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Abstract
Mechanical stimuli can trigger intracellular calcium (Ca2+) responses in osteocytes and
osteoblasts. Successful construction of bone cell networks necessitates more elaborate and
systematic analysis for the spatiotemporal properties of Ca2+ signaling in the networks. In the
present study, an unsupervised algorithm based on independent component analysis (ICA) was
employed to extract the Ca2+ signals of bone cells in the network. We demonstrated that the ICA-
based technology could yield higher signal fidelity than the manual region of interest (ROI)
method. Second, the spatiotemporal properties of Ca2+ signaling in osteocyte-like MLO-Y4 and
osteoblast-like MC3T3-E1 cell networks under laminar and steady fluid flow stimulation were
systematically analyzed and compared. MLO-Y4 cells exhibited much more active Ca2+ transients
than MC3T3-E1 cells, evidenced by more Ca2+ peaks, less time to the 1st peak and less time
between the 1st and 2nd peaks. With respect to temporal properties, MLO-Y4 cells demonstrated
higher spike rate and Ca2+ oscillating frequency. The spatial intercellular synchronous activities of
Ca2+ signaling in MLO-Y4 cell networks were higher than those in MC3T3-E1 cell networks and
also negatively correlated with the intercellular distance, revealing faster Ca2+ wave propagation
in MLO-Y4 cell networks. Our findings show that the unsupervised ICA-based technique results
in more sensitive and quantitative signal extraction than traditional ROI analysis, with the
potential to be widely employed in Ca2+ signaling extraction in the cell networks. The present
study also revealed a dramatic spatiotemporal difference in Ca2+ signaling for osteocytic and
osteoblastic cell networks in processing the mechanical stimulus. The higher intracellular Ca2+

oscillatory behaviors and intercellular coordination of MLO-Y4 cells provided further evidences
that osteocytes may behave as the major mechanical sensor in bone modeling and remodeling
processes.
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Introduction
Bone, acting as an adaptive system, can remodel its structure in response to the external
mechanical environment [1]. Understanding the mechanism of bone remodeling is of critical
importance in osteoporosis, age-related fractures and bone loss in prolonged space flight.
Osteocytes, accounting for almost 95% of the bone cell population, are encapsulated in a
fluid-filled mineralized matrix and interconnected with each other through long dendritic
processes to form extensive networks in the lacunae-canaliculi system. It has been long
conjectured that this elaborate osteocytic network behaves as the central mechanosensory
system in bone adaptation and bone homeostasis [2]. Osteocytic networks can transduce
physical stimuli into biochemical signals to further regulate the behaviors of osteoblasts and
osteoclasts, thus coordinating bone modeling and remodeling processes [3]. Several studies
have shown that osteoblasts themselves could respond to mechanical stimuli with a cascade
of cellular activities, such as calcium (Ca2+) signaling, and release of nitric oxide (NO) and
prostaglandin E2 (PGE2) [4–6]. Mechanical loading triggers Ca2+ release in both osteocytes
and osteoblasts [7–11], which is a pivotal and ubiquitous second messenger regulating many
downstream cellular activities, including cell proliferation, differentiation, and apoptosis
[12]. Hence, a comprehensive understanding of Ca2+ signaling in osteocytes and osteoblasts
under mechanical stimuli is of tremendous value in deciphering the mechanisms by which
bone processes the biophysical stimulus.

Ca2+ signaling in osteocytes and osteoblasts can propagate between neighboring cells and
generate Ca2+ waves in the bone cell populations [10, 13]. However, most studies in bone
cell mechanotransduction have been performed on confluent or sub-confluent uncontrolled
cell monolayers. In our previous studies, a two-dimensional patterned bone cell network was
successfully constructed to mimic the elaborate in vivo bone cell network topology using
microcontact printing and self-assembled monolayers (SAMs) techniques [14]. Our recent
findings demonstrated that the osteocytic network showed repetitive spike-like Ca2+ peaks
under fluid flow induced shear stress. These oscillations were dramatically different from
those found in the osteoblastic network regardless of the magnitude of shear stress [15].
However, there are still two major obstacles in studying Ca2+ signaling in these cellular
networks. First, bone cells patterned in the topologic network are spatially connected with
their neighboring cells, so the time course of Ca2+ dynamics neglected the important spatial
and temporal information embedded in the network responses. This information is critical to
help provide essential insights into Ca2+ dynamics of individual cells and Ca2+ wave
propagation in the cell network, which has attracted extensive attention in the signal analysis
of neuronal cell types, such as astrocytes, glial cells and Purkinje cells [16–18]. Therefore, it
necessitates more elaborate and systematical analysis of the spatiotemporal characteristics of
Ca2+ signaling in bone cell networks. Second, most previous extraction methods for Ca2+

