
underlying distribution (17). This model is described as a branching process whereby each
cell in cell cycle k will randomly give rise to zero or two cells in the k + 1 cell cycle. We
applied MCMC simulation as a means to model the fate of extravasated circulating tumor
cells into the metastatic site. We developed two Markov chain Monte Carlo approaches to
assign cell fates. The first, a fixed probability model, assigned static survival probabilities to
every cell in each metastatic nodule; the probability of survival for each individual cell was
not dependent on the other cells in that metastatic nodule.

The second approach incorporated a stochastic element where the survival probability for
any given cell was sampled randomly between +/− 10 percentage points around the
specified mean survival probability for the group. We refer to this variable probability as p~
where appropriate to distinguish it from the assigned probability p. All results herein were
developed from the second, stochastic model, diagrammed in Figure 1A. Both formulations,
however, are examples of branching processes, which allow for convenient analytic
expressions for some aspects of tumor behavior. In our two-state MCMC system, every cell
in each metastasis could either divide or die per cell cycle, thus mimicking the balanced
proliferation phenotype. Notably, cells were individually assigned a new survival probability
at each cycle with the stochastically assigned probability adjustment within 10 percentage
points above or below the initially assigned survival probability. For example, simulations at
a fixed 60 percent survival probability will allow for random fluctuations between 50 and 70
percent survival. Although these survival probabilities coalesced to the expected means, this
additional percentage point adjustment further imitated the dynamic survival conditions of
the metastatic niche.

These simulated micrometastases could devolve to zero cells (died out), exceed one million
cells (clinical metastasis) or exceed 1,218 cycles with fewer than one million cells
(dormant). Our data represent one hundred compiled patient trials (100,000
micrometastases) for each combination of cell survival rate and starting cell number. For the
progressive clinical metastases, we capture the range of cycles at which this occurred. For
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the dormant metastases we document the mean cell numbers at the time of dormancy.
Although this model does not achieve pseudo-equilibrium given all simulated metastases
terminate under one of 3 conditions, dormancy is nonetheless modeled by means of
achieving neither the zero or 1 million cell boundary before reaching 1,218 cycles; though it
is likely that should there be no cycle limit, the cell boundaries will be reached.

Assumptions—We simulated patients in groups of one hundred person cohorts across a
matrix of cell survival probabilities (0.3 to 0.7, given as percentages) and number of initially
extravasated cells. For each patient we modeled one thousand carcinoma deposits to the
liver at the time of primary tumor resection. The probability of an outgrowth is based on
individual micrometastasis and not on patient load of total micrometastases. Each deposit
started with one, two, four, or eight cells (later at 1000 and 4000 cells for boundary
validation) so as to separate initial extravasation and seeding from subsequent metastatic
behavior. We also assumed a one-and-one-half to three-day cell cycle so that 1,218 cell
cycles represented five to ten person years (dormancy) at a cycle time of 1.5–3 days per
mitosis. Micrometastases that grew beyond one million cells were classified as approaching
clinically evident and were not simulated further. Finally, we assumed that the initial one
thousand micrometastatic deposits did not give rise to additional deposits and were free to
either die out, grow out to greater than one million cells, or become dormant. Representative
traces of micrometastatic-tumor growth for four survival probabilities (50.0, 50.2, 50.4, and
50.6) are shown in Figure 1B.

RESULTS
Survival after metastatic extravasation is rate limiting

The metastatic fate across all simulated patient trials for 1, 2, 4, and 8 cell starting
metastases revealed that the majority of metastases died out until the survival probability
exceeded 60% (Figure 2). Sampled time courses of metastatic tumor growth illustrate this
phenomenon, even for probabilities above 50% (Figure 1B). Eight-cell starting metastases
conferred a grow-out advantage particularly above the 60% survival probability whereas
one-cell starting metastases still exhibited metastatic abatement in that range. Of those
metastases that die out, they do so quickly in fewer than 60 cycles (Figure 3). Dormant
metastases represented a small fraction and were tightly bounded by a small survival
probability.

Dormant metastases arise only for survival probabilities proximal to 50 percent
Metastatic dormancy was a rare outcome that manifested only between 49.7 and 50.8
percent survival probability (Figure 4, top panel). Starting with one versus eight cells in the
micrometastases did not impact this survival probability range. However, the mean number
of dormant metastases increased as the starting cell number increased, up to a maximum of
80 mean dormant metastases per patient (still less than 10 percent) for eight-cell simulations
(Figure 4, bottom panel). In a small series of 1000- or 4000-cell micrometastases the
boundary percentages were within the same narrow range.

