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Abstract

The aim of this study was to determine a genetic basis for IgA concentration in milk of Bos taurus. We used a Holstein-
Friesian x Jersey F2 crossbred pedigree to undertake a genome-wide search for QTL influencing IgA concentration and yield
in colostrum and milk. We identified a single genome-wide significant QTL on chromosome 16, maximising at 4.8 Mbp. The
polymeric immunoglobulin receptor gene (PIGR) was within the confidence interval of the QTL. In addition, mRNA
expression analysis revealed a liver PIGR expression QTL mapping to the same locus as the IgA quantitative trait locus.
Sequencing and subsequent genotyping of the PIGR gene revealed three divergent haplotypes that explained the variance
of both the IgA QTL and the PIGR expression QTL. Genetic selection based on these markers will facilitate the production of
bovine herds producing milk with higher concentrations of IgA.
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Introduction

Transmission of maternal immunoglobulins to offspring via

colostrum and milk influences neonatal health, providing essential

protection against environmental pathogens [1–3]. Further, the

improvement of human nutrition, including infant nutrition, is an

important target for food producers. Although bovine milk is the

predominant ingredient for most commercially prepared infant

formulae, significant compositional differences between human

and bovine milk exist. Accordingly, strategies to make the

composition and function of infant formula more similar to that

of human milk may be useful.

IgA is the most abundant immunoglobulin (Ig) in human

colostrum and milk, comprising approximately 90% of the total Ig,

whereas only 9% of the total Ig in bovine colostrum and milk is

IgA [2]. The concentration of Ig in bovine milk and colostrum

varies at different stages of lactation, with early colostrum

secretions containing the highest concentrations [4–5]. Colostrum

IgA concentrations follow this pattern with the maximum

concentration reached during the early colostrum period [4].

Variation in IgA concentration within and between bovine breeds

[6–8] has been observed, but the basis for this phenotypic

variation has not been elucidated. More recently a possible genetic

basis for natural antibody titres in bovine milk was also suggested

[9].

Genetic diversity within an agricultural species may provide

opportunity for improvements in production, disease resistance

and product differentiation options. To explore this potential

within dairy breeds, a Holstein-Friesian x Jersey crossbred trial

was conducted, enabling the discovery of genes and mutations

associated with variation in milk composition. We have previously

shown that natural genetic variation can be successfully used to

inform bovine breeding decisions [10–12]. One strategy to

increase the concentration of IgA in bovine milk, to more closely

match the composition of human milk, is the use of genetic

selection, allowing the generation of specialised herds or dairy

products.

Our hypothesis was that phenotypic variation in IgA content of

bovine colostrum or milk would be, in part, genetically

determined. Therefore, our aim was to identify loci associated

with IgA, and to establish a selection tool that would allow

colostrum and milk IgA to be increased. We searched for

chromosomal regions associated with colostrum IgA content and

identified a candidate gene, polymeric immunoglobulin receptor

(PIGR). We demonstrate that polymorphisms within this gene

explain more than 25% of the phenotypic variation for colostrum
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IgA and consequently provide the ability to increase milk IgA

content through the use of marker-assisted selection.

Materials and Methods

Ethics Statement
Ethics approval for all sample collection procedures, manipu-

lations and measurements performed on the animals was granted

by the Ruakura Animal Ethics Committee, Hamilton, New

Zealand. No animals were sacrificed during this study. The

samples collected were milk and colostrum samples, which were

collected by sub-sampling of milk and colostrum collected during

industry-standard milk collections; blood samples, which were

collected by venipuncture of the coccygeal vein, in accordance

with procedures approved by the ethics committee, and needle

biopsy samples of the fat and liver tissue, collected in accordance

with procedures approved by the ethics committee. The farm was

owned by our research group and managed by professional farm

staff.

Trial Pedigree design
A Holstein-Friesian x Jersey crossbred trial was conducted using

an F2 pedigree design with a half-sibling family structure, as

previously described [12–15]. Briefly, reciprocal crosses of

Holstein-Friesian and Jersey animals were carried out to produce

six F1 bulls of high genetic merit. Eight-hundred and sixty four F2

female progeny were then produced through mating of high

genetic merit F1 cows with these F1 bulls. The herd was formed

over two years, producing two cohorts, and a total of 724 F2 cows

entered their second lactations. The animals were managed on a

single farm under typical dairy farming practices in New Zealand

using a seasonal, pasture-based system.

