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Abstract
Over the past decade a massive amount of research has been dedicated to generating omics data to
gain insight into a variety of biological phenomena, including cancer, obesity, biofuel production,
and infection. Although most of these omics data are available publicly, there is a growing
concern that much of these data sit in databases without being used or fully analyzed. Statistical
inference methods have been widely applied to gain insight into which genes may influence the
activities of others in a given omics data set, however, they do not provide information on the
underlying mechanisms or whether the interactions are direct or distal. Biochemically, genetically,
and genomically consistent knowledgebases are increasingly being used to extract deeper
biological knowledge and understanding from these data sets than possible by inferential methods.
This improvement is largely due to knowledgebases providing a validated biological context for
interpreting the data.
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INTRODUCTION
Omics technologies have transformed molecular biology into a data-rich discipline by
enabling scientists to simultaneously measure large numbers of molecular components (e.g.,
proteins, metabolites, and nucleic acids) that operate simultaneously through a network of
interactions to generate cellular functions and phenotypic states1. However, extraction of
‘knowledge’ from this ocean of omics has proven to be nontrivial2. Analysis efforts are
lagging for several reasons, including incompleteness of data3, variability between
experimental platforms4, and multiple hypotheses testing with few replicates5.

Two major network approaches have emerged to extract biological insight from omics data:
inference-based and knowledge-based. Both approaches use an interconnected network of
biological molecules to interpret omics data; however, there are crucial differences in how
the networks are constructed, and therefore in the biological questions that they can answer.
Inference-based approaches employ statistical methodologies to construct network models
from correlation or recurring patterns in omics data (see refs6,7 for reviews). Reconstruction-
based approaches are essentially 2-D genome annotation efforts8 that construct networks
from biochemical and genetic data (reviewed in9,10). Like KEGG11 and EcoCyc12, network
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reconstructions are knowledgebases of organized biochemical and genetic data. However,
network reconstructions are also amenable to ready transformation into mathematical
models to faciliate hypotheses generation and testing. In this perspective, our focus is on
network reconstructions.

Network reconstruction employs established biochemical, genetic, and genomic data9,13 to
assemble a knowledgebase of an organism’s molecular components and their interactions.
Although knowledgebases may be used for regulatory14 or signaling10 networks, they have
enjoyed the greatest success with metabolic networks13. This success is due to the
availability of decades of legacy biochemical research in the area of metabolism and to
difficulties in modeling signaling and regulation at the genome-scale10. Metabolic network
reconstructions have been employed for a range of analyses of omics data, including
applications in data visualization15, network medicine16, deducing regulatory rules17–19,
constructing tissue-specific models20–23, and multi-cellular modeling24–26. More recently,
we’ve developed a method for genome-scale modeling metabolism and macromolecular
expression that supports direct analysis of a variety of omics data27.

In this work, we focus on progress in integrated analysis of omics data with functional
genome-scale models of metabolism. A functional network model of metabolism is a
mathematical model that is capable of simulating cellular and molecular phenotypes (Fig. 1).
Two common approaches for integrating omics data with metabolic network reconstructions
are: comparison of model simulations with omics data and using omics data to constrain the
model and create condition- or tissue-specific models. Over the past five years, there have
been significant advances in computational methods development. Now, we are at the point
where we expect to see increasing applications of these methods in biological research23,28.
One of the most exciting developments, is Frezza et al.’s23 application of an integrated
method to identify how a cancer cell line proliferates without a functional tricarboxylic acid
(TCA) cycle (highlighted below).

The major goals of this perspective are to highlight how genome-scale models derived from
knowledgebases may be used to extract additional biological understanding from omics data
sets and inspire novel applications of this technology to interpretation of complex data sets.
The first part covers integration of models with yeast phenomics data; and, the second part
describes methods that have been developed to use omics data to guide creation of
condition-specific models.

COMPARING PHENOMICS WITH PREDICTIONS
The most direct way to analyze omics data with genome scale models of metabolism to
compare omics measurements with model topology or predictions. It is possible to compare
a variety of omics data with metabolic network model simulations because the models relate
genes to enzymatic activities to global phenotypes (Fig. 2a). Overlaying omics data on a
functional model organizes the data in terms of underlying biochemistry (Fig. 2b).
Comparing omics data with model simulations can also identify points of discord between
the model and reality (Fig. 2c). Discrepancies between measurements and simulations are
then used to refine our understanding of a biological process or to develop hypotheses29.

