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Aging can be viewed as a quasi-
programmed phenomenon driven 

by the overactivation of the nutrient-
sensing mTOR gerogene. mTOR-driven 
aging can be triggered or accelerated 
by a decline or loss of responsiveness 
to activation of the energy-sensing pro-
tein AMPK, a critical gerosuppressor of 
mTOR. The occurrence of age-related 
diseases, therefore, reflects the synergis-
tic interaction between our evolutionary 
path to sedentarism, which chronically 
increases a number of mTOR activat-
ing gero-promoters (e.g., food, growth 
factors, cytokines and insulin) and the 
“defective design” of central metabolic 
integrators such as mTOR and AMPK. 
Our laboratories at the Bioactive Food 
Component Platform in Spain have ini-
tiated a systematic approach to molecu-
larly elucidate and clinically explore 
whether the “xenohormesis hypothesis,” 
which states that stress-induced synthe-
sis of plant polyphenols and many other 
phytochemicals provides an environ-
mental chemical signature that upregu-
lates stress-resistance pathways in plant 
consumers, can be explained in terms of 
the reactivity of the AMPK/mTOR-axis 
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to so-called xenohormetins. Here, we 
explore the AMPK/mTOR-xenohormetic 
nature of complex polyphenols naturally 
present in extra virgin olive oil (EVOO), a 
pivotal component of the Mediterranean 
style diet that has been repeatedly associ-
ated with a reduction in age-related mor-
bid conditions and longer life expectancy. 
Using crude EVOO phenolic extracts 
highly enriched in the secoiridoids oleu-
ropein aglycon and decarboxymethyl 
oleuropein aglycon, we show for the first 
time that: (1) The anticancer activity of 
EVOO secoiridoids is related to the acti-
vation of anti-aging/cellular stress-like 
gene signatures, including endoplasmic 
reticulum (ER) stress and the unfolded 
protein response, spermidine and poly-
amine metabolism, sirtuin-1 (SIRT1) 
and NRF2 signaling; (2) EVOO seco-
iridoids activate AMPK and suppress 
crucial genes involved in the Warburg 
effect and the self-renewal capacity of 
“immortal” cancer stem cells; (3) EVOO 
secoiridoids prevent age-related changes 
in the cell size, morphological hetero-
geneity, arrayed cell arrangement and 
senescence-associated β-galactosidase 
staining of normal diploid human 
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and stress-response proteins such as chap-
erones and antioxidant and detoxifying 
enzymes, among others.

Many animal studies involving dietary 
restriction (DR) regimens such as caloric 
restriction (CR), total-nutrient restriction, 
alternate-day fasting and short-term fast-
ing have shown that DR can increase the 
resistance of the cells of these animals to 
various types of stress.39-50 For example, 
mortality due to natural causes or induced 
by temperature or specific toxins is sig-
nificantly reduced in animals subjected to 
CR compared with animals consuming a 
normal diet. Reduced caloric intake may 
also protect animals from various types 
of cancer, including pancreatic, mam-
mary and prostate cancer.51-57 In humans, 
alternate-day fasting improves symptoms 
and reduces markers of inflammation and 
oxidative stress in asthma patients, retards 
the growth of tumors and sensitizes a range 
of cancer cell types to chemotherapy.58-60 
By considering CR without malnutrition 
to be a “mild dietary stress,” the ability of 
CR to prevent or lessen the severity of can-
cer, stroke, coronary heart disease, autoim-
mune disease, allergy, Parkinson disease 
and Alzheimer disease has been largely con-
sidered to represent an “overcompensation” 
resulting from hormetic mechanisms.61

Xenohormesis

Another well-known example of a hormetic 
process is exposure to low concentrations 
of certain phytochemicals. Organisms 
appear to have evolved the ability to detect 
stress markers produced by other species 
in their habitats. In this way, organisms 
might prepare themselves in anticipa-
tion of potential adverse environmental 
conditions. This inter-species hormesis is 
known as xenohormesis, the phenomenon 
in which an organism detects the chemi-
cal signals of another species regarding 
the state of the immediate environment or 
the availability of food.62-66 This hormetic 
process generates beneficial effects for the 
organism. The existence of xenohormesis 
might explain how chemical compounds 
produced by plants and other autotrophs 
to defend against adverse environmen-
tal conditions can produce beneficial 
effects in the heterotrophs (animals and 
fungi) that consume them. Animals take 

Aspirin is just one example of the dozens 
of plant-derived compounds that are now 
known to be beneficial to human health 
and that, furthermore, interact with more 
than one molecular target. Curiously, 
salicylate has been shown to activate ade-
nosine monophosphate-activated protein 
kinase (AMPK),8,9 which is a key thera-
peutic target for the treatment of obesity, 
type 2 diabetes and cancer due to its role 
as a central regulator of lipid and glucose 
metabolism10-12 and as a critical modula-
tor of aging through its interactions with 
mTOR, SIRT1 and the sestrins.13-24

Hormesis

Living organisms continually face adverse 
situations or harmful stimuli. Adaptation 
to these external aggressors, whether 
chemical, physical, biological or social, 
is paramount to survival. In addition, 
mild exposure to a stimulus that could 
be harmful at high concentrations might 
confer subsequent resistance or tolerance 
to some aggression, even one brought 
about by the stimulus itself. This adaptive 
response to stress has been identified as an 
evolutionarily conserved process. In toxi-
cology, the term hormesis is used to define 
a two-phase nonlinear biological response 
in which exposure to a low dose of or weak 
stimulus by an environmental toxin or 
harmful substance produces a potentially 
beneficial effect, while a high dose leads to 
adverse effects.25-30 In the biomedical field, 
hormesis refers to an adaptive response of 
cells and organisms to a moderate or inter-
mittent stressor.31-34 Thus, hormesis could 
be defined as a process in which exposure 
to a low dose of an environmental factor 
or chemical compound that is harmful 
at high concentrations has a beneficial 
and adaptive effect on the cell or organ-
ism. Furthermore, hormesis represents an 
essential concept in evolution, because it 
offers a possible explanation for how life 
on this planet has adapted to an environ-
ment that is at times particularly aggres-
sive. To overcome environmental stresses, 
organisms might have developed a variety 
of cell signaling pathways that mediate 
hormetic responses.35-38 These include 
transcription factors and the kinases that 
regulate them, which modulate the expres-
sion of genes that encode cytoprotective 

fibroblasts at the end of their prolifera-
tive lifespans. EVOO secoiridoids, which 
provide an effective defense against plant 
attack by herbivores and pathogens, are 
bona fide xenohormetins that are able to 
activate the gerosuppressor AMPK and 
trigger numerous resveratrol-like anti-
aging transcriptomic signatures. As such, 
EVOO secoiridoids constitute a new 
family of plant-produced gerosuppres-
sant agents that molecularly “repair” the 
aimless (and harmful) AMPK/mTOR-
driven quasi-program that leads to aging 
and aging-related diseases, including 
cancer.

Plants have been used for medicinal pur-
poses for thousands of years. A third of the 
20 most widely sold drugs on the market 
are plant-derived, and new molecules that 
may be beneficial for health are rapidly 
being discovered.1-4 The global economy 
and human health both depend in part on 
the discovery of new and effective medi-
cines. Surprisingly, little effort has been 
focused on plants that are known to syn-
thesize molecules beneficial to the health 
of other organisms. One of the reasons for 
this lack of attention is the ease of patent-
ing new synthetic drugs (known as “new 
chemical entities”); another is the “impu-
rity” (non-specificity) of plant-derived 
biocompounds. A compound is consid-
ered “non-specific” if it interacts with a 
number of endogenous proteins. A priori, 
a plant-derived compound that interacts 
with several molecular targets may have 
an imperceptible effect (or even an adverse 
effect) compared with a pure molecule 
that interacts specifically with a particu-
lar protein.1-4 However, a number of plant 
molecules interact with enzymes and 
receptors in ways that are not harmful. By 
the 5th century B.C.E., Hippocrates had 
described salicylic acid as “a bitter powder 
extracted from the willow that relieves pain 
and reduces fevers.”5,6 In 1763, Reverend 
Edward Stone experimented with the bark 
of the white willow (Salix alba) to treat 
fever and concluded that it was “a very 
effective remedy.”6,7 Since then, a vari-
ety of salicylates have been isolated from 
plants and used in the treatment of goiter, 
rheumatic fever, pain and arthritis. Today, 
45,000 t of aspirin, an acetylated salicylic 
acid derivative, is produced each year. 
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As for many plant-derived polyphe-
nols, it has been largely assumed that 
EVOO-derived complex phenols such as 
lignans, flavonoids and secoiridoids127-130 
provide health benefits, primarily due to 
their antioxidant activity.131-133 However, 
the antioxidant capacity of EVOO poly-
phenols does not directly correlate with 
their efficacy in terms of bioactivity (e.g., 
toxicity against cultured cancer cells). 
Moreover, when EVOO is provided in 
the diet, plasma concentrations of poly-
phenols are often lower than the levels 
required for protection against oxidation. 
Although the metabolites of EVOO 
polyphenols may reach concentrations 
in the bloodstream that are several-fold 
higher than that found in EVOO, EVOO 
polyphenol-derived compounds tend to 
have significantly decreased antioxidant 
activity compared with the parental com-
pounds.63,134 As an alternative to general 
mechanisms related to the antioxidant 
and/or trapping activity of oxygen radi-
cals commonly observed with many plant-
derived phenolics, recent studies have 
demonstrated that complex polyphenols 
can exert anti-carcinogenic effects by 
directly modulating the activities of vari-
ous types of oncoproteins.135-140 The results 
from our laboratory support the idea that 
EVOO-derived complex polyphenols con-
stitute a previously unrecognized family 
of anticancer phytochemicals that have 
a significant impact on the proliferation 
and survival of cancer cells, at least in part 
through the specific suppression of protein 
activities, gene expression and/or signal 
transduction events closely related to the 
malignant phenotype.129,141-149