Colostrum and milk sample collection
All measurements for the composition of colostrum and milk

were taken during the cows’ second lactation. Animals were

milked twice daily, using standard dairy industry practice and the

volume of milk was recorded at each milking using electronic milk

meters. The animals were managed on a seasonal system, with

lactation beginning after calving in spring. Colostrum samples

were obtained at the second and the eighth milking after calving

(days one and four of lactation, respectively) for analysis of IgA and

IgG content. Milk samples were also obtained at mid-lactation (a

fixed date approximately three months after calving) for analysis of

IgA and IgM, as well as milk fat content and milk protein content,

and somatic cell count (SCC). On each day that mid-lactation

samples were collected, sub-samples from the morning and

afternoon milk collections were combined to make a single

composite milk sample for each animal. Total fat and total protein

contents, and somatic cell count (SSC), a measure of mastitis, were

assessed during standard herd testing procedures by Fourier

transform infrared spectroscopy using a MilkoScan FT120 (Foss,

2006; Foss, Hillerød, Denmark). In addition, mid-lactation milk

samples from a subset of F2 animals (n = 38) were retained for

analysis of secretory component. Live-weight was obtained from

each cow during the week of milk sampling.

Analysis of immunoglobulins in milk
IgA concentration was measured using the bovine IgA ELISA

quantitation kit (Bethyl Laboratories Inc, Montgomery, Texas,

USA), as per manufacturer’s instructions. A reference standard of

bovine serum, containing 0.18 mg/mL IgA was used to calibrate

the assay for the colostrum samples. IgM was measured using a

bovine IgM ELISA quantitation kit (Bethyl Laboratories Inc,

Montgomery, Texas, USA; catalogue number E10-101) as per

manufacturer’s instructions. A reference standard of bovine serum,

containing 2.5 mg/mL IgM was used to calibrate the assay for the

colostrum samples. IgG was measured using a nephlometric assay,

as previously described [16]. IgA and IgG was measured in a total

of 661 colostrum samples at both the second and eighth milkings.

IgA and IgM were measured in 661 mid-lactation milk samples.

Analysis of Secretory component in milk
Secretory component, the soluble fragment of PIGR, an IgA

receptor, was measured in a subset (n = 38) of the 661 milk samples

collected at mid-lactation. Whey was prepared by the addition of

acetic acid to a final concentration of 1% followed by centrifu-

gation at 3,0006g, 20 min, 8uC. The whey samples were reduced,

alkylated with iodoacetamide, and digested with trypsin. The

tryptic peptides of whey proteins and the synthetic peptide

AAPAGAAIQSR, which corresponds to a tryptic peptide of

secretory component, were analysed by reverse phase high

performance liquid chromatography using an Agilent Technolo-

gies 1100 series capillary liquid chromatograph fitted with an

Agilent Technologies Zorbax SB-C18 300 Å 0.36150 mm

3.5 mm column coupled to an Agilent Technologies model SL

ion trap mass spectrometer with an electrospray ionisation

interface. The Zorbax column was developed with a gradient of

4% to 56% acetonitrile in 0.1% formic acid/0.005% heptafluor-

obutyric acid, over 27 minutes at a flow rate of 4 ml/min. The

mass spectrometer was operated in single ion monitoring mode

which was set to isolate and fragment the doubly protonated ion of

peptide AAPAGAAISQR observed at 506.8 m/z; fragment ions

were observed by scanning the mass range from 430 m/z to

810 m/z. The predominant fragment ion observed at 435.9 m/z,

corresponding to the doubly protonated y9 ion, was used for

quantitation; ions observed at 623.3 m/z, corresponding to the b8

ion, and at 704.2 m/z, corresponding to the y7 ion, were used as

qualifiers. The peptide AAPAGAAIQSR observed in samples of

trypsin-digested whey was quantitated by comparison to a

standard curve constructed using the synthetic peptide AAPA-

GAAIQSR.

Liver biopsy, mRNA preparation and microarray analysis
Liver and adipose tissue biopsies were taken from a subset of the

F2 Holstein-Friesian x Jersey crossbred cows. Approximately 480

cows were biopsied, during the third lactation, ten weeks after

parturition. Biopsy procedures were in accordance with proce-

dures approved by the Ruakura Animal Ethics committee and

were conducted as previously described [17]. Biopsy tissue

(approximately 0.5 cm3) was placed in a container with 10

volumes RNAlater (Ambion), stored overnight at 4u, and then

frozen at 220u. After thawing, the tissue was removed from the

RNAlater and homogenised in 750 ml TRIzol (Life Technologies)

for liver samples, and 750 ml QIAzol (Qiagen) for adipose samples.

RNA was then extracted according to manufacturer’s instructions.