Dormant metastases exhibited a large range in cell numbers
Although dormancy was tightly bounded proximal to the 50 percent survival probability, a
dramatic variance of the mean dormant metastatic size was highly sensitive to small changes
in survival probability (Figure 5). Half of the survival range (between 49.7 and 50.2 percent)
yielded dormant metastases comprised of fewer than a few thousand cells. Interestingly,
between 50.3 and 50.7 percent survival probabilities the populations peaked at around
500,000 cells. Not until the 50.8 percent survival probability did the dormant metastases (a
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single metastasis for 2-cell initialization, 3 metastases for the 8-cell case) approach the
outgrowth condition – reaching nearly one million cells.

Metastatic outgrowth was highly sensitive to small changes to survival probability
The cumulative density function in Figure 6 compares 1-cell versus 8-cell starting
metastases to the outgrowth condition. At the 70 percent survival probability, all of the
metastases that grew out did so in less than 50 cycles. In contrast, half the metastases grew
out in approximately 400 cycles for the 51.5 percent survival probability. Interestingly, at
just above the 50 percent survival probability, a one-percentage point increase in survival
probability resulted in the required number of cycles for the surviving metastases to achieve
outgrowth being reduced by two-thirds.

DISCUSSION
Research into metastatic latency has rapidly evolved over the past decade given the high
prevalence of this condition and the lack of effective clinical interventions. Unfortunately,
this phenomenon is difficult to recapitulate across in vitro and in vivo experimental systems.
Moreover, it is not certain whether metastatic latency results from small deposits of
quiescent carcinoma cells that had recently extravasated into the metastatic site or whether
small- to mid-sized micrometastases maintain clinically undetectable sizes based on
balanced proliferation and cell death (or a combination of explanations). This distinction is
critical as therapeutic approaches would be different for either condition: that of targeting
proliferating or quiescent cells.

Because of the metastatic latency prevalence, patients are confronted with the dilemma of
undergoing extensive and toxic systemic treatments for putative metastases based on the
characteristics of the primary nodule and statistical considerations of similar patients that
experienced metastatic latency. While the ability to predict which patients will suffer
metastatic recurrence has improved (18), the current approach to these dreaded sequelae
only reduces the rate by a third, while evoking untoward toxicity including hair loss,
neurological impairments, opportunistic infections, bleeding, and death. As most of the
therapy is ineffective, we need to characterize the status of the disseminated tumor cells
prior to their frank metastatic emergence so as to more effectively target them. What is not
known is whether these few surviving cells exist in cellular quiescence or undergo balanced
proliferation to engage the dormant phenomenon. This distinction has immense
implications, as predominantly only cycling cells are susceptible to chemotherapy, and is
therefore the focus of this paper.

Given these limitations, many in silico models have been developed that may help prioritize
or frame the metastatic etiology (19, 20). For example, Michor et al computed the
probability of metastatic dissemination from primary tumors based on oncogenic mutations
in RAS, ERBB2/NEU or MYC (21). Implementing a stochastic Moran process the authors
simulated a single genetic mutation that gave rise to neutral, advantageous or
disadvantageous metastatic potential. These simulations computed the temporal
accumulation of metastases as a function of primary tumor size. Further model development
eventually may help clinicians validate whether to treat more aggressively with adjuvant
therapy. Another study implemented a Voronoi tessellation approach to model the impact
heterogeneous or homogenous extracellular matrix (ECM) stiffness had on metastatic and
primary tumor growth kinetics (9). Whereas non-rigid, homogenous ECM gave rise to
isotropic tumors and rigid homogenous ECM invoked anisotropic morphologies, a
heterogeneous ECM stiffness exhibited both properties, but in a predicable manner.
Consequently this modeling if matured may assist clinicians in determining which metastatic
tumor-adjacent tissue (in critical metastatic organs such as the brain) may likely harbor
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disseminated tumor cells – leading to either more or less aggressive tissue resection.
Although these models have promise to improve clinical treatments there is a dearth of
modeling within the very early stages of metastatic extravasation.