Although a Mediterranean diet and, 
more specifically, EVOO consumption 
have both been associated with increased 
longevity in the human population,150-156 
few studies have attempted to explore in 
depth the ultimate molecular mechanisms 
by which EVOO may influence longevity; 
for the most part, it has been assumed that 
these effects are the result of the antioxi-
dant potential of its phenolic compounds 
and other free-radical scavengers, such as 
vitamin E.157 However, if it is accepted that 
aging is not caused by reactive oxygen spe-
cies (ROS), which are instead associated 
with longevity,40,158-178 why have scientists 
not yet rejected the commonly accepted 

Polyphenols found in tea and curcumin 
interact with dozens of molecular targets, 
providing many health benefits unre-
lated to their antioxidant properties.75-85 
In this regard, the natural polyphenolic 
compound resveratrol (3,5,4'-trihydroxys-
tilbene) has emerged as a still-debatable 
mediator of longevity that certainly delays 
or attenuates many age-related chronic 
diseases in animal models.86-106 Currently, 
activation of AMPK15,107-110 rather than 
activation of the deacetylase SIRT1 seems 
to be a/the major effect of resveratrol, pro-
viding a plausible explanation for many of 
the health benefits of this compound that 
have been reported to date.

Extra Virgin Olive Oil (EVOO) 
Polyphenols And Xenohormesis: 

A Forgotten Scenario

We are beginning to accumulate epide-
miological, clinical and experimental 
evidence suggesting that consumption of 
phenolic-enriched fruits, vegetables and 
herbs might reduce the risk of chronic dis-
eases, including human malignancies.111-113 
In this regard, it has been repeatedly sug-
gested that the ability of the so-called 
“Mediterranean diet” (i.e., the dietary 
patterns found in olive-growing areas of 
the Mediterranean basin) to significantly 
reduce the incidence of atherosclerosis and 
cardiovascular disease and decrease the 
risk of several types of human carcinomas, 
including breast cancer,114-118 can be largely 
attributed to the unique characteristics of 
extra virgin olive oil (EVOO), which is 
an integral ingredient of the traditional 
Mediterranean diet and is the juice of the 
olive obtained solely by mechanical means 
and consumed without any further refin-
ing process other than washing, filtration, 
decantation or centrifugation. Apart from 
the health benefits that can be expected 
from EVOO as the richest source of the 
monounsaturated fatty acid (MUFA) 
oleic acid (OA; 18:1n-9),119 cold-pressed 
EVOO includes minor components such 
as aliphatic and triterpenic alcohols, ste-
rols, hydrocarbons, volatile compounds 
and several antioxidants.120-126 Although 
tocopherols and carotenes are also pres-
ent, hydrophilic phenolics represent the 
most abundant family of bioactive EVOO 
compounds.

advantage of the information contained 
in specific compounds produced by plants 
in response to stress. In fact, the majority 
of the known beneficial health effects of 
edible plants are attributed to molecules 
produced in response to stress.

Plant stress responses have evolved over 
millions of years. Because most plants 
cannot move physically, they must tolerate 
environmental stresses that may appear 
at any moment. This type of “sedentary 
lifestyle” may explain the complexity of 
the stress response in plants. Plants pro-
duce toxins to protect themselves against 
fungi, insects and predators. Plants cul-
tivated for consumption contain fewer 
natural toxins than their wild counter-
parts. When plants grow under aggres-
sive conditions, one observes an increase 
in the production of natural pesticides 
(biopesticides) that can produce acute 
intoxication in humans. Some studies 
have estimated that more than 90% of 
pesticides present in the human diet are 
chemical compounds that are produced 
by plants to protect themselves. Therefore, 
xenohormesis could explain how the 
sophisticated stress response that has 
evolved as a result of the stationary life-
style of plants can confer stress resistance 
and survival benefits to animals that con-
sume bioactive compounds produced by 
environmentally stressed plants.63 While 
xenohormetic compounds are harmful 
to insects and microorganisms, the sub-
toxic levels at which humans ingest them 
appear to result in moderate cellular stress 
responses. This, in turn, might activate 
stress-response adaptation pathways, lead-
ing to increased expression of genes that 
encode cytoprotective proteins such as 
antioxidant enzymes, chaperones, growth 
factors, phase 2 detoxification enzymes 
and mitochondrial proteins. In this sce-
nario, the ability of a combination of anti-
oxidant/anti-inflammatory polyphenols 
found in many fruits and vegetables to 
slow aging67 can be explained by molecular 
mechanisms that are largely unrelated to 
any potential antioxidant properties. For 
example, dietary flavonoids such as quer-
cetin and blueberry polyphenols, among 
others, have been shown to modulate the 
lifespan of simple model organisms by 
activating molecular mechanisms inde-
pendent of their antioxidant capacity.68-74 
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view that the anti-aging benefits of EVOO 
phenolics are simply due to their antioxi-
dant potential? Even more intriguing is 
the fact that, despite the structural resem-
blance of EVOO complex polyphenols to 
some of the hormetic polyphenols men-
tioned above (e.g., resveratrol), none of the 
phenolic components naturally present in 
EVOO have been characterized in terms 
of their potential to extend lifespan. An 
exception is a recently published study by 
Cañuelo and colleagues179 suggesting that 
tyrosol, a phenol present in EVOO, may 
increase lifespan and stress resistance in 
Caenorhabditis elegans, likely through the 
activation of hormetic mechanisms.

Our laboratories at the Bioactive Food 
Component Platform (BFCP) in Spain 
(Fig. 1) have recently begun a systematic 
approach to evaluate for the first time 
whether secoiridoids, a family of complex 
phenols found in Oleacea plants that struc-
turally resemble well-known anti-aging 
molecules such as resveratrol, are bona 
fide xenohormetic compounds that signifi-
cantly impact pivotal signal-transduction 
pathway(s) (i.e., gerogenes and/or gero-
suppressors) that drive(s) most, if not all, 
aging-related diseases. Dr Blagosklonny 
has recently proposed that “hormesis does 
not make sense except in the light of TOR-
driven aging.”180 Instead of purposely rec-
onciling hormesis with the conventional 
view on aging (i.e., aging is a decline and/
or a deterioration due to the accumulation 
of random molecular and cellular damage), 
Dr Blagosklonny proposes that, because 
aging is an aimless quasi-programmed phe-
nomenon that is driven by overactivated 
gerogenes belonging to the nutrient-sensing 
mTOR (mammalian target of rapamycin) 
pathway (e.g., mTOR, S6K), the mTOR 
pathway limits lifespan by accelerating 
age-related diseases (Fig. 1). Therefore, 
in humans (and other mammals), age-
related diseases represent hyperfunctional 
phenotypes of mTOR-driven aging that 
actually limit lifespan. Understandably, 
if mTOR gerogene activity limits lifespan 
by accelerating the progression of age-
related diseases, such as atherosclerosis or 
cancer, direct or indirect pharmacologi-
cal suppression of mTOR-driven aging 
via the activation of mTOR gerosuppres-
sors such as AMPK would be expected to 
increase healthy lifespan. In this scenario, 