The RNA was quantified using a NanoDrop (ThermoScientific),

and a quality assessment was made using an RNA 6000

BioAnalyzer chip (Agilent). Between 5 and 8 mg total RNA was

labelled using the Affymetrix One-Cycle Target Labeling and

Control Reagents Kit (Affymetrix, P/N 900493). 10 mg of labeled,

fragmented cRNA was hybridized overnight to a GeneChip

Bovine Genome Array (Bovine 39 arrays, Affymetrix), and the

array was processed and scanned according to the manufacturer’s

instructions. The microarray contained 24,027 probe sets repre-

senting more than 23,000 transcripts and includes approximately

19,000 UniGene clusters. There were 11 probe pairs per probe set.

Genetic Regulation of IgA in Bovine Milk

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e57219



Following microarray hybridisation and scanning, gene expres-

sion data files (CEL files) were obtained for analysis. The R

(version 2.13.1, [18]) computational environment and ‘‘affy’’

library were used as recommended by Affymetrix to assess data

quality. Of the 855 data files, 26 were found to have RNA

degradation and were consequently removed from further

analysis. The remaining 829 data files (359 for adipose tissue,

470 for liver tissue, 334 animals with both liver and fat

observations) were processed as one batch using the Affymetrix

Robust Multi-Array Average (RMA) normalisation procedure.

The output was then adjusted using REML, separated by tissue

type and fitted for biopsy date and RNA preparation date as fixed

effects. In addition, sire was fitted as a random effect. The resulting

residuals were used for QTL identification as described below.

Data are presented as adjusted means 6 standard error.

Genotyping
Genomic DNA was prepared from whole blood, 1661 animals

within the trial pedigree, including 846 F2 daughters, the six F1

sires, 796 F1 dams, and 13 selected F0 sires. The entire pedigree

was genotyped using the Illumina BovineSNP50 BeadChip

(Illumina, San Diego, USA) which assayed 54,000 SNPs.

Additional genotyping of SNPs discovered within the PIGR gene

was performed, using the single base extend 1 method and iPlex

gold chemistry (Sequenom).

Genome sequencing of F1 sires
Genomic DNA for whole genome sequencing was prepared

from whole blood of the six F1 sires, using a phenol-chloroform

extraction. Sample preparation and whole genome sequencing

was carried out by Illumina FastTrack, using the HiSeq 2000

system. A total of 958Gbase of data (100 bp Paired End, ,320 bp

insert size, V2 chemistry) was obtained (average 159.7 Gbase per

F1 sire).

Reads were aligned to the Bos Taurus UMD3.1 (bosTau6)

genome sequence with BWA version 5 [19] using the default

parameters. Indel realignment, duplicate removal and SNP/

INDEL detection was performed on the six alignments simulta-

neously using the Genome Analysis Toolkit (GATK; [20]). GATK

was also used to recalibrate the quality scores of the variants [21].

Variants with a VSQLOD below one were not analysed.

QTL mapping
QTL mapping was conducted using a previously described

mixed model that includes a locus-specific haplotype effect

(random) as well as an individual polygenic effect (random) to

correct for stratification [22]. Genotypes were phased using both

familial (Mendelian segregation and linkage) and population

(linkage disequilibrium (LD)) information and assigned to 20

ancestral haplotypes using a Hidden Markov Model [22]. The

haplotype effect in the mixed model corresponded to the effect of

the 20 ancestral haplotypes, which were considered uncorrelated.

The covariances between the individual polygenic effects corre-

sponded to twice the coefficient of kinship estimated from pedigree

records. Variance components were estimated using AIREML

[23]. The statistical significance of the haplotype effect was

estimated using a likelihood ratio test (LRT = 2LN(LR)) compar-

ing the likelihood of the data under the full model with that under

a model without haplotype effect. The LRT was assumed to be

distributed under the null hypothesis as a mixture of chi-squared

with 1 and 2 degrees of freedom [24–25]. Consequently, the

threshold for genome-wide significance (expected to be exceeded

by chance once per 20 genome scans) was set at 24, corresponding

to a Bonferroni-corrected p-value of 9.661027<0.05/54,000,

while the genome-wide suggestive threshold (expected to be

exceeded by chance on average once per genome scan) was set at

19.8, corresponding to a Bonferroni-corrected p-value of

8.561026<0.37/54,000.

Statistical analysis of milk phenotypes
Data analysis was performed using R (version 2.13.1, [18]). The

final dataset included observations for 661 animals for all

phenotypes except secretory component, for which we had

observations in 38 animals. The phenotypic variation of IgA

concentration, milk volume and IgA yield (IgA concentration

multiplied by milk volume) was described using analysis of

variance, where milking number (second or eighth), sire (sires 1–

6), calving date and cohort (cohort one or two, determined by

birth year) were fitted as fixed effects. The effect of PIGR

‘‘genotype of haplotype’’ (I/I, I/II, I/III, II/II, II/III, III/III) on

colostrum IgA and IgG, measured at the 2nd and 8th milkings,

and on IgA, IgM, secretory component, milk fat content, milk

protein content, milk volume and somatic cell count, all measured

at mid-lactation, was determined using a generalized linear model.