There is growing interest in using the models to predict biosynthetic and synthetic lethalities
as well as identify other genetic interactions. Genome-scale models have been used widely
to predict gene essentiality and more, recently, synthetic lethalities30. Lethal interactions
could serve to identify gene products as novel strategies for next generation antibiotics31.
Analysis of model predictions with high-throughput phenomic assays, such as a yeast
synthetic genetic array32 (SGA), should allow us to identify possible biochemical
mechanisms underlying synthetic lethal interactions and assess the accuracy of models and
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methods (Fig. 2c). The comparison of SGA results with model predictions, could be used to
assess specific mechanistic hypotheses33, as described below. Integrated analysis of SGA
results and simulations may eventually be able to delineate a set of likely biochemical
pathways responsible for observed genetic interactions.

Snitkin et al.33 asked whether combining simulations with yeast phenomics data could be
used to assess two alternative pathways for raffinose consumption. In the first pathway,
YBR184W ‘cleaves’ raffinose at the α-galactosidic bond resulting in galactose and sucrose
that SUC2 ‘digests’ into glucose and fructose both of which are subsequently used in
glycolysis. Whereas in the second pathway, there is no α-galactosidase for raffinose and
SUC2 ‘digests’ raffinose into fructose and melobiose; fructose is consumed by glycolysis
while melobiose must be secreted because the strain of S. cerevisiae in question is unable to
metabolize melobiose.

To determine if the model could provide support for either mechanism, they simulated gene
essentiality in raffinose for the wild-type (WT) model and a mutant model in which
YBR184W’s α-galactosidase activity was removed. Then they compared these predictions
with their raffinose phenomics measurements. Interestingly, removal of the α-galactosidase
activity from the model lead to the correction of 6 errors versus the WT model, thus
supporting the hypothesis that YBR184W encodes an α-galactosidase activity. While an
assay for α-galactosidase activity may be considered an even stronger method to test the two
pathways, it may not always be possible to perform an enzyme assay. Also, this integrated
approach with the model and phenomics data could be used to prioritize a large number of
alternative hypotheses for biochemical validation or provide supporting evidence when a
decisive assay is not available.

High-throughput genetic interaction assays can rapidly and quantitatively assess whether a
mutation of a pair of genes results in a positive or negative effect compared that expected
from the individual mutants. Unfortunately, these high throughput assays do not provide
hypotheses for how the interactions occur. As the genetic interactions appear to occur
mostly between pathways34, the biochemical connections underlying the interaction are not
likely to be obvious.

Szappanos et al.35 used an SGA to measure the interactions of 613 metabolic genes to
explore the utility of metabolic network models in investigating genetic interactions. When
they analyzed the genetic interactions in the context of the model, they found that most
genetic interactions occur between genes that are not within the same pathway (as
previously noted34) and are not flux coupled. Unfortunately, when comparing simulated
genetic interactions to their measurements they found that simulations only identified 2.8%
and 12.9% of negative and positive interactions, respectively. Possible reasons for these
discrepancies include, errors in the model, errors in the assay33, inappropriate model
assumptions, lack of regulation in model. Modeling transcriptional regulation at the genome-
scale has proven difficult and methods using omics data as surrogates for regulatory
modeling are discussed in the next section.

OMICS AS SURROGATES FOR MODELING REGULATION
Metabolic network reconstructions aim to be comprehensive repositories of biochemical
data for an organism. Thus, models derived from these knowledgebases will include all
possible reactions catalyzed by an organism’s gene products regardless of whether they are
active in a given environment. The all-inclusive nature of these knowledgebases is partially
responsible for false negatives observed in gene essentiality or genetic interaction
simulations35. Biological networks have evolved a degree of robustness against
perturbations that result cascading failures36 – this robustness is due, in part, to the presence
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of alternative compensatory pathways. However, an alternative pathway that is present in
the global knowledgebase may not be accessible to the organism in the given growth
medium, thus mutation of the principle pathway will result in a phenotype in vivo but not in
silico. For example, if the oxygen-stable form of fumarase is mutated in an aerobic medium
then the model is likely to propose the oxygen-labile form as an equivalent alternative,
whereas, in reality there will be a phenotypic effect37.