Figure 1. The Bioactive Food Component Platform (BFCP), Spain. The Spanish BFCP has two main 
goals: first, to molecularly elucidate the cellular and physiological abilities of humans to take 
advantage of the health benefits chemically encrypted within plant-derived biocompounds; sec-
ond, to translate the sophisticated stress response of plants, which has evolved as a result of their 
stationary lifestyle, to the clinical arena to combat human aging and age-related diseases. Both 
goals of the BFCP revolve around the assumption that age-related diseases (e.g., atherosclerosis, 
diabetes, cancer, and others) reflect the synergistic interaction between our evolutionary path to 
sedentarism, which chronically increases a number of mTOR activating gero-promoting factors 
(e.g., nutrients, growth factors, cytokines, insulin), and the “defective design” of central metabolic 
integrators such as mTOR and AMPK. Design defects in the metabolic nature of the antagonistic 
pleiotropy model of aging involve both the ability of the mTOR gerogene to continue, in an aim-
less (and harmful) manner, a developmental program that was beneficial early in life but was not 
switched off upon its completion, and the necessary weakness of gerosuppressor genes such as 
AMPK that antagonize the gerogenic mTOR pathway (i.e., the responsiveness of AMPK signaling 
should clearly decline with aging, because robust, continuous activation of AMPK in response to 
cellular stresses will result in accelerated aging).354,355 The BFCP therefore aims to revisit the xeno-
hormesis hypothesis in terms of clinically valuable plant-produced gerosuppressant agents that 
molecularly “repair” the aimless (and harmful) AMPK/mTOR-driven quasi-program of aging and 
aging-related diseases (top panel). The BFCP integrates five multidisciplinary teams of biologists, 
biochemists, chemists, pharmacists, physicians, and engineers to research, design, and develop 
anti-aging biomedical strategies based on plant-derived gerosuppressants. From left to right in 
the bottom photograph are Dr Jorge Joven (Universitat Rovira I Virgili, Reus, Spain), Dr Javier A. 
Menendez (Catalan Institute of Oncology, Girona, Spain), Dr Vicente Micol (Miguel Hernández Uni-
versity, Elche, Spain), Dr Antonio Segura-Carretero (University of Granada, Granada, Spain), and Dr 
Carlos Alonso-Villaverde (Universitat Rovira i Virgili, Reus, Spain). (The original painting in the top 
panel is from Dr Jorge Joven based on Fig. 3, ref. 311 by Dr Mikhail V. Blagosklonny; the BCFP team 
photograph in the bottom panel is by photographer Pere Ferré, Tarragona, Spain).
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When we previously screened the 
Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway database 
by performing Gene Set Enrichment 
Analysis (GSEA) to identify key path-
ways and functions potentially associ-
ated with the anti-tumoral activity of 
EVOO PEs, we observed that the highly 
active EVOO-PE7 had a dramatic dif-
ferential impact on the expression of the 
GADD45 stress-response gene family; 
by contrast, the expression of this fam-
ily of genes remained largely unchanged 
upon treatment with EVOO-PE3 or 
EVOO-PE10.146 We thus speculated that 
naturally occurring phenolic mixtures 
highly enriched in the complex polyphe-
nols oleuropein aglycon (OA) and decar-
boxymethyl oleuropein aglycon (DOA) 
(Fig. 2) could lead to enhanced transcript 
levels of genes that are upregulated by 
stress. To test this hypothesis, we utilized 
the “core analysis” function included in 
the analysis software package ingenuity 
pathway analysis (IPA, Ingenuity Systems 
Inc.) to interpret EVOO-PE7-induced 
global transcriptomic profiles in the con-
text of biological processes, networks and 
pathways. The IPA software algorithmi-
cally generates networks of up- and down-
regulated functionally related annotated 
genes based on their connectivity and 
assigns a score (i.e., a numerical value that 
takes into consideration both the number 
of focus genes in a network and the size of 
the network to approximate how relevant 
each network is to the original list of focus 
genes). Figure  4 illustrates graphically 
the two gene network functions that were 
most significantly (score ≥ 3) upregulated 
(red) and downregulated (green) within 
the EVOO secoiridoid-induced stress 
transcriptomic signature in human breast 
cancer cells.

EVOO secoiridoids activate endo-
plasmic reticulum (ER) stress chap-
erones and unfolded protein response 
(UPR) genes. The primary function of 
the gene networks that were upregulated 
by EVOO secoiridoids was related to “cel-
lular function and maintenance and cellu-
lar compromise” (score = 49). These gene 
networks include numerous genes encod-
ing isoforms of constitutevely expressed 
and stress-induced 70-kDa heat shock 
proteins (Hsp70s), which are chaperones 

monovarietals were positively related to the 
relative content of secoiridoids, a group of 
complex polyphenols.145,146 Highly active 
EVOO PEs were notably enriched in seco-
iridoids (Fig. 2), whereas substitution of 
secoiridoids by other complex polyphe-
nols, such as lignans, in PE mixtures was 
related to a loss of tumoricidal activity. To 
identify the key pathways and functions 
associated with the anti-tumoral activity of 
crude PE isolated from individual EVOO 
monovarietals, we performed genome-
wide analyses in which we compared the 
global transcriptomic profiles of JIMT1 
breast cancer cells using whole human 
genome microarrays. RNA was extracted 
and prepared from metastatic JIMT1 
breast cancer cells that had been cultured 
for 6 h at 70% confluence in the absence 
or presence of four different EVOO 
PEs exhibiting the following cytotoxic 
potencies: EVOO-PE7 > EVOO-PE3 > 
EVOO-PE10 > > EVOO-PE12, as deter-
mined by MTT-based cell viability assays 
after 5 d exposure to EVOO PEs.145,146 
After RNA hybridization to an Agilent 
44K (double-density) Whole Human 
Genome Oligo Microarray containing 
45,220 features (probes) representing 
41,000 unique human genes and tran-
scripts, the normalized and filtered data 
from all experimental groups were ana-
lyzed simultaneously using the SAM algo-
rithm. We set the significance cut-off at a 
median FDR of < 5.0%. When we used 
a 2.0-fold change cut-off relative to the 
transcriptome of untreated control cells to 
identify specific effects of EVOO PEs on 
gene expression, we observed that JIMT1 
cancer cells treated with the EVOO PE 
with the lowest secoiridoid content (PE12) 
had the lowest number of altered genes 
(Fig. 3). Of note, while the total num-
ber of altered genes was similar (~400 to 
600) after exposure to EVOO PEs with 
higher secoiridoid content (EVOO-PE7, 
EVOO-PE3 and EVOO-PE10), there 
was a trend toward enhanced levels of 
transcripts of more genes in response to 
EVOO PEs with higher secoiridoid con-
tents. Intriguingly, the majority of the 
altered genes (~84%) were upregulated 
following treatment with EVOO-PE7, the 
phenolic extract with the highest relative 
secoiridoid content (Fig. 2; Table S1) and 
the highest anti-tumoral activity.146

Dr Blagosklonny differentiates two types 
of hormesis, namely, “increasing aging 
tolerance” or “hormesis B,” which does 
not affect the aging process itself, and 
“slowing-down aging” or “hormesis A,” 
which does affect the aging process by 
directly inhibiting mTOR activity (e.g., 
CR, rapamycin, resveratrol, metformin) or 
by imitating mTOR inhibition (e.g., heat 
shock). We obviously rejected the idea that 
EVOO secoiridoids could increase aging 
tolerance, which may allow an organism 
to survive catastrophes caused by aging-
related diseases. In a “hormesis A” scenario, 
we hypothesized the following: (1) The 
anticancer activity of EVOO secoiridoid 
polyphenols results from the activation 
of anti-aging-like gene signatures in can-
cer cells (i.e., the enhancement of cellular 
stress mechanisms suppresses the hyper-
functional phenotype of immortal cells). 
(2) EVOO-derived secoiridoids activate 
the energy-sensing AMPK gerosuppres-
sor (i.e., EVOO secoiridoids operates as 
AMPK-activating low-energy mimickers). 
(3) Chronic exposure to EVOO secoiridoid 
polyphenols efficiently delays the senes-
cence phenotype in normal diploid human 
fibroblasts (i.e., the agonistic activity of 
EVOO secoiridoids toward the AMPK 
gerosuppressor improves the structural and 
functional integrity of normal cells without 
promoting their entrance into a potentially 
deleterious hyperproliferative mode).

In this paper, we present the first body 
of experimental evidence suggesting that 
EVOO secoiridoid polyphenols, by act-
ing as biocompounds that belong to the 
recently defined group of “hormesis A” 
compounds, can efficiently promote cyto-
toxicity in human cancer cells through 
the paradoxical activation of anti-aging/
cellular stress-like gene signatures, which, 
in turn, significantly weaken age-related 
effects (e.g., cellular senescence) in normal 
human diploid fibroblasts.