PIGR ‘‘genotype of haplotype’’, sire and cohort were fitted as fixed

effects, while calving date was fitted as a continuous covariate. A

significance level of p = 0.05 was used throughout, and LS means

and their corresponding standard errors were evaluated using the

Effects package in R (version 2.13.1, [18]).

Results

Phenotypic variation of colostrum IgA
The average IgA concentration in colostrum at the second

milking was 1.6560.04 mg/mL and, as expected, decreased

significantly by the eighth milking to 0.4360.04 mg/mL

(P = 1.54610275). Milk volume at the 2nd milking was

8.0760.10 L and at the 8th milking was 9.8260.10 L

(P = 3.76610231). The yield, or total amount, of IgA produced

also differed significantly between the second and eighth milkings

(12.8560.37 mg/milking vs. 4.1060.37 mg/milking,

P = 5.35610258). The concentration of IgA in colostrum differed

significantly according to transmitting sire, at both the second and

the eighth milkings (P = 7.9661026 and P = 7.5261029 respec-

tively), as did the yield of IgA at both the second and eighth

milkings (P = 1.3861025 and 1.1861026 respectively). IgA con-

centration in colostrum was also significantly influenced by cohort

(0.3860.01 mg/mL vs. 0.4660.01 mg/mL, P = 0.013) and by

calving date (P = 0.0063, data not shown). IgA yield in colostrum

was not significantly influenced by cohort (P = 0.59, data not

shown) or by calving date (P = 0.559, data not shown). The

average of IgA concentration in mature milk, measured at mid-

lactation, was 0.6960.03 mg/mL. Milk volume at mid-lactation

was 16.7662.80 L, and thus the yield per day of IgA at this time-

point was 11.3560.21 mg. The concentration and yield of IgA at

mid-lactation differed significantly according to transmitting sire

(P = 0.005 and 5.6861027 respectively). IgA concentration at mid-

lactation was also significantly influenced by cohort

(0.6160.012 mg/mL vs. 0.7560.014 mg/mL, P = 3.1061027)

and by calving date (P = 1.0161025; data not shown). IgA yield

at mid-lactation was significantly influenced by cohort

(10.1860.17 mg/milking vs. 12.360.23 mg/milking,

P = 2.3661028) but not calving date (P = 0.663, data not shown).

A QTL with major effect on colostrum and milk IgA maps
to bovine chromosome 16

We scanned the genome for QTL influencing IgA concentra-

tion and yield in colostrum and milk using a previously described

Genetic Regulation of IgA in Bovine Milk

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e57219



haplotype-based method that simultaneously extracts linkage and

LD information and accounts for population stratification [22].

The phenotypes used for this QTL mapping are in Table S1 and

genotypes are in Table S2, with marker positions in Table S3. This

analysis revealed a single genome-wide significant QTL with

major effect on IgA concentration and yield in both colostrum and

milk on chromosome 16 (Fig. 1A and Fig. S1). The most likely

position of the QTL ranged from position 4,305,200 to 5,540,018

(UMD3.1/bosTau6) depending on the phenotype considered. The

95% confidence interval for the QTL, defined with the LRT-4.6

( = lod-2) drop-off method applied to the phenotype that yielded

the highest LRT, (colostrum IgA yield at the eighth milking;

LRT = 124.9 at chromosome position 4,533,875); spanned

,162 Kb (chromosome position 4,466,778–4,628,745). The

effects of hidden haplotype state on colostrum IgA yield at the

8th milking ranged from 21.2460.037 to +0.6860.077 mg

(Fig. 2). The substitution effects of the haplotypes carried by F1

sires 1, 3 and 6 were large (between 1.19 and 1.67 mg), by F1 sires

4 and 5 intermediate (0.45 mg), and by F1 sire 2 virtually zero

(Fig. 1B).

In addition to this significant QTL on chromosome 16, we

obtained tentative evidence for a QTL influencing IgA yield at the

2nd colostrum collection on chromosome 4 (Fig. S1).

An expression QTL (eQTL) influencing hepatic PIGR
expression coincides with the IgA QTL

The 95% CI for the IgA QTL encompasses seven annotated

genes: IL19, IL20, ITM2C, PIGR, FCAMR, FAIM3 and IL24. PIGR

encodes the polymeric immunoglobulin receptor, which has been

previously implicated in the binding, and basal to apical

translocation of IgA molecules in a variety of cell types including

epithelial cells [26–27]. Thus PIGR was an excellent positional

candidate gene. To examine whether the PIGR gene might be

involved in determining the IgA QTL, we first took advantage of

microarray data, available for adipose and hepatic tissue of 359

and 429 F2 cows, respectively. We analyzed the PIGR expression

data using the same haplotype-based mixed model approach that

was used for IgA, to search for QTL influencing PIGR expression.