The regulatory apparatuses of successful organisms have evolved to express the network
components that are suited to their current environment. If we knew the complete regulatory
structure of an organism and how it worked then we could plausibly compute which cellular
components may be expressed in a given condition; unfortunately, this isn’t known even for
the arguably best-studied bacterium38. Due to stochastic effects arising from low copy
numbers of regulators and enzymes39,40, and intracellular heterogeneity, integrated models
of metabolism and regulation will still be an approximation of individual cells and
populations. Including probabilistic effects in genome-scale models of organisms will likely
improve their predictive capabilities; however, there are significant computational hurdles
that must be overcome, as illustrated by Karr et al.’s recent attempt to construct a whole-cell
model41.

In the absence of experimentally elucidated regulatory rules, we can still use omics surveys
in conjunction with functional models to serve as surrogates for a regulatory model, and
create condition- and tissue-specific models20,21,24–26,42–45 (Fig. 3a). There are two general
classes of semi-automated methods for generating condition-specific models from omics
data: switch-based and valve-based (Fig. 3b). The former, loosely uses omics data to
indicate the ‘presence’ of gene products in a given condition43,44,46; whereas, the latter uses
omics data as relative constraints on enzyme activities45,47,48. Because these approaches
employ different fundamental assumptions, it is possible that they will be successful in
different arenas. As these methods are used and improved in prospective research their
utility and limits will become clear. In the remainder of this work, we provide an overview
of a few key methods and describe results from recent studies using these methods.

Switch Approaches
In an early attempt to integrate omics data with genome-scale models of metabolism,
Akesson et al.42 deactivated enzymes if the associated gene products were not detected in
transcriptome profiles. This method’s major deficiency is the assumption that items that
weren’t detected are not false negatives; i.e., it equates undetected with unexpressed.
Because omics technologies often suffer from a lack of sensitivity5, this assumption may
lead to enzymes being incorrectly disabled and result in a model that cannot simulate
expected phenotypes. Along this line Akesson et al. choose to re-enable specific genes that
weren’t detected because they believed the measurements were false negatives. While re-
enabling genes in an ad hoc fashion may be appropriate, it can be difficult to determine
which genes are false negatives in an omics data set. To reduce the burden of investigating
all absent calls as false negatives, we43 and Shlomi and collaborators21,44 devised semi-
automated methods to determine which absent calls might be false negatives.

In Becker et al.43 we used expression data to determine which reactions were active, similar
to Akesson et al., however, we also included a criterion for re-enabling reactions if the
model fails to simulate the global phenotype (Fig. 3c). Our method preferentially re-enables
lowly expressed genes associated with low flux enzyme activities. We’ve used this approach
to aid in constructing a variety of models24,49–52.

Shlomi et al.44 developed a method that attempts to assemble a submodel that is maximally
consistent with gene expression and that does not contain any dead-end metabolites (Fig.
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3d). Consistent means that the constrained model will be able to produce all metabolites and
attempts to include the maximum number of enzymatic activities associated with highly
expressed gene products while minimizing the number of activities associated with weakly
expressed gene products. Unfortunately, this method did not perform well in an independent
study20: when Gille et al.20 created a draft model with this method44 they couldn’t simulate
41% of the hepatocytes metabolic functions and noted a need for human curation of the
model. Opportunely, an improved version21 of the method which attempts to leverage
human insight accompanied Gille et al. This approach was subsequently applied in a
theoretical study designed to identify drug targets in cancers22 and an applied study
described below.

Valve Approaches
Colijn et al.45 developed a method that used expression levels for a gene product as linear
adjustments to the allowable flux for associated activities. Using this method to analyze
publicly available transcriptome profiles collected after exposing M. tuberculosis to various
inhibitors of metabolism53, they correctly identified 7 of 8 known inhibitors for production
of the virulence factor mycolic acid and a number of candidate inhibitors that represent
potential therapeutics. Sorokina et al.54 applied this approach to a small scale 43-gene model
of starch metabolism for the alga Ostreoccus tauri, and simulated diurnal starch and maltose
production. Their simulations indicated that β-amylase and AGPase affect the ‘light’ portion
of the cycle, whereas GWD, ISA1, ISA3, and α-amylase influence the dark cycle. Future
biochemical validation of these predictions would be a testimony to these approaches.