The model presented here invokes explicit representation of each cell and leverages repeated
computed trials to sample the distributions of die out, grow out, and dormancy phenotypes
exactly. However, analytic formulations called branching processes can also be applied to
derive convenient predictions for this type of growth (22). These models exploit the fact that
daughter cells are independent from one another and thus behave as if individual metastases
(branching processes) themselves, lending to a compact, recursive formulation: hn(t) =
[fn(t)]N. Here, h(t) is the 'probability generating function' (pgf) at cell-cycle n, and is
computed as the product of N identical pgf's (for N starting cells in the micrometastatic
tumor) (23). The pgf allows us to quickly compute the expected cell population after n cell

cycles , the expected variance , and the

probability of eventual extinction  . In all expressions, the inputs are the number
of starting cells, N, the survival probability, p, and the number of cell cycles, n, just as in our
stochastic simulation model. The recursive formula above cannot yield the exact population
distribution for any large n (23), such as our cell cycle limit of 1,218. That is, while we can
predict dying out and survival, we cannot exactly predict dormancy with the model, for
which simulations are required.

Metastatic lesions are visible through imaging modalities such as MRI when they approach
0.1 cubic centimeter. A tumor of this small size actually consists of approximately 100
million cells (24). Therefore, disseminated tumor cell deposits of less than this cannot be
detected without invasive biopsy and subsequent analyses such as immunohistochemistry.
Because metastatic latency can be explained by two very different mechanisms – that of
cellular quiescence or proliferation offset by cell death (or a combination of both), we
sought to model the second hypothesis and determine what survival probability range would
give rise to the dormant phenotype. We simulated 100 patients each with 1000 metastatic
deposits (1, 2, 4, and 8-cell starting sizes) across stochastic survival probabilities
discontinuous between 30 and 70 percent. The modeling revealed a very narrow survival
probability range between 49.7 and 50.8 percent that gave rise to dormant metastases. The
reason why this dormancy probability window is so small is based upon how sensitive
simulated metastases are to small changes in survival probability. If the probability of
survival is less than 50 percent, the metastases all die out with the exception of the few
dormant clusters because the probability favors the boundary condition of dying out. Only a
rare escape from this tendency will therefore evoke a dormant metastasis. Once the
probability of survival exceeds 50.8 percent, the grow-out condition of reaching 1 million
cells begins to dominate. Thus, we conclude that it is unlikely that metastatic dormancy is
governed predominantly by internally balanced proliferation and cell death. As shown in
Figure 3, it may seem unexpected that micrometastases will die out even at survival
probabilities exceeding 70 percent. The reason for this phenomenon is closely related to the
number of starting cells in the metastases. It is difficult for a simulated metastasis to live
through its first few generations especially when it has two starting cells; because when a
cell dies the metastasis evolves closer to the boundary of dying out. As Figure 2
demonstrates, the chance of a metastasis dying out is reduced when there are eight starting
cells versus two starting cells. Of the metastases that die out, they do so in a short time
(Figure 3) as this relates to the fact that the metastases start near the null boundary and thus
are easy to involute early before attaining a greater cell number. An often suggested model
involves micrometastases growing and then being constrained at a subclinical size by the
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need for external supports; this is the basis of the postulated ‘angiogenic switch’ (25).
However, even here the constraints must be tightly controlled; in an initial series of
examining metastases of 1000 or 4000 starting cells, the range for staying dormant remained
constrained similarly to the smaller micrometastases at between 49.5% and 51% survival
probabilities; if the survival percentage drops below this, the metastatic nodules quickly die
out (data not shown). Thus, even this tumor extrinsic constraint would need to be tightly
controlled or frequently vacillate between outgrowth and involution. In the spirit of Occam’s
razor, we propose that extended periods of cellular quiescence most likely accounts for this
dormant period.

While there are numerous models for dormancy these suffer from significant differences in
the animal hosts, such as life-span and time-scale to development, and a lack of information
about the micrometastatic state in actual cancer patients. This approach does not account for
the richness of interactions and signals that may constrain or support micrometastatic
nodules. For instance, it is possible that an ‘angiogenic switch’ is required for outgrowth
once these nodules reach a certain size. However, the experimental data are lacking
currently to build models incorporating such inputs. Rather, such models would presuppose
these constraints and be built to account for the limitations and interventions (26). Herein,
we chose an a priori unbiased calculation to simply define the boundary conditions of
metastatic outgrowth regardless of the actual biological and physiological networks.