The phenotypes used for this QTL mapping are in Table S1 and

genotypes are in Table S2, with marker positions in Table S3. We

obtained a highly significant cis-eQTL (LRT = 145.24) at position

4,540,424, i.e. within the 95% confidence interval of the IgA QTL

(eighth colostrum) and within the body of the PIGR gene (Fig. 3A).

The effects of hidden haplotype state on PIGR expression ranged

from 20.3560.01 to +0.3760.02 (arbitrary units; Fig. 2), and

were very significantly correlated (p = 0.01) with their effect on IgA

in colostrum and milk (Fig. 2). However, an increase in hepatic

PIGR expression was associated with a decrease in IgA secretion

into milk. Moreover, despite the correlation between the haplotype

effects on PIGR expression and IgA, the substitution effects on

PIGR expression of the haplotypes of the F1 sires did not match

those on IgA amounts: they were large for sires 4 and 5 (0.48

arbitrary units), intermediate for sires 1, 3 and 6 (0.3187, 0.368

and 0.428 arbitrary units, respectively) and virtually zero for sire 2

(Fig. 3B).

Genome sequencing reveals the segregation of three,
highly divergent PIGR haplotypes

We took advantage of genome-wide resequencing data recently

generated for the six F1 sires that will be described in more detail

elsewhere. We focused our attention on ,24 Kb spanning the 11

exons of the PIGR gene including ,10 Kb of upstream and

,3 Kb of downstream sequence. Sequence depth across this

interval averaged 262 (range: 9–451). We analyzed the sequence

data using GATK [20–21] and identified 269 sequence variants

(251 SNP, 10 deletions, 8 insertions) within this interval. Of these,

258 (i.e. 98%) conformed to one of three segregation patterns in

the F1 sires: (i) sires 1, 3 and 6 heterozygous (126 variants), (ii) sires

4 and 5 heterozygous (95 variants), and (iii) sires 1, 3, 4, 5 and 6

heterozygous (37 variants). The most parsimonious explanation of

Figure 1. Chromosome 16 QTL for colostrum and milk IgA content. (A) Location scores (LRT = likelihood ratio test) obtained when scanning
bovine chromosome 16 for QTL influencing IgA concentration (dotted lines) and yield (continuous line) in colostrum collected at the 2nd milking (‘‘2nd

colostrum’’; light gray), colostrum collected at the 8th milking (‘‘8th colostrum’’; dark gray) and mid-lactation milk (black) using a mixed-model based
approach that simultaneously extracts linkage and LD information. The red curve corresponds to the location scores obtained for IgA yield of 8th

colostrum (giving the strongest signal in single QTL analysis) when adding the effect of PIGR haplotype (I, II and III; cfr. Fig. 4) in the model. (B) Effect
(6 SEM) of the haplotypes of the six F1 sires on IgA yield of the 8th colostrum (mg/milking). The haplotypes are labeled according to their
corresponding PIGR genotype (I: blue; II: green; III: red; cfr. Fig. 4).
doi:10.1371/journal.pone.0057219.g001
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this finding is the segregation of three haplotypes (I, II, III) for

which the F1 sires would have genotype I/II (sire 1), I/I (sire 2), I/

II (sire 3), I/III (sire 4), I/III (sire 5) and I/II (sire 6) (Table S4). We

developed genotyping assays for eight SNPs. Four of those

(E3_903 at position 4543550, E4_3938 at position 4540515,

E4_4029 at position 4540424, and E5_5183 at position 4539270)

would have segregation pattern (i), two (39UTR_9519 at position

4534484 and 39UTR_9640 at position 4534363) segregation

pattern (ii), and two (59UTR_-33 at position 4544485 and

59UTR_-9 at position 4544461) segregation pattern (iii). We

genotyped the entire F2 pedigree and phased the resulting

genotypes using Phasebook [22]. The three haplotypes predicted

from the sequence data of the F1 sires indeed accounted for 98.2%

of the chromosomes in the F2 generation (I: 50.3%; II: 12.4%; III:

35.5%).