Secoiridoid-Rich EVOO Phenolic 
Fractions Activate  

Resveratrol-Like Anti-Aging  
Transcriptomic Signatures  

in Cancer Cells

We previously reported that the cyto-
toxic potencies of individual phenolic 
extracts (PE) from a variety of EVOO 
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Figure 2 . Main phenolic compounds identified in EVOO phenolic extracts by HPLC-DAD-ESI-TOF. The figure shows the chemical structures of the 
main phenolic compounds compounds identified in secoiridoids-rich Picual EVOO variety following protocols described in reference 147. The figure 
shows also the percent distribution of the main phenolic families identified in the Picual EVOO-PE7.
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(Hsp70B’) gene, which is strictly inducible 
with no detectable basal expression.185,186 
Indeed, HSPA6 protein induction is a 
sensitive biomarker of cellular stress that 
appears transiently in response to heat 
stress, whereas levels of HSPA1A (Hsp72), 
which was also induced by EVOO-PE7, 
persist for days.187 EVOO-PE7 

the accumulation of proteins that have 
become denatured in response to various 
cellular stresses (e.g., heat stress, radiation, 
ischemia, heavy metals or other stimuli 
that activate stress transcription fac-
tors). Treatment with the secoiridoid-rich 
EVOO-PE7 extract markedly (~11-fold) 
upregulated the expression of the HSPA6 

involved in crucial cellular functions in 
all kingdoms of life.181-184 While constitu-
tively expressed Hsp70 chaperones have 
housekeeping functions (e.g., folding of 
nascent polypeptides, protein transloca-
tion between cellular compartments and 
degradation of unstable and misfolded 
proteins), stress-induced Hsp70s prevent 

Figure 3. Relationship between the distribution of phenolic families in EVOO-PEs and their impact on the whole-genome transcription profile of hu-
man breast cancer cells. Total RNA isolated from JIMT1 cells grown in the absence or presence of EVOO-PE12, EVOO-PE10, EVOO-PE3 or EVOO-PE7 (2 
μg/mL) for 6 h was extracted with TRIzol reagent (Invitrogen) according to the manufacturer’s instructions. RNA quantity and quality were determined 
using the RNA 6000 Nano Assay kit on an Agilent 2100 BioAnalyzer (Agilent Technologies) as recommended. Whole Human Genome Oligo Microarrays 
(G4112F) were then hybridized. Briefly, 500 ng of total RNA from each sample was amplified by Oligo-dT-T7 reverse transcription and labeled by in vitro 
transcription with T7 RNA polymerase in the presence of Cy5-CTP or Cy3-CTP using the Quick Amp Labeling Kit (Agilent) and purified using RNAeasy 
columns (Qiagen). After fragmentation, 825 ng of labeled cRNA from each of the two samples were co-hybridized in in situ hybridization buffer (Agi-
lent) for 17 h at 65°C and washed at room temperature for 1 min in Gene Expression Wash Buffer 1 (Agilent) and 1 min at 37°C in Gene Expression Wash 
Buffer 2 (Agilent). The images were generated on a confocal microarray scanner (G2565BA, Agilent) at 5 μm resolution and quantified using GenePix 
6.0 (Molecular Dynamics). Spots with signal intensities of at least twice the local background that were not saturated and not flagged by GenePix were 
considered reliable. Extracted intensities were background-corrected, and the log2 ratios were normalized in an intensity-dependent fashion by the 
global LOWESS method (intra-chip normalization). Normalized log2 ratios were scaled between arrays to make all data comparable. Raw data were 
processed using MMARGE, a web implementation of LIMMA, a microarray analysis library developed within the Bioconductor project in the R statisti-
cal environment. To identify genes that are differentially expressed, the multiclass SAM procedure (significance analysis of microarrays) was applied. 
Genes with a q-value (FDR) below 5% and a fold change exceeding 2.0 in absolute value were selected as relevant (see also Table S2).
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protein response” (UPR) and is evoked 
when unfolded proteins accumulate in 
the ER.196-199 The UPR ultimately leads 
to reduced import of proteins into the ER 
and upregulation of genes encoding ER 
chaperones and other components of the 
ER-associated degradation pathway.200

The previously unrecognized ability of 
EVOO secoiridoids to upregulate a set of 

to male infertility.191-194 Importantly, 
EVOO-PE7 secoiridoids also upregu-
lated the transcriptional expression of 
the DNAJA4 and DNAJC3 genes, which 
encodes the endoplasmic reticulum (ER)-
localized DnaJ family of proteins (ERdj 
proteins).195 The induced transcription of 
DNAJ genes is part of a specific pathway 
that is collectively termed the “unfolded 

secoiridoids enhanced the expression 
of the HSPA1L gene (Hsp70-hom or 
Hsp70t), which encodes a constitutively 
expressed, non-inducible cytosolic pro-
tein that is highly abundant in testis,189,190 
and of HSPA2 (Hsp70-2), a constitutively 
expressed gene that is expressed at high 
levels in testis, is essential for the matu-
ration of male gametocytes and is linked 

Figure 4. Network analysis of EVOO secoiridoids-regulated genes in human breast cancer cells. Left: Gene networks were constructed using ingenuity 
pathway analysis (Ingenuity® Systems). Data sets containing identifiers of genes with > 2.0-fold up- or downregulatory changes were uploaded into 
the application. These “focus genes” were overlaid onto a global molecular network developed from information contained in the ingenuity pathway 
knowledge base. Networks of these “focus genes” (nodes) are algorithmically generated based on the principle that highly connected gene networks 
are most biologically meaningful. All edges are supported by at least one reference from the literature stored in the ingenuity pathway knowledge 
base (the IPA interaction database is manually curated by scientists and updated quarterly). Briefly, the user-input or “‘focus genes” gene list is 
compared with the “global molecular network” (GMN) database, which consists of thousands of genes and interactions. The focus genes are sorted 
based on highest to lowest connectivity within the GMN; networks of approximately 35 genes are then constructed beginning with the most highly 
connected focus gene. IPA assigns a p valuefor a network of size n and an input focus gene list of size f by calculating the probability of identifying f 
or more focus genes in a randomly selected set of n genes from the GMN. The intensity of the node color indicates the degree of expression (green 
scale for downregulated nodes; red scale for upregulated nodes). The score indicates the likelihood that the genes in a network are found together by 
random chance. Using a 99% confidence interval, scores of ≥ 3 are significant. Nodes are displayed using various shapes that represent the functional 
class of the gene product (diamonds, enzymes; ovals, transcription factors; triangles, kinases; circles, others). A solid line indicates a direct interaction; 
a dashed line indicates an indirect interaction. A line without an arrowhead indicates binding, and a plus sign indicates that other networks contain 
this gene product. Figure shows up- and downregulated networks with the two highest IPA score (a composite measure that indicates statistical 
significance that molecules depicted in the network are interconnected). Right: Representative western blot analyses of SIRT1, total AMPK, and phos-
phorylated AMPK (fosfo-AMPKαThr172) in EVOO untreated (control) and secoiridoids-treated JIMT1 breast cancer cells.
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polyamine synthesis and/or polyamine 
catabolism. Similar to resveratrol, EVOO 
secoiridoids significantly upregulated 
(~4-fold) the expression of spermidine/
spermine N1-acetyltransferease (SSAT ), 
the rate-limiting enzyme in polyamine 
catabolism (Table S1). This enzyme con-
verts spermine to spermidine and the 
latter to putrescine in cooperation with 
polyamine oxidase (PAOX ). Increased 
polyamine catabolism in response to 
EVOO secoiridoids was also suggested 
by the significant upregulation of the 
spermine oxidase (SMO) gene. Unlike 
resveratrol, EVOO secoiridoids down-
regulated PAOX gene expression, whereas 
they upregulated some genes involved in 
polyamine biosynthesis, such as arginase 
(ARG2) and ornithine decarboxylase 
(ODC). Although we lacked experimental 
approaches for measuring the intracellular 
levels of spermine, spermidine, putrescine 
and acetyl-spermidine following exposure 
to EVOO secoiridoids, our data indicate 
that the mechanism of the growth inhibi-
tory action of EVOO-derived complex 
polyphenols likely involves an increase 
in polyamine catabolism with simultane-
ous induction of c-Fos and its AP-1-related 
DNA binding activity.

