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Tumor microenvironment plays a 
central role in the development and 

dissemination of cancer cells. In addi-
tion to studying each specific cellular 
component of the microenvironment 
it has become clear that it is the type 
and amount of information that cells 
exchange that ultimately affects cancer 
phenotype. Recently, it has been discov-
ered that intercellular communication 
occurs through the release of microves-
icles and exosomes, whose cargo repre-
sents the information released by one cell 
to a recipient cell. A key component of 
this cargo is represented by microRNAs 
(miRNAs), small non-coding RNAs 
with gene regulatory functions. We dis-
covered that miRNAs released by cancer 
cells within microvesicles can reach and 
bind to Toll-like receptors (TLRs) in 
surrounding immune cells, and activate 
them in a paracrine loop. As a result, 
immune cells produce cytokines that 
increase cell proliferation and metastatic 
potential. This discovery provides the 
rationale for the development of new 
drugs that might be used in the treat-
ment of cancer as well as other inflam-
mation-related diseases.

MicroRNAs as  
Cancer Biomarkers and  

Cell-Cell Cross-Talk Mediators

MicroRNAs (miRNAs) are a large fam-
ily of non-coding, single stranded RNAs 
of 19–24 nucleotides in length which 
regulate gene expression both at the tran-
scriptional and translational level.1,2 Such 
regulation occurs by binding to comple-
mentary sequences in the coding, 5'- or 
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3'-untranslated region (UTR) of target 
mRNAs (mRNAs)3-5 (Fig. 1A). MiRNAs 
regulate nearly 30% of the human 
genome1 and play a pivotal role in most 
critical biological processes, including 
differentiation, development, prolifera-
tion, cell cycle, metabolism and host-viral 
interactions.4,6-8 They are also involved in 
the onset of several human diseases (such 
as cancer, diabetes and neurodegenerative 
disorders).9-13 Over the past few years it 
has been demonstrated that several miR-
NAs contribute to cancer development 
through gain and loss of function mecha-
nisms.14 MiRNAs are in fact frequently 
located in cancer-associated genomic 
regions, such as minimal regions of ampli-
fication, loss of heterozygosity, fragile sites 
and common breakpoint regions in or in 
proximity of oncogenes or tumor suppres-
sor genes. During the last decade, miRNA 
profiling studies have been performed on 
different kinds of human tumors point-
ing out which miRNAs are dys-regulated 
with respect to normal tissues, and shed-
ding light on their involvement in cancer 
formation and progression. It is possible 
to identify “miRNA signatures” for dif-
ferent types of cancer with diagnostic, 
prognostic and in some cases predictive-
of-response-to-treatment implications. 
As cancer biomarkers, miRNAs can be 
detected not only in primary tumors (vs. 
the normal tissue counterpart) but also in 
circulating body fluids, where they have 
also been found differentially expressed 
in cancer patients with respect to healthy 
donors.15

It has been a common belief that miR-
NAs regulate gene expression within the 
cell. However, recent findings show that 
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than in the cell of origin, suggesting that 
some miRNAs may be uniquely packed 
into exosomes.

Kosaka et al.25 showed that miR-
146a secreted by COS-7 cell line targets 
ROCK1-encoding mRNA when delivered 
to recipient PC-3M prostate cells, validat-
ing the fact that also secreted miRNAs take 
part on this novel mechanism of intercellu-
lar communication. In 2012, Montecalvo 
and coworkers37 showed that dendritic cells 
(DCs) secrete exosomes that are loaded 
with distinct sets of miRNAs, dependent 
on the status of DC activation and that 
such exosomes can fuse with target cells, 
thereby delivering their membranous and 
cytosolic contents. Finally, they dem-
onstrated that transferred miRNAs can 
repress target mRNAs in the recipient cells.

Although new findings are unveiling 
the secrets of this novel mechanism of 
cell-cell communication, there are still a 
lot of points to be elucidated. For example, 
it is still not clear how miRNAs are sorted 
into EVs and which proteins are involved 
in this process.