Closer examination of the sires’ sequences indicated that

haplotypes II and III differ at 224/269 variant positions,

corresponding to a remarkably high average nucleotide diversity

(p) of 1/109. The differences between these two highly divergent

haplotypes include 32 exonic variants of which 19 are non-

Figure 2. Effects of hidden haplotype states. Bivariate effects (Y-axis: PIGR expression in liver; X-axis: IgA yield of 8th colostrum) of the 20 Hidden
Haplotype States at the most likely position of the 8th colostrum IgA yield QTL (4,533,875). Hidden Haplotype States are labelled according to their
PIGR haplotype (I: blue; II: green; III: red; cfr. Fig. 4).
doi:10.1371/journal.pone.0057219.g002

Figure 3. Chromosome 16 eQTL for PIGR mRNA expression. (A) Location scores (LRT = likelihood ratio test) obtained when scanning bovine
chromosome 16 for QTL influencing PIGR transcript levels (black line) in liver using a mixed-model based approach that simultaneously extracts
linkage and LD information. The red curve corresponds to the location scores obtained for PIGR mRNA expression level (liver) when adding the effect
of PIGR haplotype (I, II and III; cfr. Fig. 4) in the model. The gray line corresponds to the location score obtained for IgA yield of the 8th colostrum (cfr.
Fig. 1A). (B) Effect (6 SEM) of the haplotypes of the six F1 sires on PIGR expression level in liver. The haplotypes are labeled according to their
corresponding PIGR genotype (I: blue; II: green; III: red; cfr. Fig. 4).
doi:10.1371/journal.pone.0057219.g003

Genetic Regulation of IgA in Bovine Milk
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synonymous (Table S4). Moreover, haplotype I appeared recom-

binant between these two highly divergent haplotypes: it is closely

related to haplotype II at the 39 end (downstream of exon 6; p= 1/

705), while being closely related to haplotype III in the center

(exon 4 – intron 6; p= 1/609). The relationship between the three

haplotypes was less contrasted at the 59 end of the PIGR gene

(upstream of intron 3), the nucleotide diversity being ,1/200 for

all three haplotype comparisons (Fig. 4).

The PIGR haplotype triad fully accounts for the IgA QTL
and PIGR eQTL

We determined the correspondence between the hidden

haplotype states used for the QTL analysis and the PIGR

haplotypes. As can be seen from Fig. 2, the three PIGR haplotypes

define three clusters of hidden states that are non-overlapping with

respect to their bivariate effect on milk IgA and hepatic PIGR

expression levels. When adding PIGR haplotype as a random effect

in the QTL analyses, hidden haplotype effects on IgA amount and

PIGR expression disappeared, indicating that PIGR haplotypes

fully explain the identified QTL (Fig. 1A & 3A). PIGR genotype (I/

I, I/II, I/III, II/II, II/III) accounted for ,4% of the variance of

IgA yield/concentration in the 2nd colostrum milking, ,20% in

the 8th colostrum milking, ,17% in mid-lactation, while

accounting for ,35% of the variance in PIGR expression level

in liver. PIGR haplotype effects on both IgA yield/concentration as

well as on PIGR transcript levels appeared to largely act additively

(intermediate phenotype of heterozygotes when compared to

alternate homozygotes; Fig. 5).

Effect of PIGR genotype on milk composition
We considered the effect of ‘‘genotype of haplotype’’ on milk

composition. The concentration and yield of IgA in colostrum (at

the second and eighth milkings), and in mature milk (mid-

lactation) was significantly affected by genotype (Table 1). In

particular, animals homozygous for haplotype II produced

colostrum and milk with approximately one third the concentra-

tion of IgA than animals homozygous for haplotype I (Table 1).

There was also a significant effect of haplotype on milk IgM

concentration, with animals homozygous for haplotype II

producing milk with approximately half the concentration of

IgM than animals homozygous for haplotype I (Table 1). In

contrast, there was no effect of PIGR haplotype on colostrum IgG

concentration. No significant effect of genotype was observed for

the amount of fat or protein in milk, daily milk yield, or somatic

cell count (Table 1).