signaling in bone cells have been mainly based on a manual region of interest (ROI)
analysis, which can be laborious and subjective, requiring users to select the target boundary
manually according to the cell morphology. The manual ROI was subject to the constraints
of image qualities, and the large number of cells in our bone cell network data also further
increased the difficulty for manual extraction. Therefore, an unsupervised signal extraction
technique is needed to reduce the workload and minimize the artificial errors.
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Independent component analysis (ICA) is an unsupervised blind source separation procedure
that transforms signal mixtures into a corresponding set of statistically independent source
signals [19]. ICA has also been successfully applied for identifying and characterizing
physiological signals in many research areas, such as electroencephalography (EEG),
electrocardiography (ECG), magnetocardiography (MCG), and functional magnetic
resonance imaging (fMRI) [20–23]. Isolating the individual Ca2+ signals in a bone cell
network, sharing a number of similarities with separating the electrophysiological signals
from the recorded mixtures, may also benefit from the unsupervised ICA technique.
However, no study to date has employed this technique to extract the intracellular Ca2+

signaling of bone cells and systematically investigated the spatiotemporal properties of Ca2+

signaling in a cell network pattern.

In the present study, osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cell networks
were respectively stimulated under physiological related fluid shear stress (0.5–4 Pa) and
Ca2+ responses were extracted and analyzed using a set of novel unsupervised techniques.
An ICA-based algorithm was used to separate the individual Ca2+ signals from the cell
networks. Spike rate and power spectrum density (PSD) analysis were then employed to
evaluate the temporal dynamics of Ca2+ signaling, and cell-cell spike synchronization and
signal correlation were analyzed to reveal the spatial intercellular communications of Ca2+

signaling in the networks. This study represents the first effort to systematically study and
compare the spatiotemporal characteristics of Ca2+ signaling in osteocytic and osteoblastic
networks.

Materials and Methods
Bone Cell Network

Osteocyte-like MLO-Y4 cells (a gift obtained from Lynda Bonewald, University of
Missouri) were cultured on type I rat tail collagen (BD Biosciences, San Jose, CA, USA)
coated Petri-dish in α-MEM containing 5% FBS, 5% CS and 1% P/S [24]. MC3T3-E1 cells
were maintained in α-MEM supplemented with 10% FBS and 1% P/S. Microcontact
printing and SAMs surface chemistry technologies were employed to construct the in vitro
bone cell networks, which have been described in detail in our previous studies [14–15]. The
diameter of the round island for a cell to reside was 20 µm for MC3T3-E1 cells and 15 µm
for MLO-Y4 cells, while the edge-to-edge distances between neighboring islands were 50
µm and 35 µm respectively. These geometric parameters were optimized based on cell
morphology to obtain well-formed networks. A grid cell pattern was printed on a chromium
mask, and then the pattern was replicated to a master made of positive photoresist (Shipley
1818, MicroChem Corp, Newton, MA). Polydimethylsiloxane (PDMS, Sylgard 184, Dow
Corning, Midland, MI) stamps were made using the master. The stamp was coated with an
adhesive SAM (octadecanethiol; Sigma–Aldrich Co., St. Louis, MO), and pressed onto a
gold-coated glass slide for 1 min. Ethylene glycol terminated SAM solution (HS-C11-EG3;
Prochimia, Sopot, Poland) was then added onto the slide for 3 h, and the slide was then
incubated in a fibronectin solution for 1 h to facilitate cell adhesion. Cells were then seeded
onto the slide and cultured in α-MEM medium supplemented with 2% charcoal-stripped
fetal bovine serum (CSFBS, Hyclone Laboratories Inc., Logan, UT) for 24 h before fluid
flow stimulation. CSFBS was used here to control the growth of cells and to avoid double-
cell-occupancy on a single circular spot on the pattern [10, 15]. The fluorescence images of
MC3T3-E1 and MLO-Y4 cell networks are shown in Fig. 1A&B.