More recently, Chandrasekaran and Price47 developed a method that attempts to integrate
knowledge of transcriptional regulatory interactions with omics data and metabolic models.
In this method, a large compendium of transcriptome data is used to calculate the probability
of interaction (Pint) between a transcription factor (TF) and its target genes. Where, Pint is
defined as the number of transcriptomes in which a target gene and the TF in question are
both expressed divided by the number of transcriptomes in which the target gene is
expressed. Then, based on knowledge about the activity of the TF in a given environment,
the Pint is used to constrain the maximal flux for the target gene. However, this method has
not been applied independently to the extent of our knowledge.

Testing model-derived mechanisms
To date, the overwhelming majority of research in this area has been theoretical and
interpretive with predictions only being validated on preexisting data. Recent work by
Frezza et al.23 may portend a shift from theory to practice in the coming years. Frezza et al.
were interested in identifying the mechanism through which fumarate hydratase (FH)
deficient cells are able to survive. FH mutations are associated with hereditary
leiomyomatosis renal cell carcinoma (HLRCC)55. FH is an enzyme of the TCA cycle and
inactivating mutations in FH result in a dysfunctional TCA cycle. To determine how Fh1-
deficient cells could survive without a functional TCA cycle, Frezza et al. generated
immortalized Fh1−/− murine kidney cells. After creating a tissue-specific model from
transcriptome data and a generic model of cancer metabolism22, they used the model to
identify which reactions were synthetic lethal pairs for FH. Their simulations identified 24
reactions, 18 of which were in a linear pathway of haem biosynthesis and degradation. To
determine if the model’s predictions held water, they targeted haem oxygenase 1 (Hmox1)
which is an essential component of the haem pathway. When Hmox1 was silenced by short-
hairpin RNAs or it’s activity inhibited with zinc protoporphryin (ZnPP), Fh1−/− cells
showed decreased growth whereas wild-type cells were unaffected. These results indicate
that targeting Hmox1 may inhibit HLRCC survival, which is precisely what they observed
when they treated the HLRCC cell line UOK26256 with ZnPP. This example shows how
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integration of omics data with network models provides mechanistic insight into the
underlying biology.

PERSPECTIVE
Our understanding of the functions of a gene product may be severely limited without
accounting for the context provided by the organism’s genome in addition to the external
environment57. In other words, we may make progress in delineating certain prominent
features of a gene product, however, we may miss key features when we solely employ a
reduced scope. Network reconstructions contain a biochemical description of the internal
environment of an organism, thus provide a biologically-grounded context for interpreting
omics data. Complementarily, omics data may be used to refine network reconstructions and
ask increasingly detailed questions about the systems biochemistry of disease. It may even
be possible to use single-cell omics data58,59 derived from multiple cells in a tissue, or a
microbial culture, to investigate disease progression and community interactions.

Since models are still being expanded, do not account for probabilistic factors39,40, and our
knowledge of biology and biochemistry is incomplete, it is premature to expect 100%
consistency between a network model and omics data. For the most detailed E. coli model60,
only about 30% of the gene products are included in the model and over 1/3 of E. coli’s gene
products are not functionally annotated. Regardless of our lack of comprehensive
biochemical annotation for an organism, it is still possible to use omics data to aid in
hypothesis generation. This was the approach taken by Frezza et al.23 when they uncovered
the mechanism for HLRCC survival which could be targeted in future chemotherapy.

Given that mechanistic biological knowledge may be extracted from omics data sets with
reconstructed networks and the large investment that has been made in omics data sets, it is
likely that we are just seeing the beginning of this approach to omics data analysis. Because
these network models contain points for integration with genomics, transcriptomics,
proteomic, metabolomic, and phenomic data (Fig. 2a) we anticipate that these networks will
soon be used to extract biological insight from sample-matched multi-omics data sets. This
approach combines the wealth of omics data with biochemical knowledge that we have on
molecular components and their function and puts it in the context of all the other
components used by the cell at the same time. Thus moving us beyond molecular biology to
systems biology. In a larger context, this process builds genotype-phenotype relationships61

and serves to link molecular and cellular physiology. As this relationship is foundational to
biology, we anticipate vigorous activity and steady progress with this approach in the
coming years.