Discussion

We have demonstrated that the PIGR gene is characterized by

three common haplotypes that segregate at intermediate frequen-

cies in both HF and Jersey, and that these fully account for (i) a

QTL with major effect in milk IgA concentrations, and (ii) a cis-

acting eQTL on PIGR transcript levels in adult liver. The IgA

QTL is primarily due to the negative effect on milk IgA levels of

haplotype II when compared to haplotypes I and III. The most

striking difference between haplotype II, and haplotypes I and III,

is a 7.3 Kb segment between exons 3 and 10, characterized by 85

genetic variants differentiating II versus I/III. These include 13

Figure 4. Sequence comparison of PIGR haplotypes. (A) Variant positions at which the corresponding pair of PIGR haplotypes Differ (upper line;
‘‘D’’), or are the Same (lower line; ‘‘S’’). The positions of the PIGR exons are marked by the transparent gray boxes. (B) Schematic representation of the
three major PIGR haplotypes with indication of the positions at which they differ or not. Within the body of the PIGR gene, haplotype I is appears as a
recombinant between haplotype II and III, which differ on average every 109 nucleotides. Upstream of the gene, the three haplotypes differ on
average every ,200 nculeotides.
doi:10.1371/journal.pone.0057219.g004
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Figure 5. Effect of PIGR genotype on IgA yield and PIGR expression. Phenotypic effects (6 SEM) of the six possible PIGR genotypes (I/I, II/II, III/
III, I/II, I/III, II/III – I: blue; II: green; III: red; cfr. Fig. 4) on IgA yield of the 8th colostrum (A) and PIGR expression in liver (B). In general the phenotypic
mean of the heterozygotes is intermediate between the corresponding alternate homozygotes, supporting additivity.
doi:10.1371/journal.pone.0057219.g005

Genetic Regulation of IgA in Bovine Milk

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e57219



non-synonymous substitutions (Table S1). A likely hypothesis is

that one or several of the structural variants in this segment

directly affect the functionality of PIGR and cause the observed

QTL effect. All of these variants are in near perfect LD in the

analyzed sample. It is therefore impossible to genetically identify

the causative variant(s) by association analysis. Further dissection

of the molecular mechanisms underlying the corresponding effect

will require the analysis of other populations and/or functional

assays.

The PIGR eQTL effect is primarily due to the negative effect on

hepatic transcript levels of haplotype I, when compared to

haplotypes II and III. There are 43 variant positions for which

haplotypes II and III are identical yet differ from haplotype I. A

plausible hypothesis is that one or several of these (or variants in

high LD with them yet outside of the considered region) are

directly responsible for the eQTL effect observed in liver. It is

noteworthy that five of the corresponding variants cluster within

300 bp from the presumed transcriptional start site, including one

with Phastcons score of 0.5. Alternatively, the higher expression

levels of haplotypes II and III (when compared to I) could depend

on distinct regulatory variants.

In addition to these two major (e)QTL effects, our results

support distinct minor effects, underlying (i) the differences

between haplotypes I and III with regards to IgA concentrations,

and (ii) the differences between haplotypes II and III with regards

to PIGR expression. Haplotypes I and III differ most strikingly in

the terminal 5.6 Kb of the PIGR gene, with 73 variant positions.

However, none of these alters the PIGR open reading frame.

Haplotype III shares one non-synonymous substitution differen-

tiating it from haplotype I in common with haplotype II (K167R),

and this could underlie the observed minor effect on IgA

concentrations. As mentioned before, haplotypes II and III differ

at a minimum of 224 positions. Several of these could contribute to

the minor II to III eQTL effect. Of note, haplotypes II and III

differ for three SNPs with Phastcons scores.0.98, ,1.4 Kb

upstream of the transcriptional start site.

Our data does not allow us to draw definitive conclusions with

regards to the contribution of regulatory variants to the IgA QTL.

The eQTL effect observed in liver may be tissue-specific and not

accurately reflect relative PIGR expression in the mammary gland.

However, the fact that (i) some haplotype contrasts are strong for

IgA concentrations yet weak for expression (I versus III), and vice

versa (II versus III), and (ii) increased PIGR expression is associated

with decreased IgA concentrations, does not support a direct

functional link between IgA QTL and PIGR eQTL.

The nucleotide diversity observed between PIGR haplotypes II

and III (p= 1/109) is high. This divergence level is typically

expected for haplotypes sampled in distinct sub-species rather than

in the same species. A plausible hypothesis is that the two

haplotypes originate from distinct bovine sub-species that have

been independently domesticated and have subsequently under-

gone hybridization. This situation is reminiscent of the highly

divergent IGF2 haplotypes that have been observed in commercial

European pig populations shown to respectively trace back to

Asian and European wild boar populations [28].

It has been proposed that PIGR is also a transporter of IgM [27,29–

30]. In agreement with this observation, our data show a significant

effect of the PIGR gene on the concentration of IgM in milk,

suggesting that this receptor indeed is important for the secretion of

IgM into bovine milk and that similar genetic mechanisms underlie

phenotypic variation in both IgA and IgM. There was no effect of the

PIGR gene on the concentration of IgG in milk.

Secretory IgA provides the first line of defence against

environmental pathogens. Within the mammary gland, secretory

Table 1. Effect of PIGR haplotype on milk composition traits.