Fluid Flow Stimulation and Ca2+ Imaging
The patterned cells were loaded with 10 µM Fura-2 AM (Molecular Probes, Eugene, OR)
for 45 min. The glass slide was then mounted into a parallel plate flow chamber (Fig. 1C).
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The flow chamber was fixed on an inverted fluorescence microscope (Olympus IX71,
Melville, NY) with a 10X objective. Steady, laminar fluid flow at different shear stress (0.5,
1, 2, and 4 Pa) on the cell surface was applied through the chamber by varying the power
output of a magnetic gear pump connected to the flow chamber. α-MEM supplemented with
2% CSFBS was used as the flow medium for the experiment [15, 31]. The Ca2+ responses of
cells were recorded for a 10-min period: 1 min for baseline and 9 min after the onset of fluid
flow. MetaFluor Imaging Software 7.0 (Molecular Devices, Downingtown, PA) was used to
acquire and record the Fura-2 340 nm/380 nm ratio images every 3 sec during the course of
flow stimulation.

ICA-based Signal Extraction Algorithm
Flow chart for the unsupervised signal extraction algorithm and spatiotemporal analysis
strategy for Ca2+ signaling in bone cell networks is shown in Fig. 2. All procedures were
performed using Matlab (R2010, The MathWorks Inc., Natick, MA). First, the pseudocolor
fluorescence time-lapse images were transformed into grayscale images and resized from
1,334×1,024 pixels to 336×256 pixels for a total of 200 frames with the bilinear
interpolation algorithm to reduce the computation load. Second, the signal in each pixel was
normalized by the mean value over all time frames at that pixel. Then, principal component
analysis (PCA) was used to serve as a preprocessing procedure prior to ICA by whitening
the original data matrix. The combination between the PCA and ICA algorithm can simplify
the separation of the underlying independent source signals and also improve the robustness
of ICA [25–27]. The major aim of PCA in the present study is to transform the original
image sequence data X (Mxy × Nt) into a whitened matrix Xwhite, in which components are
uncorrelated with each other and covariance matrix equals the identity matrix. As shown in
Equation 1, the original image sequence data X was decomposed into a series of spatial
patterns U (Mxy × R) and their corresponding time series V (Nt × R) using singular value
decomposition.

(1)

R is the rank of X, R ≤ min (Mxy, Nt), while D is the R × R non-negative diagonal matrix of
singular values in decreasing order. If R=Nt, the approximation will be exact. V and D can
be obtained by computing XTX. V are the eigenvectors of XTX, and D2 are the eigenvalues
of XTX. U can be computed as:

(2)

The smaller the eigenvalue, the less energy along the corresponding eigenvector there will
be. Therefore, a small eigenvalue often corresponds to noise signals. In this study, the
largest 40~60 singular values in matrix D were selected to ensure that the components
encoding the random noise signals were excluded. After filtering the principal components,
the whitened matrix Xwhite with reduced dimension was obtained:

(3)

ICA applied in the present study was based on the whitened data Xwhite generated by PCA.
Spatial ICA (sICA) was used to extract the signals to identify spatial components that
maximized the independence of the spatial patterns, together with their corresponding time
courses. Some well-developed ICA algorithms in the literature could be directly used [27–
28]. We employed the FastICA algorithm, which is a fixed-point iteration algorithm by
measuring the non-Gaussianity to seek the statistically independent sources from their

Jing et al. Page 4

Bone. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mixtures [29]. The FastICA algorithm has been widely used in previous studies to separate
physiological signals [18, 20].

After performing sICA, the spatial patterns between each pair of components are statistically
independent. In practice, however, one single IC sometimes contains several spatially
separated cell regions. ICA tends to sort these disconnected regions to be one single IC,
since they may have strongly high correlations in the spatial patterns with each other, which
can be hardly separated by ICA. Therefore, a morphology-based segmentation algorithm
was used to split each IC into spatially separated sub-ICs to ensure that each sub-IC
corresponds to a target cell region. The spatial patterns were first transformed to a binary
matrix. Then, the binary image segmentation procedure was implemented using function
‘bwlabel’ in Matlab to distinguish the spatially disconnected regions [30]. After this
procedure, any IC that contains multiple spatially separated cell regions can be split into the
corresponding sub-ICs. Then, a threshold value of the minimal cell area (20 pixels in
practice) was set to eliminate the ICs encoding the noise signals or background fluctuation.
To identify the cell region occupied by multiple sub-ICs, the distance between the centroids
of each two sub-IC regions was computed, and a threshold of minimal distance value (10
pixels in practice) was set to select the overlapped sub-ICs. The sub-IC with maximal area
value among the overlapped sub-ICs was selected as the target spatial component. All these
procedures ensured a one-to-one correspondence between each sub-IC and a cell region.