The previously unrecognized ability 
of EVOO secoiridoids to upregulate key 
genes directly involved in the conversion 
of arginine to ornithine (i.e., arginase) and 
in the conversion of ornithine to putres-
cine (i.e., ornithine decarboxylase) sug-
gests that the augmentation of polyamine 
catabolism observed after exposure of cells 
to EVOO secoiridoids could be related 
to growth inhibition processes, whereas 
the augmentation of polyamine synthesis 
could be related to bona fide anti-aging 
effects. This appears likely, because poly-
amine levels decline continuously with age 
and polyamine (spermidine or high-poly-
amine diet) supplementation increases life 
span in model organisms.101,222-231 Because 
autophagy is required for the cytoprotec-
tive and/or anti-aging effects of resve-
ratrol and spermidine, experiments are 
currently underway in our laboratories at 
the Bioactive Food Component Platform 
in Spain to determine if regulation of 
polyamine metabolism by EVOO-derived 
secoiridoids differentially impacts the fit-
ness of cancer vs. normal cells undergoing 

secoiridoid polyphenols paradoxically 
have a propensity to stimulate the for-
mation of ROS,210-213 which can cause 
oxidation of nascent proteins, leading to 
misfolding of proteins and ER stress.214 In 
addition, EVOO secoiridoid polyphenols 
can operate in a resveratrol-like manner 
to molecularly mimic a CR-like situation 
involving ATP deficiency.15,107-110,215-217

EVOO secoiridoids induce c-Fos and 
modify the expression of genes related to 
polyamine metabolism. The most promi-
nent EVOO secoiridoid-activated “cellu-
lar function and maintenance and cellular 
compromise” gene network involves not 
only the chaperone genes HSPA6 and 
Hsp70, but also c-Fos, a key resveratrol-
targeted proto-oncogene.218,219 Indeed, the 
gene whose expression was most enhanced 
after treatment with EVOO secoiridoids 
was c-Fos (FOS; ~20-fold). FOSB, another 
member of the Fos family of transcrip-
tion factors, which includes c-Fos, FosB, 
Fra1 and Fra2, was also one of the 10 
most upregulated genes (~11-fold). The 
Fos family proteins heterodimerize with 
Jun family proteins (c-Jun, JunB and 
JunD) to form active AP-1 (activator pro-
tein-1) transcription factors, which bind 
to AP-1 sites present in the promoters of 
certain genes and regulate their transcrip-
tion. Of note, treatment of human breast 
cancer cells with EVOO secoiridoids 
significantly (~3-fold) upregulated the 
expression of JUNB. There is increasing 
evidence that the AP-1 complex plays an 
important role not only in the prolifera-
tion but also in the differentiation of sev-
eral cell types; several chemopreventive 
agents (e.g., 1,25-dihydroxyvitamin D3 
and butyrate) stimulate cell differentia-
tion in an AP-1-dependent manner.220,221 
Resveratrol also stimulates the AP-1 con-
stituents c-Fos and c-Jun to inhibit cancer 
cell growth.218 The data imply that EVOO 
secoiridoid-induced upregulation of AP-1 
is not associated with tumorigenesis, but 
rather with growth inhibition and/or dif-
ferentiation of breast cancer cells.

Because resveratrol-induced c-Fos is 
functionally related to resveratrol’s abil-
ity to modify polyamine metabolism,218 
we speculated that the previously unrec-
ognized ability of EVOO secoiridoids to 
induce c-Fos might involve changes in 
the expression of genes associated with 

genes involved in the ER stress response 
to unfolded proteins may appear to con-
flict with the demonstrated ability of 
these compounds to strongly inhibit the 
growth of highly aggressive breast cancer 
cells.145,146 The UPR is the major protec-
tive and compensatory mechanism that 
enables cells to survive during ER stress. 
While UPR induction initially results in 
a general decrease in protein synthesis, 
which reduces the influx of nascent pro-
teins into the ER, activation of the UPR 
also results in the enhanced transcrip-
tion of ER resident chaperones, folding 
enzymes and other components of the 
protein degradation machinery, thus pre-
venting aggregation of the accumulating 
misfolded proteins. This cell protective 
mechanism, which is also elicited upon 
induction of Hsp70s,201,202 results in a 
transient induction of cell cycle arrest and 
in the accumulation of molecular chap-
erones that bind and recover unfolded 
proteins. However, prolonged exposure of 
cells to ER stress can induce a switch from 
cell survival to cell death, because the 
protective function of these mechanisms 
appears to be temporally restricted.203,204 
In this scenario, it is reasonable to sug-
gest that exposure to EVOO secoiridoids 
promotes cell death-UPR branch signal-
ing by impeding the alleviation of ER 
stress. Moreover, the coupling of EVOO 
secoiridoid-activated ER stress and UPR 
with EVOO secoiridoid-induced cytotox-
icity in cancer cells appears to recapitulate 
the molecular mechanism by which the 
well-known defense molecule resveratrol 
simultaneously exerts anti-proliferative 
and chemopreventive effects.205,206 First, 
induction of GADD153/CHOP (DDIT3), 
one of the pivotal components of the 
ER stress pathway that is significantly 
upregulated by EVOO secoiridoids, has 
been shown to be involved in resvera-
trol-induced cell death in cancer cells.207 
Second, resveratrol has been shown to 
upregulate genes involved in the ER 
stress response to unfolded proteins.208 
Third, because resveratrol can trigger ER 
stress-induced cell death, UPR could be a 
potential mechanism of resveratrol cyto-
toxicity.206,209 EVOO secoiridoids and 
resveratrol could also share mechanism(s) 
through which they activate ER stress-
like responses. Like resveratrol, EVOO 
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(e.g., p27, p57, p21, p130, FOXO1), it is 
thought to function as an oncoprotein 
that interacts with other major signal-
ing pathways (e.g., PI3K/Akt, mTOR, 
PPARγ, ERK, FoxP3 and IGF) in breast 
cancer.255-259 As such, there is renewed 
interest in developing Skp2 inhibitors as 
a general approach for cancer prevention 
and therapy.259 Although specific drugs 
that inactivate Skp2 in cancer cells have 
not been identified, it is noteworthy that 
several naturally occurring compounds 
(1,2,3,4,6-penta-O-galloyl-β-D-glucose 
[PGG], gallic acid, epigallocatechin-gal-
late [EGCG], quercetin, curcumin, and 
lycopene) downregulate Skp2 expression 
in human cancers, including breast can-
cer.260-262 We now add the complex poly-
phenols secoiridoids to the growing list of 
natural polyphenols that can function as 
potent inhibitors of Skp2.

The function of the second most 
downregulated gene network in response 
to EVOO secoiridoids is related to “cell 
cycle, amino acid metabolism and small 
molecule biochemistry” (score = 27) and 
was identified based on LDHA, a gene 
that was also overrepresented in the most 
downregulated gene network described 
above (Fig. 4). Lactate dehydrogenase 
(LDH) acts at a critical branch point in 
the metabolism of major nutrients; it is 
also active in the tricarboxylic acid (TCA) 
cycle and in determining tumor pH.263 
Glucose and glutamine are the major 
carbon sources for rapidly proliferating 
tumors and provide precursors for nucleic 
acids, proteins and lipids as well as reduc-
ing capability (NADPH). Pyruvate is 
largely derived from glucose and gluta-
mine metabolism; it can be converted to 
lactate by the LDH complex and/or enter 
the TCA cycle for conversion to CO

2
 and 

ATP. The conversion of pyruvate to lac-
tate is also catalyzed by LDH in a revers-
ible reaction that results in the formation 
of NAD+, which is necessary for further 
glycolysis. LDH is a tetrameric enzyme 
containing two major subunits (A and B) 
that are coded by the LDHA and LDHB 
genes; together, these subunits form five 
different isoenzymes.264 Although all five 
isoenzymes can catalyze the forward and 
backward conversion of pyruvate and lac-
tate, LDHA kinetically favors the conver-
sion of pyruvate to lactate, whereas LDHB 

cells, we evaluated whether well-known 
oncogenes were among the 92 genes that 
were significantly downregulated by 
EVOO secoiridoids (Table S1; Fig.  4). 
Interestingly, the EVOO secoiridoids 
most frequently downregulated gene net-
works related to “cancer and reproductive 
system disease” (score = 52), including 
numerous metallothionein (MT) gene 
isoforms (MT1E, MT1G, MT1X, MT1L, 
MT1H). MT belongs to a family of metal-
binding proteins whose roles range from 
heavy metal detoxification to the pro-
motion of tumorigenesis. MT has been 
reported to be highly expressed in many 
tumors, including breast cancer, and is 
known to regulate key processes such as 
cell proliferation, apoptosis and even che-
moresistance.246-250 Because the role of 
MT in metal ion homeostasis is funda-
mental for controlling the activation of 
stem/progenitor cells, we speculated that 
MT downregulation by EVOO secoiri-
doids might be part of a broader genetic 
network involving key cancer stem cell 
(CSC)-related genes. Consistent with this 
hypothesis, the “cancer and reproductive 
system disease” gene network downregu-
lated by EVOO secoiridoids includes the 
ALDH1A3 gene, a biomarker of primitive 
normal human mammary luminal cells 
that shows high activity specifically in 
breast carcinomas. In such tumors, expres-
sion of the ALDH1A3 gene identifies the 
tumorigenic cell fraction that is capable 
of self-renewal and of generating tumors 
by recapitulating the heterogeneity of the 
parental tumor (i.e., breast CSCs).251-254 
We are currently investigating whether 
treatment with EVOO secoiridoids 
impedes the propensity of breast CSCs to 
form multicellular “microtumors” under 
non-adherent and non-differentiating 
conditions (i.e., mammospheres).