Genotype of Haplotype

Phenotype I/I I/II I/III II/II II/III III/III P-Value

Colostrum, 2nd

milking
IgA (mg/mL) 1.91 (0.12) 1.41 (0.15) 1.79 (0.12) 0.62 (0.33) 1.48 (0.18) 1.36 (0.29) 0.0013

IgG (mg/mL) 7.5 (0.46) 8.82 (0.58) 8.31 (0.46) 9.25 (1.31) 9.24 (0.72) 7.28 (1.17) 0.2672

Milk Volume (L) 8.33 (0.2) 7.97 (0.26) 8.15 (0.2) 7.84 (0.58) 7.88 (0.31) 7.26 (0.51) 0.4208

IgA Yield (mg) 15.67 (0.95) 10.56 (1.2) 14.06 (0.96) 4.48 (2.72) 10.41 (1.48) 10.09 (2.43) 0.0001

Colostrum, 8th

milking
IgA (mg/mL) 0.51 (0.012) 0.36 (0.015) 0.47 (0.012) 0.16 (0.034) 0.34 (0.018) 0.37 (0.03) 4.51610228

IgG (mg/mL) 1.04 (0.04) 1.19 (0.05) 1.13 (0.04) 1 (0.11) 1.2 (0.06) 1.01 (0.1) 0.0552

Milk Volume (L) 10.06 (0.2) 9.4 (0.25) 9.86 (0.2) 9.88 (0.56) 9.62 (0.31) 10.49 (0.5) 0.2787

IgA Yield (mg) 5 (0.13) 3.27 (0.16) 4.49 (0.13) 1.58 (0.36) 3.24 (0.2) 3.87 (0.32) 1.63610226

Mid-Lactation IgA (mg/mL) 0.82 (0.024) 0.55 (0.03) 0.76 (0.024) 0.32 (0.068) 0.57 (0.037) 0.65 (0.061) 3.99610217

IgM (mg/mL) 0.14 (0.005) 0.13 (0.006) 0.14 (0.01) 0.09 (0.01) 0.13 (0.01) 0.13 (0.01) 0.0099

Secretory componenta

(mg/mL)
9.69 (1.77) 3.51 (1.64) 5.62 (0.76) 3.79 (1.16) 5.73 (1.22) N/A 0.1323

Protein (%) 3.78 (0.02) 3.82 (0.02) 3.78 (0.02) 3.78 (0.05) 3.83 (0.03) 3.86 (0.04) 0.2571

Fat (%) 5.29 (0.04) 5.29 (0.05) 5.31 (0.04) 5.32 (0.11) 5.29 (0.06) 5.55 (0.1) 0.2493

Milk volume (L) 17.1 (0.18) 16.7 (0.23) 16.8 (0.18) 17.3 (0.51) 16.2 (0.28) 16.2 (0.46) 0.1036

Somatic cell count
(61000)

148 (27) 121 (34) 111 (27.2) 93 (76.9) 131 (42) 107 (68.7) 0.9359

an = 38 observations.
mean presented with standard error in brackets.
doi:10.1371/journal.pone.0057219.t001
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IgA may play a dual role, providing protection against environ-

mental pathogens causing mastitis [31–32] as well as providing

critical immunity to the neonate. Therefore, it is interesting to

speculate whether polymorphisms in the PIGR gene may also

relate to disease resistance in the cow and the calf.

In conclusion, we describe mutations within the bovine PIGR

gene which form a genetic basis for variation in the secretion of

IgA into bovine colostrum and milk. Genetic selection based on

these markers will facilitate the production of bovine herds

producing milk with higher concentrations of IgA.

Supporting Information

Figure S1 Genome-wide scan for QTL affecting IgA, IgG and

IgM. Manhattan plots obtained using a haplotype-based mixed

model that simultaneously extracts linkage and LD information

and corrects for stratification. For antibody (IgA, IgG or IgM as

indicated) concentration (left column) and yield (right column) in

2nd colostrum, 8th colostrum or mid-lactation milk. The LRT

threshold for genome-wide significance is 24, while the genome-

wide suggestive threshold is 20.

(TIF)

Table S1 Phenotype data used for QTL mapping. ID = unique

animal identification number. Cohort = cohort 1 or 2, based on

year of birth. Phenotypes listed are milk volume, IgA concentra-

tion, IgA yield, IgG concentration, and IgG yield for the second

and eighth milkings, IgA concentration and yield at mid-lactation,

PIGR mRNA expression in liver and fat tissue.

(XLS)

Table S2 Genotypes in the PIGR region. ID = unique animal

ID. Genotypes are listed as 1 or 2 for both the paternal and

maternal alleles.

(XLS)

Table S3 Marker map information. For the markers listed in

Table S2, the bovine chromosome 16 map position (UMD3.1) is

given, along with RS# if available.

(XLS)

Table S4 Sequence variant data for the six F1 sires. Sires are

numbered 1001–1006. Sequence variant information is given in

terms of reference allele and alternative allele, as well as reference

amino acid and alternative amino acid where applicable.

(XLS)
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