After signal extraction, a peak selection algorithm was developed to detect the peaks in each
cellular signal. The signal was first normalized using the standardized z-score, and then the
first derivative of curve was smoothed using the triangular smooth method. The downward
zero-crossings in the smoothed first derivative were then detected. The points were selected
as the peak points by setting the threshold values for the amplitude of the selected zero-
crossings as:

(4)

where Stest is the value of the test point, Smin is the minimal value of the signal, Smax is the
maximal value of the signal, and Pthreshold is the threshold value. In this study, Pthreshold was
set to 1/4 [15].

Validation for the Signal Extraction Algorithm
Simulation movies were generated to mimic the typical cell shapes and Ca2+ signal curves in
bone cell networks. The signals were artificially contaminated by generating Gaussian noise
with different variances. The signal-to-noise ratio ranged from 10 to 30 dB, which covers
the normal range of the experimental fluorescence images. The signal fidelity, defined as the
Pearson’s correlation coefficient between the true signal and extracted signal, was compared
between the unsupervised ICA method and manual ROI method.

Analysis for the Spatiotemporal Characteristics of Ca2+ Signaling
After signal extraction, information relating to spikes was automatically recorded, including
the total responsive cell number, Ca2+ spike number in each cell, and time of spike
occurrence in each cell. A color-code image with different color intensities corresponding to
cells with different spike numbers was also generated automatically to facilitate describing
the spatial distribution of Ca2+ signaling (Fig 6A&B). The average Ca2+ spike number,
occurrence time of the 1st spike and time between the 1st and 2nd spikes were compared
between MC3T3-E1 and MLO-Y4 cells in various magnitudes of shear stress (0.5, 1, 2 and
4 Pa) [15, 31]. Since the present ICA-based Ca2+ signaling extraction algorithm is only
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sensitive to the cells which exhibited Ca2+ response, the total cell number in each slide was
manually counted to compare the responsive rate between MC3T3-E1 and MLO-Y4 cells.
The spike rate was then systematically analyzed to elucidate the temporal distributions of
spike activities of Ca2+ signals. In brief, a time bin (10 frames in practice) was set so that the
time range was segmented into several sub-ranges with equal length (20 sub-ranges in
practice). All the spikes of cells were mapped into the corresponding sub-range, and the
spike number was determined in each sub-range. The spike rate in each sub-range was
calculated as:

(5)

where Rspike is the spike rate, Nspike is the total spike number in each sub-range, Δ (t) is the
bin size, and Ncell is the total cell number in each sub-range.

The centroid of each cell was also automatically extracted in the signal extraction program
for the spike synchrony and signal correlation analysis. All cells in the field of view from
each movie were compared in a pair-wise manner. Since the center to center distance
between neighboring round islands for cells to reside was 70 µm for osteoblasts and 50 µm
for osteocytes, the cell pair was excluded for the spatial correlation analysis with
intercellular distance lower than 60 µm for osteoblasts and 40 µm for osteocytes, given that
the possible non-coincidence between the cell centroid and the island center. Because most
cells’ 1st spikes occurred almost synchronously when fluid flow was applied, the spikes after
the 1st main peak were analyzed to investigate the synchronization of multiple responses of
Ca2+ signaling in bone cell networks. From our previous study, the 1st spike was resulted
from Ca2+ entry into the cell while the subsequent spikes resulted from ATP-related signal
propagation. Spikes between two cells were defined as synchronous ones if the time offset
between the spike pair was less than 5 frames (15 sec). In this study, the sliding-window
cross correlation analysis (window width: 60 sec; step size: 60 sec) was employed to
evaluate the signal correlation. This method can provide enhanced localization analysis in
the temporal domain by splitting the signals with the sliding window, and thus quantitate the
Ca2+ signal correlation more precisely compared with the normal correlation analysis [32–
34]. We selected the maximum value over the lag range from −5 to 5 frames (−15 to 15 sec)
in each sub-range. The correlation value between two signals was calculated by averaging
the values over all the sub-ranges.

To compare the periodicities and frequency distribution characteristics of Ca2+ signaling
between MC3T3-E1 and MLO-Y4 cells, the normalized Ca2+ signals were analyzed using
fast Fourier transform (FFT)-based power spectrum density (PSD) processing routines in
Matlab. All the frequency curves of cellular signals in each group were averaged to identify
the difference in frequency distribution between MC3T3-E1 and MLO-Y4 cells.