Although EVs were originally con-
sidered a “disposal system” for unneces-
sary membrane proteins,27-29 they have 
recently captured much attention as a 
vehicle involved in cell-to-cell commu-
nication.30-33 Exosomes can transfer viral 
RNA (from HCV infected cells) to non-
permissive plasmacytoid dendritic cells 
(pDCs) to evade pathogen recognition.26 
In 2007, Valadi et al.34 isolated exosomes 
from a mouse and human mast cell line, 
and from primary bone marrow-derived 
mouse mast cells. They then performed 
a microarray analysis finding that the iso-
lated vesicles contained not only proteins 
but also the mRNAs of approximately 
1,300 genes, and the in vitro translation 
assay showed that these mRNAs were 
functional. Moreover, the authors found 
small RNAs corresponding to approxi-
mately 121 miRNAs (including miR-1, 
miR-18, miR-181 and miR-375), which 
are thought to be involved in processes 
like angiogenesis, tumorigenesis and exo-
cytosis.34-36 Also, some of these miRNAs 
were expressed at higher levels in exosomes 

these small molecules can also be trans-
ferred from cell to cell through mecha-
nisms involving shedding extracellular 
vesicles (EVs). Although a true consensus 
has not been reached among scientists 
yet, EVs include exosomes, microvesicles, 
membrane microparticles and apoptotic 
vesicles. The distinctions among these 
different types of EVs are based on their 
size and gradient density. While exosomes 
are 30–100 nm in diameter, microvesicles 
are 100–1,000 nm, membrane micropar-
ticles are 50–80 nm and apoptotic bodies 
50–500 nm.16 EVs are secreted17 by differ-
ent kind of cells: epithelial cells,18 dendritic 
cells,19 B- and T- cells,20,21 mast cells22 and 
tumor cells.23 Secreted EVs may remain 
in proximity of the cells which have gen-
erated them or may reach more distant 
sites through biological fluids. This may 
explain the presence of EVs in plasma, 
urine, milk, semen and cerebrospinal 
fluid.24 Although the mechanism of EV 
formation and secretion is far from being 
elucidated, it has been demonstrated that 
ceramide is involved in this process.26

Figure 1. Different mechanisms of action of mature microRNAs. (A) The “classical” mechanism of action of mature miRNAs consists in their binding to 
a partially (upper panel) or completely (lower panel) complementary sequence in a target mRNA leading to translational repression or mRNA cleav-
age, respectively. (B) MiRNAs can also bind to proteins and affect their function. The case of miR-328 is here described. By directly binding to hRNP E2, 
miR-328 functions as a decoy and subtracts hRNP E2 from binding to and inhibiting CEBPA. As a result of miR-328-hRNP E2 interaction, CEBPA is able 
to bind to target mRNAs exerting its transcription factor function leading to increased granulocytic differentiation. (C) MiRNAs can also bind to proteic 
receptors and activate them. Here we describe the mechanism of action of miR-21 and -29a, released by cancer cells within MVs, and able to bind to 
TLR8 (in humans) or TLR7 (in mice) in surrounding immune cells. As a result of this interaction, immune cells release IL-6 and TNF-α which promote 
cancer growth.
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has originated from the discovery of anti-
tumoral activity of some small-molecule 
compounds,61 which have been shown to 
act as agonists for one or both receptors.43,62 
Most of the findings concerning the antitu-
moral mode of action of TLR7/8 agonists 
have been obtained with the nucleoside 
analog imiquimod.63 Imiquimod activates 
preferentially TLR7; its agonistic activity 
on TLR8 appears to be much weaker.64 
Another molecule named Resiquimod is a 
selective ligand for TLR7 in mice and for 
TLR7 and TLR8 in humans. Resiquimod 
induces more pronounced cytokine secre-
tion, macrophage activation and enhance-
ment of cellular immunity as compared 
with imiquimod.65,66 Gardiquimod is 
another imidazoquinoline derivative that, 
similar to imiquimod, induces activation 
of NF-κB in cells expressing human or 
murine TLR7. At high concentrations 
(that is ≥ 3 mg ml-1), gardiquimod also 
activates TLR8.