The value of mathematical models lies in their ability to suggest avenues for investigation.
Recent findings of tumor cells in circulation or bone marrow despite no evidence of
metastases may provide some insights into the behavior of the early metastatic cells.
Interestingly, ongoing proliferation is evident only in few of these cells (27) consistent with
quiescence of these cells. If these cells were truly quiescent then therapies targeted to killing
growing cells would not be effective and may even cause outgrowth if the dormant
microenvironment is perturbed. Still such findings are only suggestive, and highlight the
need to examine human micrometastases with innovative technologies to determine the
actual proliferative rates in these hidden metastases. As our currently available
chemotherapy mainly attacks cycling cells, the mode of quiescence would make this
treatment less effective and necessitate new approaches to the problem of metastatic
dormancy.
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STATEMENT OF TRANSLATIONAL RELEVANCE

Dormancy of metastases constitutes an ominous unknown for cancer patients – should
there be adjuvant treatment or not. The call for therapy and selection of type of therapy
should rationally depend on the biological properties of metastatic cells. If the cells in
these clinically silent micrometastases are in a state of balanced proliferation and death,
then agents targeting cycling cells are appropriate. However, if the cells are quiescent,
then other approaches, or none, are appropriate. As clinical data are scarce, and
experimental systems are not established to study this directly, we used an unbiased in
silico model to identify the boundary condition probabilities that would allow for
micrometastases to remain dormant for 5–10 years even while undergoing regular cell
cycling. The resultant tight one percentage point range suggests that the metastatic cells
likely undergo at least periods of quiescence. This would suggest that for longer-term
dormancy, novel approaches need to be developed.
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Figure 1.
Metastatic cell fates are determined via a Markov chain Monte Carlo method developed in
the Matlab programming environment. Panel A depicts the simulation’s progression starting
with 1,000 metastases initialized for each of the 100 patients. Within each simulation, there
exists a starting cell number denoted by n (1, 2, 4, or 8) across survival probabilities ranging
from 30 to 70 percent. Starting with the first cell cycle (denoted by k) a random number is
generated and compared to the survival probability. If n is equal to zero, the metastasis dies
out, and the next metastasis simulation (up to 1000) begins. If n reaches 1 million, the
metastasis is assumed to grow out to be clinically evident. If k reaches 1,218 while n is
greater than zero, the metastasis goes dormant. Panel B traces the fate of 100 individual
metastases across four survival probabilities, demonstrating the variability in metastatic
progression. Once metastases reach approximately 1,000 cells the growth rate equals the
expected growth rate as depicted by the dotted lines.
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Figure 2.
Metastatic fate for 2-cell (top) and 8-cell (bottom) starting metastases followed identical
trends with the majority of metastases dying out. The metastatic fate is coded with black
designating the metastases that remained dormant, grey the ones that died out, and patterned
those that grew out. X-axis represents survival probability from 30 to 70 percent with
vertical bars representing incremental probability rate changes. Shown are stochastic
models; the fixed survival percentages exhibited similar fates (data not shown).
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Figure 3.
Micrometastases that die do so quickly when survival probability is low or high. As p
increases mets are, on average, surviving longer, even though most still die. The symmetric,
decreasing curves capture results from the increased likelihood of cell survival, meaning that
those that do die out must converge to that fate quickly. Vertical bars indicate cell survival
maxima and minima for non-surviving metastases. Only near the dormancy survival ranges
do micrometastases have marked increases in cell cycles to die out, but still well below
1,218 cycles.
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Figure 4.
Dormancy only manifests between 49.7 to 50.8 percent survival probability. Mean number
of dormant metastases per 1000 initial nodules (ordinate) increases as starting cell number
increases, though they remain bounded by the same restraints in terms of survival
probabilities (abscissa). Panel B is an enlarged view of the narrow probability window
indicated in panel A.
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Figure 5.
Dormant metastases exhibit a wide range of cell numbers per metastasis. The number of
cells in each dormant nodule (ordinate) spanned from hundreds to nearly one million cells,
with similar results between 1-cell to 8-cell starting metastases across the survival
percentages. This range is highly sensitive to small changes in survival probability.
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Figure 6.
Cycles to outgrowth between 1 and 8 cell metastases. The cumulative fraction (ordinate) of
micrometastases that grow out as a function of survival probability leads to fewer cycles
(abscissa) with even a 1-percentage point increase in cell survival reducing outgrowth time
by nearly two thirds.
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