Statistical Analysis
All data were presented as the mean ± standard deviation (SD). Statistical analyses were
performed using a SPSS version 10.0 for Microsoft Windows (SPSS, Chicago, IL, USA). At
each fluid stimulation strength, differences of each parameter (the number of Ca2+ peaks,
time to the 1st peak, time between the 1st and 2nd peak, synchronous cell pair number, and
sliding-window correlation coefficient) between MC3T3-E1 and MLO-Y4 cells were
examined using a Student t-test. To determine the correlation between a parameter and the
stimulation strength, linear regression analysis was performed. Linear regression analysis
was also used to evaluate the correlation of the spike synchrony and signal correlation with
the cell-cell spatial separation distance. P<0.05 was considered statistically significant.

Jing et al. Page 6

Bone. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
The spatial patterns and temporal signals of the original simulated movies are shown in Fig.
3A (Left). Gaussian noise was artificially introduced to the movies (SNR ranged from 10 to
30 dB). The unsupervised ICA-based technique was used to extract the signals in the noise-
contaminated movies. To compare the extraction capacity between the ICA-based and ROI-
based methods, signals in the movies were manually extracted by three analysts using the
traditional ROI method. Fig. 3A (Middle & Right) show the results of spatial separation and
signal extraction by ICA-based and ROI-based methods when the SNR in the movie was 20
dB. These results demonstrated that the unsupervised ICA-based method achieved better
performance than the manual ROI method in both spatial target and temporal signal
extraction at 20 dB SNR. Moreover, the signal fidelity extracted by the ICA-based method
was obviously superior to that identified by the manual ROI method as shown in Fig. 3B for
SNR ranging from 10 to 20 dB. As SNR increased from 20 dB to 30 dB, the signal fidelity
by the ROI method gradually approached that by the ICA-based method.

Signals extracted by the ICA-based technique from experimental data of typical MC3T3-E1
and MLO-Y4 cell networks under 2 Pa shear stress are shown in Fig. 4. Most MC3T3-E1
cells and MLO-Y4 cells released 1st spikes at the onset of flow. After the 1st main spike,
most MC3T3-E1 cells exhibited a few lower spikes during the 9-min fluid flow stimulation
period (Fig. 4B). MLO-Y4 cells showed significantly more frequent Ca2+ oscillatory
activities than MC3T3-E1 cells, and some of them exhibited repetitive and robust multiple
peak responses in addition to the 1st peak (Fig. 4E). Each individual dot in Fig. 4C&F
represents an identified spike. These two plots clearly showed that MLO-Y4 cells exhibited
many more Ca2+ peaks under fluid flow than MC3T3-E1 cells.

With an increase in fluid shear strength, the average number of Ca2+ peaks increased in both
cell types. MLO-Y4 cells exhibited significantly more Ca2+ peaks than MC3T3-E1 cells at
all levels of shear stress (P<0.01, Fig. 5B). The percentage of responsive MC3T3-E1 cells
increased with the shear stress levels, and the responsive percentage in MLO-Y4 cells was
higher than that in MC3T3-E1 cells at 0.5, 1 and 2 Pa shear stress (Fig. 5A). MLO-Y4 cells
also took significantly less time than MC3T3-E1 cells to release the 1st spike in response to
the fluid flow under 0.5, 1 and 2 Pa shear stress, and recovered faster from previous
response to release the next Ca2+ peak under 0.5 and 2 Pa shear stress (Fig. 5C&D). Linear
regression indicated that Ca2+ peak number was positively correlated, and the time to the 1st

peak and time between the 1st and 2nd peaks were negatively correlated for both cell types
with fluid flow levels. These results are consistent with our previous findings using the
manual extraction method [15]. As shown in Fig. 5E, the spike rate of both MC3T3-E1 and
MLO-Y4 cells reached a peak at the onset of flow. MLO-Y4 cells also showed relatively
higher spike rate in the whole flow experimental period under all loading levels, which
further suggested that MLO-Y4 cells had more frequent spike activities and more obvious
features of multiple spikes than MC3T3-E1 cells (Fig. 5E).

As shown in Fig. 6C&E, MLO-Y4 cell networks had significantly higher spike synchrony
and signal correlation than MC3T3-E1 cell networks in all sub-groups with different cell-
cell separation distance at all fluid flow levels. Linear regression showed that the spike
synchrony and signal correlation decreased with the increase of cell-cell separation distance
at 1, 2 and 4 Pa shear stress for MLO-Y4 cell networks, indicating that cells with shorter
separation distance exhibited higher cross-talk than those with farther separation distance.
However, the cross-talk between cells in MC3T3-E1 cell networks only exhibited minor
negative correlation with the cell-cell separation distance in the 4 Pa shear stress group. Fig.
6D&F revealed significantly higher spike synchrony in MLO-Y4 cell networks under 1, 2
and 4 Pa, and also higher signal correlation in MLO-Y4 cell networks under all fluid flow

Jing et al. Page 7

Bone. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



levels (P<0.01). Linear regression further showed an increasing trend for both spike
synchrony and signal correlation in the two types of cells with the increase of the fluid flow
levels.