Specifically, we expect that future research will leverage the added biological detail
captured in models generated using our method for model metabolism and macromolecular
expression27 or the whole-cell modeling method of Karr et al.41 to analyze omics data
because of opportunities for direct integration of various omics data types. Additionally, as
computational resources improve in coming years it is likely that we will see advances in
modeling approaches, such as Karr et al., that integrate probabilistic and constraints-based
approaches at the genome scale.
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Figure 1. Functional Network Models
A network reconstruction is functional if it can be converted to a mathematical model that
can compute systems level properties, i.e. phenotypes. (a) For metabolic networks, the
phenotypes of interest have historically focused on production of cellular materials, growth
rates, and byproducts62. For models created for a cell type or tissue, the functional
phenotype depends on the cell type and state; e.g. activated macrophages would be expected
to manufacture nitric oxide. (b) A simplified example is the ability to produce an output
from an input. Network 1 would be termed functional whereas Network 2 would not be
functional.
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Figure 2. Direct comparison of omics data and models derived from metabolism knowledgebases
(a) Metabolism knowledgebases explicitly capture the relationship between genes and
enzyme activities. The relationships between genomic loci, mRNAs, proteins, enzymatic,
activities provide points to integrate omics data with metabolic network models. Model
simulations of global phenotypes, such as specific growth rate (μ), afford the opportunity for
comparison with phenomics data. (b) It is possible to overlay transcriptome, proteome, and
metabolome data on a network model and gain insight into active metabolic pathways. (c)
Examining omics data in the context of functional metabolic network models can direct
research and provide insight. For example, when mRNA expression levels are overlaid on a
model simulation we see a high expression level for gene g4 but the predicted flux for the
associated reaction is relatively low. This discrepancy could be due a measurement error, g4
encoding for another unknown activity, or indicate that g4 is post-transcriptionally regulated.
Examining genetic interaction data in the context of the network model reveals the
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underlying reason for lethalities. The double mutants Δg1Δg2, Δg3Δg4, and Δg3Δg5 are
synthetic lethal pairs because they render the network non-functional.
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Figure 3. Omics data may be used as a substitute for regulatory information to guide creation of
condition- and tissue-specific models
(a) Omics data are increasingly used to create condition- and tissue-specific models which
may then be used simulate specific phenotypes. Condition-specific models use omics data to
limit which enzymes may participate in a specific simulation. For example, a nitrogen (N2)
fixing bacterium can be expression profiled in a glucose (glc) minimal medium. These
profiles are then used to identify which enzymes are expressed in the growth medium and
create a condition-specific model. This condition-specific model may be used to simulate a
condition-specific global phenotype, such as ethanol production. To create a tissue-specific
model, it is important to assemble a compendium of omics data collected in a wide range of
diverse conditions. These data are used to identify which of the organism’s genes may be
expressed in the tissue and create a tissue-specific model. The tissue-specific model may be
used to simulate phenotypes, or used with a new omics profile to create a condition specific
model. (b) The approaches for using omics data to create condition- and tissue-specific
models can be classified as a switch or a valve approach. In the switch approach, omics data
are used to identify which gene products should be included in the constrained model; here,
the reactions catalyzed by gene products B, D, and E are disabled because their expression
levels did not exceed a threshold. In the valve approach, omics data are used to limit the
activities for the associated enzymes. Therefore, enzymes associated with weakly expressed
genes are still able to participate in a simulation albeit to a notably reduced extent. Due to
errors and noise inherent in omics data, it is possible that the model will no longer function
after disabling enzyme activities; thus, it may be necessary to disregard a limited number of
expression measurements when employing a switch style approach. (c) In Becker et al.43,
we used the simulation results from the unconstrained initial model to aid in identifying
which expression measurements should be ignored. If an omics constrained model was be
unable to simulate a specified phenotype, here the production of L from A, then we re-
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enabled a set of enzymes that restored the model to a functional state. If there were multiple
alternative sets then the one that results in the minimum penalty score was selected. In
Becker et al., the penalty score for a reaction was the product of the reaction’s flux in the
unconstrained model and the distance of the expression value from the cutoff. Here,
enzymes E, F, and I were reenabled (over D and G) because their fluxes were much smaller.
(d) In Shlomi et al.44, the goal was to construct the smallest model that was maximally
consistent with the omics data and does not contain dead end metabolites. Enzyme A is
disabled despite a high expression level because it would be necessary to enable enzymes B,
C, D, and E all of which had low expression levels. In spite of low expression values,
enzymes F, G, and G are enabled because their activities are required for a greater number
of highly expressed enzymes to be connected. Regardless of the approach, it is important to
use additional types of evidence, such as biochemical literature, when available.
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