Imiquimod induces expression of pro-
inflammatory cytokines, including IFN-
α, TNF-α, IL-2, -6, -8, -12, G-CSF and 
GM-CSF, as well as chemokines such as 
CCL3 (MIP-1α), CCL4 (MIP-1β) and 
CCL2 (MCP-1).67-69 Rettig et al. have 
shown that nanometric protamine-RNA 
particles induce production of IFN-α, 
whereas micrometric particles mainly 
induce the production of TNF-α in 
human immune cells. This difference is 
explained by the fact that nanoparticles 
(but not microparticles) are selectively 
phagocytosed by pDCs, which produce 
IFN-α, whereas monocytes (that mainly 
produce TNF-α) have a higher activation 
threshold than pDCs.70 More recently, 
Schiller et al. have shown that apoptotic 
cells release DNA in membrane micropar-
ticles, able to bind to TLR9 in pDCs 
and inducing IFN-α secretion.71 These 
findings are of great value, and provide 
important insights on the role of pro-
inflammatory cytokines as also able to 
trigger an anti-tumoral activity, and on 
how to develop new delivery systems able 
to trigger a specific cocktail of cytokines 
with anti-tumoral properties. In addition 
to the NF-κB-mediated transcription of 
proinflammatory mediators, it appears 
that TLR7- (and TLR8)-agonistic activi-
ties of imiquimod induce some proin-
flammatory cytokines, such as IFNγ, in a 

followed by the formation of a complex 
with IRAK1, IRAK4 and TRAF6, which 
results in NF-κB (nuclear factor-kappa B) 
activation. NF-κB plays a critical role in 
the development of tumors and in the con-
text of chronic inflammation.44,45

Although TLR expression was first 
observed in immune cells, several reports 
have described the expression of TLRs in 
non-malignant and malignant epithelial 
cells. The role of TLRs in cancer is still 
controversial, since it has not been con-
vincingly determined whether they favor 
or inhibit cancer development.

On one hand, TLR stimulation has a 
pro-tumoral effect, favoring tumor ini-
tiation,46,47 development,48 invasion,49,50 
resistance to chemotherapy51-53 and escape 
from the immune system.52,54 On the other 
hand, TLR stimulation can lead to tumor 
regression either by direct induction of 
tumor cell apoptosis55-57 or by activation of 
anti-tumoral immune responses. Conforti 
et al. showed that uncoupling the immu-
nostimolatory and immunosuppressive 
effects of TLR3 activation by manipulat-
ing the released cytokines upon the recep-
tor activation is a feasible and attractive 
new anticancer approach.58

Several studies strongly suggest that 
chronic inflammation (i.e., chronic 
bronchitis, chronic obstructive diseases, 
emphysema, asbestos or tobacco smoke) 
increases the risk of carcinogenesis.59,60 
Lungs are frequently exposed to RNA 
viruses (such as respiratory syncytial and 
influenza viruses) and pathogens that are 
recognized by TLR7 and TLR8,40,42 sug-
gesting that these TLRs are present on 
lung epithelial cells. A link between TLR7 
and TLR8 signaling and inflammation, 
tumor growth and chemoresistance has 
been observed. Moreover, it is known that 
the expression of TLR7 and TLR8 in lung 
cancer cells and their stimulation results 
in activation of NF-κB and upregulation 
of Bcl-2 expression. This was associated 
with increased tumor cell survival and 
resistance to apoptosis induced by chemo-
therapy in vitro.51 These data emphasize 
that TLR signaling can directly interfere 
with the tumor cell either by increasing 
cell survival or by inducing resistance to 
cell death.

Increased scientific and clinical inter-
est in TLR7 and TLR8 for cancer biology 

Cancer-Secreted  
microRNAs Activate a  

TLR-Mediated Pro-Tumoral  
Inflammatory Response

The hypothesis. The identification of 
miRNAs within EVs and exosomes and 
the fact that they are secreted by cells and 
can exert a function on other cells in a 
paracrine fashion, prompted us to inves-
tigate whether miRNAs can work by trig-
gering a receptor-mediated response. The 
ability of miRNAs to bind to proteins has 
already been previously shown by Eiring 
et al., who demonstrated that miR-328 
directly binds to hRNP E2 and subtracts 
this protein from its inhibitory effect on 
the transcription of CEBPA, a factor that 
promotes granulocytic differentiation38 
(Fig. 1B). Among the proteic receptors 
that might be able to bind to miRNAs, we 
decided to focus on a group of receptors 
that are known to bind single-stranded 
RNAs (ssRNAs) of a size (19–24 nucleo-
tides) similar to a mature miRNA: the 
Toll-like receptors (TLRs).