In the frequency spectral analysis (Fig. 7), both MC3T3-E1 and MLO-Y4 cells had a peak in
the lower frequency band (0.001~0.002 Hz) at all loading levels, and the energy distribution
of MC3T3-E1 cells was much more prominent than MLO-Y4 cells in this frequency range.
However, MLO-Y4 cells exhibited striking 2nd peak in the higher frequency band and the
frequency corresponding to the peak was increased with the fluid flow rate (0.0047 Hz at 0.5
Pa, 0.0068 Hz at 1 Pa, 0.0106 Hz at 2 Pa, and 0.0124Hz at 4 Pa). This indicated that the
Ca2+ oscillations in MLO-Y4 cells were more dramatic than MC3T3-E1 cells, and also
positively correlated with the stimulation strength.

Discussion
In the present study on Ca2+ signaling in bone cell networks, a signal processing technique
allowing for a cell’s spatial target separation, temporal signal extraction and spike detection
were implemented based on PCA followed by sICA algorithm. The PCA followed by ICA
algorithm has been extensively applied in ECG, MCG and fMRI studies for separating target
signals from the background, which can increase the robustness and simplify the
implementation complexity than the single ICA method [21–22, 26–27]. Previous optical
imaging studies in neuroscience fields have used a combined PCA-ICA method to identify
the distinct functional region and to explore the spatiotemporal relationship between vessels
and surrounding tissue in the cerebral cortex [35–36]. Mukamel et al. employed the PCA
followed by spatiotemporal ICA method to identify Purkinje cells or Bergmann glial signals
in two-photon images [18]. In our bone cell fluorescence imaging data, one IC sometimes
contained multiple spatially separated target regions after sICA. ICA tends to sort these
disconnected regions to be one IC, since they may have strongly high correlations with each
other. Therefore, morphology-based image processing techniques were necessary to further
segment each IC into spatially separated sub-ICs and ensure the one-to-one correspondence
between each sub-IC and cellular signal. Validation studies proved that the ICA-based
technique was more accurate than the manual ROI method for our image data captured with
a fluorescence microscope, which had high image quality with the SNR ranging from 10 to
30 dB. Moreover, the large cell number in our bone cell network data (100~200 cells for
each set of data) also greatly increased the difficulty and artificial errors during manual ROI
selection. In our studies of Ca2+ signaling in bone cell networks, it took an experienced
analyst 1~2 hours to analyze one set of data using commercial analysis software, including
manually selecting the cell regions, extracting the signals, and identifying the spikes of each
signals. The current ICA-based signal extraction technique greatly reduced the workload and
also facilitated the analysis of Ca2+ signal spatiotemporal characteristics. Therefore, this
study suggests that the unsupervised ICA-based algorithm has great potential in analyzing
Ca2+ signals of bone cell networks.

Under fluid flow stimulation with the same levels, more frequent Ca2+ spike activities and
vigorous temporal Ca2+ oscillations were demonstrated in MLO-Y4 cell networks. The
osteocyte-like MLO-Y4 cells, exhibiting unique repetitive Ca2+ firing activities stimulated
by fluid flow, act similar with the action potentials of a neural network. This further
supported our previous hypothesis that the osteocyte network holds the key to cellular
memory of mechanical loading history in bone [14–15, 37]. The prominent difference in
temporal Ca2+ oscillatory activities implied different mechanisms of Ca2+ responses
between the two types of cells. Previous studies indicated that the [Ca2+]i elevation under
fluid flow stimulation was mainly from two sources: extracellular calcium from the
environment and Ca2+ stores (e.g. endoplasmic reticulum, ER) [38–39]. The influx of
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extracellular calcium was the major source for the rapid initial Ca2+ spike, and the ER Ca2+

stores and ATP pathways played a critical role in the subsequent multiple Ca2+ peaks in
osteoblasts [15, 31]. T-type voltage gated calcium channels (VGCC), which regulate the
pacemaking and repetitive firing activities in cardiac and neuronal cells [40–41], have also
proven to be specifically expressed in osteocytes, but not in osteoblasts [42]. Therefore, the
mechanism mediating more dramatic temporal oscillatory activities in osteocytic networks
might be attributed to multiple channels and their relevant downstream signal pathways,
including ATP-gated P2R ion channels and T-type VGCC, etc. The exact cellular and
molecular mechanisms are being studied by our group.