In addition to the CSC marker 
ALDH1A3, treatment with EVOO 
secoiridoids notably downregulated the 
expression of SKP2, the gene that encodes 
the F-box protein S-phase kinase-asso-
ciated protein 2 (Skp2). Skp2 belongs to 
the ubiquitin-proteasome system (UPS), 
which plays a vital role in regulating 
many biological processes by controlling 
the timely turnover of proteins. Because 
Skp2 is responsible for the degradation 
of several tumor suppressor proteins 

metabolic stress. Because pro-autophagic 
polyphenols have been shown to reduce 
the acetylation of cytoplasmic proteins,232 
we are also investigating whether EVOO 
secoiridoids might impact the activation 
status of autophagy while differentially 
affecting the acetylproteome of cancer vs. 
normal cells.

EVOO secoiridoids upregulate SIRT1 
and inhibit cancer-promoting genes. In 
the above-mentioned transcriptome sce-
nario and considering that resveratrol and 
spermidine increase lifespan by activating 
the histone deacetylase Sirtuin 1 (SIRT1) 
and inhibiting histone acetylases, respec-
tively,101 we determined if the resveratrol-
like actions of EVOO secoiridoids involve 
changes in the expression of the SIRT1 
gene. Of note, not only was SIRT1 sig-
nificantly upregulated by EVOO secoiri-
doids, SIRT1 was also part of the second 
most significant gene network activated by 
EVOO secoiridoids, the “organ morphol-
ogy” gene network (score = 41) (Fig. 4). 
Although SIRT1 has long been thought 
to play a role in cancer, the debate regard-
ing its role as an oncogene or tumor sup-
pressor continues.19,232,233 As an inducer of 
cell survival, it might appear reasonable to 
suggest that SIRT1 fits the definition of 
an oncogene; conversely, because SIRT1 
is considered important in organism sur-
vival, a tumor suppressor function might 
also be anticipated. Genetic and drug-
induced activation of SIRT1 has been 
shown to inhibit growth and/or induce 
apoptosis in certain cancer models,234,235 
while super-SIRT1 mice exhibiting mod-
erate SIRT1 overexpression (a ~3-fold 
increase) are generally healthier than con-
trol mice and are partially protected from 
certain solid tumors.236-239

Because neoplastic cells are thought 
to recapitulate many stem cell character-
istics, including metabolic ones,17,20,240‑245 
the oncogenic vs. tumor-suppressive 
activities of SIRT1 can be viewed in terms 
of the specific contribution of SIRT1 to 
maintaining or impeding “stemness-like” 
status in cell populations involved in tis-
sue regeneration or cancer tissue heteroge-
neity, respectively. To preliminarily assess 
whether EVOO secoiridoid-induced 
upregulation of SIRT1 is related to the 
activation of onco-suppressive transcrip-
tional events in highly aggressive cancer 
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associated with large gene lists, regard-
less of which genomic platform or soft-
ware package was used to generate the list 
(http://david.abcc.ncifcrf.gov/). DAVID 
uses a set of fuzzy classification algo-
rithms to group genes based on their co-
occurrence in annotation terms and ranks 
the gene groups using an internal (EASE) 
score.278,279 DAVID was used to evaluate 
the enrichment distribution across the 
“biological processes” in the gene ontol-
ogy (GO) tree. The threshold value of the 
enrichment score was set at 1.0 instead of 
1.3, thereby avoiding the loss of impor-
tant information. The gene list was orga-
nized and condensed into biologically 
meaningful modules using the DAVID 
gene functional classification tool at the 
medium level of statistical stringency. 
When ranking the importance of annota-
tion groups with enrichment scores ≥ 1.0, 
DAVID term-centric modular enrichment 
analysis revealed that the “biological mod-
ules” significantly enhanced by EVOO 

profiles of key metabolic tissues that 
closely resemble the changes induced by 
CR.91,277 The data presented here demon-
strate that EVOO secoiridoids appear to 
mimic key features of resveratrol-induced 
gene expression patterns to inhibit the 
growth of cancer cells, whose aberrant 
bioenergetic and biosynthetic metabo-
lism is unambiguously required for pro-
liferation and/or survival. To further 
confirm that administration of EVOO 
secoiridoids functionally mimics resvera-
trol via activation of AMPK-related stress 
signaling pathways, we employed two 
additional complementary approaches. 
First, systematic and integrative analy-
ses of EVOO secoiridoid-regulated gene 
lists were conducted using the DAVID 
(Database for Annotation, Visualization 
and Integrated Discovery) bioinformat-
ics resource (National Institute of Allergy 
and Infectious Diseases, NIH), a web-
based public database capable of uncov-
ering biological features and meaning 

predominantly converts lactate to pyru-
vate, which is further oxidized through 
the TCA cycle. Serum LDH levels are 
often increased in cancer patients, and 
LDHA protein expression is often upregu-
lated in tumors.265-273 Like high lactate lev-
els, which are a key feature of the aerobic 
glycolysis (Warburg effect) in tumor cells 
and are associated with the subsequent 
development of metastases,274,275 the pres-
ence of high LDH levels in tumors has 
been linked to poor prognosis and greater 
metastatic potential. Because the LDHA 
protein is required for the maintenance 
and progression of many tumors, it also 
represents a potential target for cancer 
therapy.276 Our findings suggest a poten-
tial inhibitory role of EVOO secoiridoids 
against the Warburg effect in tumor cells.

EVOO secoiridoids are resveratrol 
transcriptional mimickers that activate 
the energy sensor AMPK. Previous stud-
ies have shown that resveratrol efficiently 
induces changes in the transcriptional 

Figure 5. Top: Structural similarities between resveratrol and the EVOO secoiridoid oleuropein aglycon. Bottom: IPA-identified top individual genes 
and top canonical pathways affected by EVOO secoiridoids.
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anti-α1/-α2 AMPK antibodies. When 
EVOO phenolic extracts highly enriched 
with secoiridoids were replaced by EVOO 
phenolic extracts with a similar content 
of total polyphenols but enriched with 
lignans, we observed a drastic decrease 
in the ability of the EVOO PEs to acti-
vate AMPK (data not shown). These 
results demonstrate for the first time that 
AMPK becomes significantly activated by 
EVOO-derived phenolic extracts when 
the amount of complex polyphenol seco-
iridoids but not lignans exceeds a critical 
threshold.

EVOO Secoiridoid Polyphenols  
Induce Senescence Delay  

in Human Diploid Fibroblasts

Well-accepted hormetic strategies such 
as repeated mild heat stress (RMHS) sig-
nificantly affect several age-related phe-
nomena in human skin fibroblasts, e.g., 
cell size and cell morphology, but do not 
modify the proliferative capacity of these 
cells.32,33,78 We decided to investigate 
whether repeated exposure to non-cyto-
toxic concentrations of EVOO secoiri-
doids might improve the structural and 
functional integrity of skin fibroblasts in 
vitro without promoting entrance of these 
cells into a potentially deleterious hyper-
proliferative mode. Thus, using the well-
established in vitro senescence model of 
human diploid fibroblasts (HDFs), we 
determined for the first time whether 
senescence-associated changes occur in 
response to chronic exposure to crude 
EVOO PEs. Cell viability (MTT assays) 
confirmed that, at the concentration 
employed in our studies, EVOO secoiri-
doids did not exhibit highly toxic effects. 
Compared with untreated control fibro-
blasts, we observed almost no cell death 
of young HDFs after 72 h of incubation 
with 200 ng/mL EVOO-PE7. After 10 
d of treatment, however, 20–25% of the 
cells cultured in the presence of the sec-
oiridoid-rich EVOO PE were metaboli-
cally nonviable (data not shown).

Low-passage p16INK4a-positive 
WI-38 fetal lung HDFs and p16INK4a-
negative BJ-1 neonatal foreskin HDFs 
were exposed to low concentrations of 
EVOO secoiridoids or to the same vol-
ume of vehicle twice a week during serial 

in the EVOO secoiridoid-induced “p53 
signaling” pathway (p  value= 8.89E-05). 
Fourth, resveratrol’s anti-inflammatory 
effects related to epigenetic and chaper-
one-dependent activation of the gluco-
corticoid receptor134,291-294 were mirrored 
in the EVOO secoiridoid-induced “glu-
cocorticoid receptor signaling” pathway 
(p  value= 6.47E-05). Fifth, resveratrol’s 
ability to protect against oxidative stress 
damage by modulating nuclear redox fac-
tor 2 (NRF2) signaling295-302 was mirrored 
in the EVOO secoiridoid-induced “NRF2-
mediated oxidative stress response” path-
way (p  value= 4.35E-05). Considering 
that most of the beneficial effects of CR on 
the carcinogenic process are likely medi-
ated by NRF2303,304 and that recent stud-
ies have shown that a diet rich in EVOO 
phenolics (e.g., hydroxytyrosol, which is 
mainly formed from the hydrolysis of the 
secoiridoid oleuropein aglycone) induces 
SIRT1 and NRF2-dependent gene expres-
sion of anti-stress targets [e.g., glutathione-
S-transferase (GST), γ-glutamyl cysteine 
synthetase (γ-GCS), nicotinamide ade-
nine dinucleotide phosphate [NAD(P)
H]:quinone oxidoreductase (NQO1) and 
paraoxonase-2 (PON2) mRNAs as well as 
paraoxonase-1 (PON1) activity] in senes-
cence-accelerated (SAMP8) mice,305 our 
findings strongly support the idea that the 
ability of secoiridoids to activate NRF2 
signaling in somatic cells constitutes a 
mechanism through which EVOO com-
plex polyphenols could lead to a delay in or 
the prevention of the onset of some forms 
of human cancers (e.g., breast cancer) 
and subsequently contribute to improved 
human health and lifespan.