Toll-like receptors and their relevance 
in cancer. The TLR family consists of 
10 members (13 in mice), which enable 
innate immune cells and other special-
ized cell subsets such as epithelial cells to 
respond to a variety of pathogen-associated 
molecular patterns (PAMPs).39 TLR3, 
TLR7, TLR8 and TLR9 form a subgroup 
of TLRs for structural and functional 
similarities. All of them, in fact, recognize 
viral nucleic acid and are located in the 
endosomal membrane. While TLR3 and 
-9 bind double-stranded RNA (dsRNA) 
and DNA-containing CpG motives, 
respectively, TLR7 and TLR8 are able to 
recognize ssRNAs.40,41

TLR7 and TLR8 were initially iden-
tified as receptors for antiviral small 
molecules such as imidazoquinoline deri-
vates,42,43 but subsequently were found to 
be responsible for the detection of ssRNA 
derived from the human immunodefi-
ciency virus (HIV) and the influenza 
virus.40,41 Different studies in humans 
showed that both TLR7 and TLR8 trans-
fer responsiveness to ssRNA, but in mice 
this is true only for TLR7,40,41 since TLR8 
is not functional.

TLR7 and TLR8 activation induces 
the recruitment of the adaptor MyD88 
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that promote endothelial cell recruitment 
and proliferation.76,77 Besides their role in 
tumor support for preexisting metastatic 
cells, macrophages have been implicated in 
the establishment of a constitutive inflam-
matory process that induces oncogenic 
mutation in the surrounding epithelial 
cells, particularly through the secretion 
of highly reactive compounds like reac-
tive oxygen and nitrogen species.78 TAM 
recruitment in the tumor site is suspected 
to be a part of an innate immune response 
but the factors involved in the initiation of 
this process have not been fully elucidated.

With the exception of the well-known 
microorganism-driven cancers,79 in the 
majority of inflammation-related cancers 
the source of the chronic inflammatory 
status is unknown and this particular 
situation is known as sterile inflamma-
tion.80 There is now considerable evidence 
that self-recognition through receptors 
of innate immunity, such as TLRs, can 
occur and significantly contribute to ster-
ile inflammation and autoimmunity. We 
described a completely novel mechanism 
of action through which cancer cells pro-
mote their growth and dissemination. 
A summary of “traditional” and newly 
discovered mechanisms of action for 
miRNAs is summarized in Figure 1. By 
secreting exosomes containing miRNAs 
able to reach ssRNA-binding TLRs in the 
endosomes of surrounding immune cells, 
cancer cells can promote an increased 
immune-cell-mediated secretion of IL-6 
and TNF-α within the tumor microen-
vironment (Fig. 1C). As a result, cancer 
cells increase proliferation and dissemi-
nation. Interestingly, this new discovery 
harbors several translational implications. 
It is indeed conceivable to interrupt this 
aberrant cross-talk between cancer cells 
and surrounding immune cells within the 
tumor microenvironment, for instance, by 
using molecules able to interfere with the 
capacity of cancer cells to release exosomes. 
Another approach might be creating 
genetically engineered TLRs that conserve 
the ability to bind to the exosomic miR-
NAs but do not trigger the intracellular 
signal transduction that leads to increased 
cytokine production by the immune cells. 
Although in its infancy, these strategies 
will certainly provide new molecular tar-
gets to develop new anticancer drugs. 

effects observed in presence of TLR7.72 
These data support an unconventional 
mechanism of action for let-7, at least 
in part mediated by its interaction with 
TLR7. Overall, these findings also indicate 
that miRNA-TLR binding interactions 
have implications for human pathology 
that go even beyond cancer.