In the present study, MLO-Y4 cell networks possessed more robust intercellular spike
synchronization and signal correlation than MC3T3-E1 cells under all fluid flow levels. The
synchronous activities in MLO-Y4 cells also negatively correlated with the cell-cell
separation distance, but tended to be flat in MC3T3-E1 cells. These observations share
similarities with many previous in vivo Ca2+ dynamics studies on cells of nervous system.
Hirase et al. found the coordination of Ca2+ events were low and similar between nearby and
distant astrocytes in the cerebral cortex in the absence of provoking conditions. After
bicuculline treatment, a significantly negative correlation of synchronization with the cell-
cell distance was found, which revealed more obvious Ca2+ wave propagation between cells
in the astrocytic networks [16]. Studies also found that the Purkinje cells in cerebellar
microzones also exhibited faster Ca2+ wave propagation when mice arose from rest to
locomotion, evidenced by the increase of synchronous activities and negative correlation of
cell crosstalk with the cell-cell distance [18]. Therefore, the results in our present study,
which were similar with these findings in neural cells, indicated that the Ca2+ wave
propagation might be much more obvious and faster in MLO-Y4 cell networks than that in
MC3T3-E1 cell networks. Our previous study demonstrated that ATP played a dominant
role in mediating the intercellular Ca2+ wave propagation from the single nanoindented bone
cell to its neighboring cells over gap junctions in the network pattern [10], and inhibition for
the ATP-related signal pathway can also reduce Ca2+ oscillation to one single spike in both
osteoblasts and osteocytes under fluid flow [15, 31]. Therefore, a possible faster
extracellular ATP diffusion between neighboring cells in osteocytic network may act as a
critical factor to dominate the dramatic difference of spatial intercellular coordination of
Ca2+ events between these two kinds of cells. Extracellular ATP can activate the membrane-
bound P2 nucleotide receptors, leading to sequential activation of phospholipase C (PLC),
generation of IP3, and thus triggering the release from the IP3-sensitive ER calcium stores
[43–44]. Our previous studies have shown that depletion of the ER calcium stores could
severely hamper both the intracellular calcium response and intercellular calcium wave
propagation in bone cells [10, 15]. The exact cellular and molecular mechanisms underlying
the spatiotemporal differences in Ca2+ signaling between osteocyte and osteoblasts are still
unknown. We believe that the governing mechanisms depend on unique fast kinetics of
membrane Ca2+ channels and the refilling of the ER, as well as faster extracellular ATP
diffusion between neighboring cells in osteocytes to generate much more frequent and
synchronous Ca2+ events, and also promote many more nearby cells to generate intracellular
Ca2+ spikes more synchronously than the distant cells. Ongoing studies on bioluminescence
trace for extracellular ATP, and also simultaneous visualization for the cytoplasmic and ER
Ca2+ dynamics using FRET-based approach by our group will help further understand the
exact cellular and molecular mechanisms.

Conclusion
The present study clearly demonstrated that the ICA-based signal extraction technique
exhibited more accurate signal extraction capacity than traditional ROI analysis for Ca2+

signaling in bone cell networks. This unsupervised technique can dramatically reduce our
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effort to extract the Ca2+ signals and also facilitate more elaborate spatiotemporal analysis
for Ca2+ signaling in bone cell networks. Our results showed that MLO-Y4 cell networks
exhibited more frequent temporal Ca2+ oscillatory activities than MC3T3-E1 cell networks.
The spatial intercellular synchronous activities of Ca2+ events in MLO-Y4 cell networks
were higher than MC3T3-E1 cell networks and also negatively correlated with the
intercellular distance, revealing much more obvious and faster Ca2+ wave propagation in
MLO-Y4 cell networks. The findings highlight that cells in osteocytic networks, possessing
more sensitive and interactive spatiotemporal characteristics in detecting and processing
mechanical signals than those in osteoblastic networks, are qualified as the major
mechanical sensor in bone.
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Highlights

➢ The unsupervised technique based on independent component analysis
exhibits more accurate signal extraction than the region of interest method

➢ The independent component analysis-based technique significantly reduces
our workload and facilitates more elaborate spatiotemporal analysis of
calcium signaling