Finally, we sought to investigate the 
unexplored possibility that EVOO seco-
iridoids might attenuate the adaptable 
aging-accelerating mTOR signaling path-
way in cancer cells. Incubation of JIMT1 
breast cancer cells (Fig. 4) and PC9 lung 
carcinoma cells (data not shown) with 
increasing concentrations of an EVOO 
PE rich in secoiridoids resulted in increas-
ing activation of the mTOR gerosup-
pressor AMPK.306 Activation of AMPK 
was associated with phosphorylation of 
the α-catalytic subunit of the enzyme at 
Thr-172, as assessed using a phosphospe-
cific antibody. Minimal changes in total 
AMPK protein levels were detected with 

secoiridoids paradoxically included posi-
tive regulation of “developmental and 
biological processes,” “response to stress,” 
“organ morphogenesis,” “response to 
chemical stimulus (unfolded protein),” 
“response to wounding” and “chromatin 
assembly,” among others (Table S2). The 
activation of anti-aging biological mod-
ules was concomitant with the significant 
downregulation of “hexose catabolic pro-
cesses,” “cell cycle” and “cellular carbohy-
drate metabolic processes,” among others 
(Table S2). Therefore, highly aggressive 
cancer cells appear to react to EVOO sec-
oiridoid-triggered cellular stress signals by 
evoking cell survival programs that ulti-
mately result in cancer cell death.

Second, to unambiguously determine 
whether the crucial signaling pathways 
that are significantly altered in the pres-
ence of EVOO secoiridoids are similar to 
those previously recognized for resveratrol, 
we used the “canonical pathway analysis” 
function included in the IPA analysis soft-
ware. This analysis associates probe sets 
with the canonical pathways included in 
Ingenuity’s Knowledge Base and returns 
two measures of association: (1) the ratio 
of the number of genes from the list that 
map to the pathway to the total number 
of genes that map to the same pathway, 
and (2) a p  valuebased on Fisher’s exact 
test to ascertain enrichment. Notably, 
when the canonical pathways induced 
by EVOO secoiridoids were ordered by 
p  value(p < 0.05; the ratio value is also 
shown), all of the molecular mechanisms 
underlying resveratrol’s recognized anti-
aging effects were over-represented in the 
five canonical pathways that were most 
significantly upregulated by EVOO seco-
iridoids in cancer cells (Fig. 5). First, the 
above-mentioned resveratrol-induced 
FOS-dependent inhibition of polyamine 
synthesis and increased polyamine catab-
olism218,219 was mirrored in the EVOO 
secoiridoid-induced “polyamine regula-
tion in colon cancer” pathway (p  value= 
2.31E-04). Second, the resveratrol-related 
vitamin-D/retinoic acid-like differentia-
tion-induced effects280-284 were mirrored 
in the EVOO secoiridoid-induced “VDR/
RXR activation” pathway (p  value= 
1.57E-04). Third, the resveratrol-induced 
p53-related engagement of cell cycle arrest 
and/or apoptotic signals285-290 was mirrored 
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Figure 6. For figure legend, see page 568.
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Figure 6 (See previous page). Impact of chronic exposure to EVOO secoiridoids in age-related changes of cultured human diploid fibroblasts (HDFs) 
and human mammary epithelial cells (HMECs). Left: Graphs showing cumulative population doubling for BJ-1 (top) and WI-38 (bottom) HDFs continu-
ously cultured in the absence or presence of 200 ng/mL EVOO-PE7. Representative microphotographs illustrate the differential acquisition of age-
related biomarkers including changes in cell morphology and SA-β-gal activity (blue staining) in response to EVOO secoiridoids. Right: Representative 
microphotographs illustrate the impact of short-term treatment (3 d) with EVOO secoiridoids in the vacuolization and abundant accumulation of cell 
debris in pre-senescent HMECs.

passaging throughout their entire rep-
licative life spans. Chronic exposure to 
EVOO secoiridoids failed to lengthen the 
proliferative lifespans of WI-38 and BJ-1 
HDFs (Fig. 6). However, whereas the 
growth rates, population doubling rates 
and cumulative population doubling 
(PD) levels of the cells were mostly unaf-
fected by repeated exposure to EVOO 
secoiridoids, age-related changes in cell 
size, cellular morphology and senescence-
associated β-galactosidase (SA-β-gal) 
staining were significantly altered. Age-
related alterations in the morphology 
of fibroblasts, which is one of the most 
obvious changes that occurs during cel-
lular aging, was significantly reduced in 
EVOO secoiridoid-treated HDFs. At 
the end of their proliferative lifespans, 
untreated control cultures underwent 
a significant increase in cell size, taking 
on a flattened appearance; their morpho-
logical heterogeneity also increased, and 
they suffered a complete loss of arrayed 
arrangement and accumulated significant 
amounts of intracellular and extracellular 
debris, with concomitant increases in the 
sizes of their nuclei and nucleoli (Fig. 6, 
left). Indeed, a short-term treatment (3 d) 
with EVOO secoiridoids notably ame-
liorated the intense vacuolization and 
abundante accumulation of cell debris 
in nearly senescent human mammary 
epithelial cells (HMECs) (Fig. 6, right). 
Moreover, we noted significantly higher 
proportions of β-gal-positive WI-38 and 
BJ-1 cells in old HDF cultures than in 
young HDF cultures. At the end of their 
proliferative lifespans, HDF cultures 
grown continuously in the presence of 
EVOO secoiridoids demonstrated sig-
nificantly reduced age-related morpho-
logical alterations and displayed relatively 
young-like morphologies. Old HDF 
cultures chronically exposed to EVOO 
secoiridoids did not undergo significant 
cell enlargement and largely maintained 
the thin, long, spindle shapes observed 
in younger HDF cell populations. In 

contrast to control cultures, EVOO sec-
oiridoid-treated HDFs maintained an 
arrayed arrangement of morphologically 
homogeneous cells (Fig. 6), with reduced 
accumulation of lysosomal residual bod-
ies and an almost complete absence of 
multinucleated cells. When the prolifera-
tion rate of the untreated control cultures 
began to decrease as cellular senescence 
approached, SA-β-gal activity was mea-
sured; we notably observed significantly 
fewer β-gal-positive cells in EVOO sec-
oiridoid-treated HDFs than in vehicle-
treated HDFs (Fig. 6).

Taken together, these findings dem-
onstrate for the first time that complex 
mixtures of crude EVOO PEs antago-
nize cellular senescence without modify-
ing the proliferative capacity of HDFs. 
Katsiki and colleagues307 previously 
reported that oleuropein-treated cultures 
of normal human fibroblasts exhibited 
a significant delay in the appearance of 
senescence morphology. In their hands, 
however, oleuropein treatment of human 
embryonic fibroblasts conferred a life 
span extension of approximately 15%. It 
is plausible that the presence of numer-
ous phenolic molecules within a crude 
EVOO PE would not preclude the abil-
ity of “diluted” secoiridoids to suppress 
senescence as efficiently as a single puri-
fied secoiridoid (e.g., oleuropein) and 
that, at concentrations such as those used 
in our experiment, the slightly cytotoxic 
effects of the crude EVOO phenolic mix-
ture would prevent a plausible anti-aging 
(preservation of proliferative capac-
ity) effect. Of note, when older HDFs 
chronically cultured in the presence of 
200 ng/mL EVOO-PE7 were challenged 
with higher concentrations of the same 
PE, they were notably refractory to the 
cytotoxic effects observed when EVOO 
secoiridoid-naive young HDFs were 
treated with the same high dose of poly-
phenols (data not shown). This finding 
supports the idea that continuous expo-
sure to hormetic stresses (e.g., low-dose 

secoiridoids) can protect cells from stron-
ger stresses (e.g., high-dose secoiridoids) 
but that these stronger stresses do not 
cause aging, as aging is not caused by any 
stress.180

EVOO Secoiridoid Polyphenols: 
A New Family of “Xenohormetic” 

Compounds

The previously unrecognized ability of 
EVOO secoiridoids to activate endog-
enous cellular defense pathways (e.g., the 
evolutionarily conserved NAD-dependent 
deacetylase sirtuin-1 and NRF2 path-
ways) that integrate the adaptive stress 
response and positively control the expres-
sion of a battery of stress response pro-
teins in human cells support the original 
“xenohormesis hypothesis” of Howitz and 
Sinclair63,89,134 invoking the interspecies 
communication of stress signals. The liter-
ature on sirtuin focuses on pharmacologi-
cal activators of SIRT1 (e.g., resveratrol, 
SRT1720), which have been proposed as 
therapeutics for diabetes, neurodegen-
eration, inflammation and other diseases. 
However, many compounds may have 
been identified as SIRT1 activators due to 
artifacts in the assay methodology (i.e., the 
use of fluorescently tagged substrates). By 
performing the first comprehensive analy-
sis of gene expression and transcriptome 
dynamics of human breast cancer cells 
grown in the presence of crude phenolic 
EVOO extracts, we present compelling 
data that suggest that the stress response 
of Oleacea plants, which has evolved as a 
result of their stationary lifestyle, might 
confer stress resistance and “anti-aging 
benefits” to animals such as humans that 
consume bioactive secoiridoids produced 
by Oleacea.

