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To the Editor
Shwachman-Diamond syndrome (SDS, On-line Mendelian Inheritance in Man (OMIM)
#260400) is an autosomal recessive condition, characterized by pancreatic exocrine
insufficiency, skeletal abnormalities, bone marrow failure, and an increased risk of
myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML), the latter occurring
in 19–36% of patients (Shimamura, 2006). Compound heterozygous mutations in SBDS are
identified in the majority of SDS patients. Of the two most frequently found mutations in
SBDS, 183-184TA>CT and 258+2T>C, at least one is present in approximately 90% of
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affected individuals. These mutations are located in exon 2, and result from gene conversion
with SBDSP1, the SBDS pseudogene (Boocock et al, 2003). Although its exact function
remains unclear, the SBDS protein appears to have a role in ribosome maturation, and might
have additional extraribosomal functions (Finch et al, 2011; Johnson & Ellis 2011).

Because of the increased risk of AML, but lack of a clear genotype-phenotype relationship
in SDS (Kuijpers et al, 2005), we hypothesized that compound heterozygous SBDS
mutations might be present in seemingly sporadic paediatric AML. Furthermore, we
hypothesized that heterozygous mutations in SBDS might be present at increased frequency
in sporadic AML compared to healthy controls, and might thus be a risk factor for AML
development. Given the significant toxicity of standard chemotherapy and transplantation
conditioning regimens in SDS patients with MDS or AML (Shimamura, 2006), but the
reduction in morbidity after reduced-intensity conditioning regimens (Bhatla et al, 2008), the
identification of AML patients carrying SBDS mutations seems clinically relevant.

In leukaemic blast cells derived at diagnosis from 160 paediatric AML patients (median age:
9.6 years (range: 0–18.5 years); 90 (56.3%) male, 70 (43.7%) female), who were enrolled in
consecutive Berlin-Frankfürt-Münster, Dutch Childhood Oncology Group/UK Medical
Research Council, and Leucemie Aique Myeloide Enfant AML treatment protocols between
1987 and 2008 (Hollink et al, 2011), we specifically amplified SBDS and not SBDSP1, as
previously described, and sequenced exon 2 of SBDS (Calado et al, 2007). Germline
material of the AML patients was not available, and we assume that SBDS gene variants
found in leukaemic blast cells were constitutional and not acquired variants.

Two AML patients carried a heterozygous 258+2T>C mutation (carrier frequency 0.013).
This mutation disrupts the donor splice site of intron 2 and results in the use of a cryptic
donor splice site in exon 2, leading to a frameshift and premature protein truncation at codon
84 (Boocock et al, 2003). Furthermore, 28 of 160 AML patients carried the silent variant
201A>G (carrier frequency 0.175) (Fig 1). No compound heterozygous mutations in exon 2
of SBDS were detected. Of 168 Dutch blood bank donors, 1 carried the heterozygous
258+2T>C (carrier frequency 0.006). Furthermore, 3 of 168 blood bank donors carried a
heterozygous 183-184TA>CT (carrier frequency 0.018), introducing a premature stop codon
at amino acid 62. The silent variants 141C>T and 201A>G were present in 2 (carrier
frequency 0.012) and 32 (carrier frequency 0.190) controls, respectively (Table I). In
previously published controls cohorts, 183-184TA>CT was present in 1 of 70 individuals
(carrier frequency 0.014) (Nakashima et al, 2004) and 0 of 100 individuals (Boocock et al,
2003), whereas 258+2T>C was absent in three published controls cohorts of 70, 100 and
276 individuals each (Boocock et al, 2003; Calado et al, 2007; Nakashima et al, 2004).

We conclude that in a cohort of 160 paediatric AML patients, homozygous or compound
heterozygous mutations in SBDS were absent, and heterozygous mutations in SBDS were
present at frequencies comparable to healthy controls. Our findings confirm a previous
report in which no mutations in exon 2 of SBDS were found in a smaller cohort of 48
children with de novo AML and 48 children with AML in remission (Majeed et al, 2005).
Taken together, these results suggest that children with seemingly sporadic AML are
unlikely to have underlying SDS.
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Figure 1.
Graphical representation of paediatric AML patients and controls carrying SBDS nucleotide
changes, depicted in bold, resulting from gene conversion events with SBDSP1 in and
around exon 2. The absence of SBDSP1-like sequences at nucleotide 141, 183-184, and 201
in AML patients, and the absence of SBDSP1-like sequences at nucleotide 141, 183-184,
201, or 258+2 in controls, indicate the specificity of amplicons for SBDS. Figure adapted
from Boocock et al ( 2003).
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Table I

SBDS gene variants resulting from gene conversion in paediatric AML patients and controls. Values represent
the number of individuals carrying a variant (carrier frequency).

Nucleotide change Amino acid change AML patients (n=160) Controls (n=168)

Het. 141C>T - - 2 (0.012)

Het. 183-184TA>CT K62X - 3 (0.018)

Het. 201A>G - 28 (0.175) 32 (0.190)

Het. 258+2T>C C84fs3 2 (0.013) 1 (0.006)

AML, acute myeloid leukaemia; Het., heterozygous
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