➢ Osteocytic networks exhibit higher spike rate and temporal oscillating
frequency of calcium signaling than osteoblastic networks under fluid flow

➢ Osteocytic networks demonstrate higher spatial intercellular synchronous
activities of calcium signaling than osteoblastic networks

➢ The spatial synchronous activities are negatively correlated with the
intercellular distance in osteocytic networks, but not in ostoblastic networks
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Figure 1.
Fluorescent images of micro-patterned bone cell networks and flow chamber setup for fluid
flow stimulation. Osteoblast-like MC3T3-E1 (A) and osteocyte-like MLO-Y4 (B) cell
networks were established using microcontact printing and SAMs surface chemistry
technologies. Cells were loaded with Ca2+ indicator Fura-2 AM. A laminar flow chamber
(C) was employed to apply fluid flow on the cell surface.
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Figure 2.
Flow chart for the unsupervised signal extraction algorithm and spatiotemporal analysis
strategy for Ca2+ signaling in bone cell networks.
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Figure 3.
Validation of the ICA-based Ca2+ signal extraction technique. Simulated time-lapse images
were created to mimic typical cell shapes and curves of Ca2+ signals in bone cell networks
(A, Left). Signals were artificially contaminated by generating Gaussian noise with different
variances to create movies with signal-to-noise ratio (SNR) ranging from 10 to 30 dB, which
covered the normal SNR range of our experimental fluorescence time-lapse images. (A,
Middle) and (A, Right) showed the signal extraction in the noise-contaminated movie with
20 dB SNR using unsupervised ICA-based technique and manual ROI method, respectively.
The signal fidelity, defined as the Pearson’s correlation coefficient between true signal and

Jing et al. Page 16

Bone. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



extracted signal, was compared between ICA-based and ROI-based signal extraction
methods (B).
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Figure 4.
Signal extraction based on the ICA-based technique for the experimental data of typical
MC3T3-E1 and MLO-Y4 cell networks under 2 Pa shear stress. The spatial patterns and
temporal signals from MC3T3-E1 (A&B) and MLO-Y4 (D&E) cell networks are shown.
Each spike in one cellular signal is depicted as a dot (C for MC3T3-E1 cells and F for MLO-
Y4 cells).
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Figure 5.
Comparison of responsive percentage (A), number of Ca2+ peaks excluding non-responsive
cells (B), time to the 1st peak (C), time between the 1st and 2nd peaks (D), and spike rate (E)
at 0.5, 1, 2 and 4 Pa shear stress for MC3T3-E1 and MLO-Y4 cell networks. After ICA-
based signal extraction, information relating to spikes was automatically recorded, including
the total responsive cell number, spike number of each cell, and spike times of each cell. The
total cell number in each slide was manually counted. Statistical analysis was then applied
and values are all expressed as mean ± SD. Trend line represents the statistically negative
correlation between the analyzed parameter and fluid flow strength based on linear
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regression analysis. * represents the significant difference between MC3T3-E1 and MLO-
Y4 cell networks at a specific fluid flow strength with P<0.05.
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Figure 6.
Comparison of the spatiotemporal characteristics of spike synchrony and sliding-window
cross correlation coefficients of Ca2+ signaling at 0.5, 1, 2 and 4 Pa shear stress for MC3T3-
E1 and MLO-Y4 cell networks. After ICA-based signal extraction, a color-coded image
with different color intensities corresponding to cells with different spike numbers was
generated automatically to describe the spatial distribution of Ca2+ signaling. Fig. A&B
show the typical color-code images at 2 Pa shear stress for MC3T3-E1 and MLO-Y4 cell
networks. The spike synchrony (C&D) and signal correlation (E&F) were analyzed between
each cell pair in the networks. Cell pairs were excluded from the analysis with intercellular
distance lower than 60 µm for osteoblasts and 40 µm for osteocytes. Values are all expressed
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as mean ± SD. Trend line in C&E represents the statistically negative correlation between
the analyzed parameter and cell-cell separation distance based on linear regression analysis.
Trend line in D&F represents the statistically negative correlation between the analyzed
parameter and fluid flow strength. * represents the significant difference between MC3T3-
E1 and MLO-Y4 cell networks at a specific fluid flow strength with P<0.05.
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Figure 7.
Comparison of frequency domain characteristics using fast Fourier transform (FFT)-based
power spectrum density (PSD) analysis at 0.5, 1, 2 and 4 Pa shear stress for MC3T3-E1 and
MLO-Y4 cell networks.
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