In highly proliferative cancer cells that 
possess aberrant bioenergetic and biosyn-
thetic metabolism, EVOO secoiridoid-
imposed metabolic reprogramming would 
be expected to promote growth inhibition 
and cell death; however, the ability of 
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ability to molecularly connect mito-
chondria and AMPK during evolution. 
Curiously, SIRT1 has been shown to play 
an essential role in the ability of moder-
ate doses of resveratrol to stimulate AMPK 
and improve mitochondrial function both 
in vitro and in vivo.324

EVOO Secoiridoid Polyphenols:  
A New Family of “Gerosuppres-

sant” Compounds

Despite the high degree of structural 
resemblance between EVOO-derived 
complex polyphenols and well-recognized 
CR-like polyphenols that are known to 
experimentally extend lifespan (i.e., res-
veratrol), no studies have explored the 
actual molecular function of EVOO sec-
oiridoids in retarding human aging. As 
for many other polyphenols, it has been 
erroneously assumed that EVOO-derived 
complex phenols provide health ben-
efits, including higher longevity, largely 
because of their antioxidant activity. Our 
laboratories at the Spanish BFCP have 
been studying for the first time whether 
secoiridoids, a family of complex pheno-
lics characteristic of Oleacea plants, by 
functioning as biocompounds belonging 
to the recently defined group of “hormesis 
A” compounds (i.e., inhibitors of the pro-
aging activity of mTOR gerogenes and/or 
activators of mTOR gerosuppressors such 
as AMPK) can, like resveratrol, affect 
anti-aging signaling pathways in ways 
that significantly promote cytotoxicity in 
immortal tumor cells and that weaken 

alkylator that acts as a protein crosslinker, 
providing plants with an effective defense 
against attack by herbivores and possibly 
by pathogens.307-310 The fact that numerous 
and apparently unrelated “nutraceuticals,” 
“xenobiotics” and other biocompounds 
derived from traditional herbal medicines 
act as xenohormetic compounds merely 
reflects their common ability to inhibit the 
aging-driven activity of mTOR gerogenes 
and/or to activate key gerosuppressors of 
the mTOR pathway (i.e., AMPK).180,311-322 
Considering that mitochondria became 
the main cellular power source during 
the evolutionary development of eukary-
otes,323 AMPK plausibly arose very early 
during eukaryotic evolution due to the 
requirement for sensing energy status 
in the cytoplasm and providing a sig-
nal to modulate mitochondrial function. 
Indeed, the ancestral function of AMPK 
in plants and animals was likely to orches-
trate resistance responses to the effects of 
carbohydrate starvation (e.g., to trigger a 
switch back to oxidative metabolism in 
response to deprivation of the preferred 
carbon source, glucose). Of note, most of 
the potent activators of AMPK are plant 
defense compounds that inhibit mito-
chondrial ATP synthesis. Forthcoming 
studies should definitively elucidate 
whether EVOO secoiridoids and other 
xenohormetic compounds impact both 
mitochondrial functionality and AMPK-
like metabolic sensors across different spe-
cies (e.g., olive and human) during times 
of stress; in this scenario, xenohormesis 
should be viewed as providing a shared 

relatively non-toxic secoiridoids to upreg-
ulate a variety of transcriptomic programs 
involved in regulating stress responses 
should result in increased longevity of nor-
mal cells. This apparent metabolic paradox 
can easily be resolved in the context of an 
evolutionary view of the “AMPK/mTOR-
xenohormetic” model. AMPK, whose 
ancestral role may have been related to 
the response to starvation for the preferred 
carbon source, glucose, appears to have 
arisen very early during eukaryotic evolu-
tion. Rapid cell growth requires the active 
synthesis of proteins, rRNA and lipids, all 
of which are switched off by the activation 
of AMPK (and, likely, by downstream 
inactivation of mTOR). Indeed, one rea-
son for the high glycolytic rate of rap-
idly proliferating cells, including tumor 
cells, is that the TCA cycle ceases to be a 
purely catabolic pathway and becomes at 
least partially anabolic, actively providing 
precursors for biosynthesis, particularly 
citrate for lipid synthesis.275 Accordingly, 
both tumor cells and viruses (and likely 
other pathogens) appear to have devel-
oped mechanisms to downregulate the 
energy sensor AMPK and escape from 
its restraining influence on growth and 
biosynthesis.9,10,107 In an “AMPK/mTOR-
xenohormetic” model, there is no need 
to assume that animals and fungi have 
retained an ability to be activated by cer-
tain plant stress molecules, because they 
provide useful advance warning of a dete-
riorating environment or food supply. Soil 
bacteria do not produce the macrocyclic 
lactone rapamycin as an anticancer drug 
or a pro-longevity medicine but as an anti-
biotic that inhibits the growth of fungal 
competitors. The French lilac or goat’s rue 
(Galega officinalis) produces galegine, the 
bioactive starting material from which 
metformin was developed, as a defense 
compound to deter grazing by herbivores, 
not as a gerosuppressant that delays aging 
and suppresses tumorigenesis. Grapes 
produce resveratrol in response to fungal 
infection but not as a longevity nutri-
ent with anticancer properties. Similarly, 
upon activation and conversion to oleuro-
pein aglycon by deglycosylation, phenolic 
secoiridoid glycosides such as oleuropein 
can induce a loss of nutritive value via the 
loss of lysine and inactivation of enzymes 
by functioning as a unique multivalent 

Figure 7. EVOO secoiridoids: A new family of plant-produced gerosuppressant agents that mo-
lecularly “repair” the aimless (and harmful) AMPK/mTOR-driven quasi-program that leads to aging 
and aging-related diseases, including cancer.
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age-related pro-senescence effects in nor-
mal cells. Because changes in the expres-
sion of significant numbers of genes have 
been linked to the anticancer and lifespan 
effects of all known lifespan interventions 
(CR- and the so-called CR-mimetics), we 
hypothesized that global changes in the 
human transcriptome detectable by the 
use of high-density microarrays could be 
used for the preliminary identification of 
candidate EVOO secoiridoids-induced 
anti-aging/anticancer gene signatures. 
The strength of evidence supporting the 
xenohormetic activity of EVOO secoiri-
doids was tested by assuming that their 
tumoricidal activity results from the para-
doxical activation of cellular stress-like, 
anti-aging transcriptomic signatures in 
cancer cells. By following this genome-
wide analysis approach in highly aggres-
sive human breast cancer cells that were 
briefly exposed to crude EVOO phenolic 
extracts highly enriched in the secoiridoids 
oleuropein aglycone and decarboxymethyl 
oleuropein aglycone, we demonstrated 
that Oleacea plant defense molecules, 
which are able to exert strong protein-
denaturing/protein-crosslinking/lysine-
alkylating activities against herbivores, 
can efficiently induce in human cells 
intracellular signaling pathways that may 
respond to biological stress at the molecu-
lar/cellular level. We confirmed that the 
stress pathways activated by EVOO seco-
iridoids might defend cells and tissues 
in a hormetic-like manner, because they 
regulate energy metabolism in a way that 
would be expected to enhance cellular 
survival during times of stress. Thus, the 
anticancer activity of EVOO secoiridoids 
was found to be related to the activation 
of anti-aging/cellular stress-like gene sig-
natures, including endoplasmic reticu-
lum (ER) stress and the unfolded protein 
response, spermidine and polyamine 
metabolism, sirtuin-1 (SIRT1),325-351 and 
NRF2 signaling. EVOO secoiridoids 
activated the gerosuppressor AMPK and 
inhibited crucial metabolic genes involved 
in the Warburg effect and the self-renewal 
capacity of “immortal” cancer stem cells 
and EVOO secoiridoids significantly pre-
vented age-related changes in cell size, 
morphological heterogeneity, arrayed 
arrangement and senescence-associated 
β-galactosidase staining of normal diploid 
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