Functionally, we observed that miR-
21 and -29a binding to human TLR8 (or 
murine TLR7) induces NF-κB activation 
and increased secretion of pro-inflamma-
tory and pro-metastatic citokynes IL-6 
and TNF-α, which increase the meta-
static potential of LLC (Lewis lung carci-
noma) cells. These effects are significantly 
reduced in TLR7 -knockout mice or when 
mice were treated with compounds such as 
Bafilomycin A and GW4869, which affect 
exosome-endosome fusion and exosome 
secretion, respectively.33 Interestingly, we 
also observed that while lung cancer cells 
are the main producers of TLR-activating 
miRNAs, a co-localization of secreted 
miRNAs and TLRs occurs mainly within 
the macrophages located at the tumor 
interface. Since this co-localization is not 
observed in the normal tissue distant from 
the tumor, nor in the central part of the 
tumor, it seems reasonable to conclude 
the miRNA-TLR interaction (at least for 
miR-21 and miR-29a) affects more the 
biology of the periphery of the tumor. It 
still remains to be determined what is the 
relevance of the miRNA-TLR interaction 
for other miRNAs and in a physiological 
setting.

Conclusions  
and Future Perspectives

Innate immune system activation is 
tightly related to the inflammation-cancer 
correlation. Interestingly, in several types 
of cancer, immune cells represent up to 
50% of tumor mass.73 A specific popula-
tion of macrophages named tumor associ-
ated macrophages (TAMs) plays a pivotal 
role in the tumor growth promoting can-
cer cell survival, neoangiogenesis and 
dissemination.73,74 TAM infiltration has 
been described as an early phenomenon 
in the metastatic process.75 In particular, 
these cells seem to prepare a niche to sus-
tain cancer cell growth producing matrix 
proteases and angiogenic chemokines 

NF-κB-independent fashion. The known 
functions of these mediators explain, at 
least in part, many cellular responses to 
imiquimod, including activation and che-
motactic properties on dendritic cells and 
their precursors as well as on cytotoxic 
T-lymphocytes and other immune cells.

MiRNAs can bind and activate 
TLR8 in human (TLR7 in mice). Our 
first approach to assess whether cancer-
released miRNAs can bind to TLRs in 
recipients surrounding immune cells was 
to determine which miRNAs are secreted 
by cancer-released exosomes. We used 
non-small cell lung cancer (NSCLC) cell 
lines as a model and were able to demon-
strate that among the secreted miRNAs, 
miR-16, -29a, -21 and -27b were highly 
represented.33 By performing confocal 
microscopy experiments, we were able to 
show that these miRNAs can reach the 
content of endosomes in the recipient cells 
and co-localize with ssRNA binding TLRs 
within them. Subsequently, we performed 
co-immunoprecipitation experiments and 
observed that while miR-21 and miR-29a 
bind to TLR8, miR-16 does not.33 We 
partially tried to address this differential 
behavior of miR-16 by performing a muta-
tional analysis. To this aim, we changed 
several bases in the 3' region of miR-21 
and miR-29a (which contains a GU motif 
known to activate TLRs) with the corre-
sponding ones in miR-16 sequence. Our 
data indicate that while miR-21 U20G 
mutant, miR-29a U20G mutant and miR-
29a U21C mutant significantly reduce 
TLR8-mediated NF-κB activation, the 
miR-21 G18U mutant exerted an opposite 
effect,33 suggesting that more than the GU 
content, it is the tridimensional structure 
of the miRNAs (as dictated by its nucleo-
tide sequence) to affect miRNA ability to 
functionally activate TLRs. However, fur-
ther experiments are warranted to address 
this specific issue. In humans, we observed 
that miR-21 and miR-29a activate TLR8, 
but not TLR7, suggesting a selectivity of 
ssRNA-binding TLR activation by miR-
NAs, whose significance still needs to be 
better understood. Interestingly, another 
group has shown that in TLR7-knockout 
mice, let-7 (whose expression is upregu-
lated in the cephalorachidian liquid of 
patients affected by Alzheimer disease) 
does not produce the neurodegenerative 
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Finally, and probably even more inter-
estingly, being able to interfere with this 
exosomic miRNA-mediated intercellular 
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peutic avenues also in neurodegenerative 
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diseases. While the activation of ssRNA-
binding TLRs by miRNAs released by 
lung cancer cells has important implica-
tions for cancer growth and dissemina-
tion, it is still unknown whether the same 
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