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Social expectations play a critical role in everyday decision-making. However, their precise neuro-computational role in the
decision process remains unknown. Here we adopt a decision neuroscience framework by combining methods and theories
from psychology, economics and neuroscience to outline a novel, expectation-based, computational model of social preferences.
Results demonstrate that this model outperforms the standard inequity-aversion model in explaining decision behavior in a social
interactive bargaining task. This is supported by fMRI findings showing that the tracking of social expectation violations is
processed by anterior cingulate cortex, extending previous computational conceptualizations of this region to the social domain.
This study demonstrates the usefulness of this interdisciplinary approach in better characterizing the psychological processes
that underlie social interactive decision-making.
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INTRODUCTION
Behaving socially appropriately routinely requires the ability

to accurately infer what others expect of us. For example,

imagine you are patiently waiting in line and a stranger cuts

in front of you. What are the social norms that inform

behavior in this situation? Perhaps you felt uncomfortable

because this person violated an unspoken rule that everyone

will wait their turn, and contemplated whether or not to

inform them of their transgression. An important, though

understudied, question is how beliefs about social norms

influence these types of everyday social decisions.

To date, there have been several theoretical accounts that

endeavor to explain how we make choices in these social

contexts. One prominent model of social preferences

argues that people value equality and prefer situations

when all participants receive the same amount, even if this

is nothing (Fehr and Schmidt, 1999; Bolton and Ockenfels,

2000). Indeed, a recent study has suggested that brain areas

associated with valuation and reward processing could

underlie this preference (Tricomi et al., 2010).

However, despite its popularity and intuitive appeal, there

is increasing evidence that inequity aversion is not a

complete account of social decision-making. For example,

unfair and unequal offers in a commonly used task examin-

ing social preferences, the Ultimatum Game (UG), will be

accepted if there is evidence that the proposer’s intentions

were ‘noble’ (Falk et al., 2003). In this study, responders were

more likely to accept an unfair $2 offer if they believed this

was chosen over an alternative $0 offer compared to when

they believed the alternative choice was a $5 offer. In add-

ition, responders will still reject unfair offers even when

knowing that this behavior will not impact the proposers

payoff (Yamagishi et al., 2009). In this study, the authors

compared rejection rates to offers in the standard UG to

an impunity game, in which rejecting an offer only affects

the responder’s payoff, not the proposers, which actually

increases the inequity in payoffs between the two players.

An alternative approach to understanding social decision

behavior is to focus on the expectations people have regard-

ing a social interaction. These expectations may reflect a

social norm about what a majority of people would do in

a given situation. Using this framework, we propose that

people develop context-specific expectations of social scen-

arios, which are subsequently used as behavioral reference

points. For example, rejection rates in the UG increase when

participants are provided with information about how other

players have responded (Bohnet and Zeckhauser, 2004), and

decrease when they believe that an unfair offer is ‘typical’

(Sanfey, 2009). These results suggest that expectations about

context appropriate behavior, rather than pure payoff equity

per se, may provide a better account of motivation in
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bargaining behavior. Here, we compared a novel model of

expectations to a prominent inequity aversion model in an

effort to understand the motivations underlying social inter-

active decision-making. In addition, we used this model in

conjunction with fMRI to identify brain networks involved

in the computational process of tracking violations of social

expectations.

METHODS
Participants
Eighteen participants (mean age¼ 19.9, female¼ 56%) were

recruited via advertisements posted on the campus of the

University of Arizona. All participants were screened for

any significant health-related or neuropsychiatric disorders,

and none was currently taking psychoactive medication. One

participant was excluded from the analysis for technical rea-

sons (data not shown). All participants gave informed con-

sent according to procedures approved by the University of

Arizona’s Institutional Review Board.

Procedure
Participants completed two separate sessions. During the

first behavioral session, participants met in small groups

and learned the rules of the UG. Participants then played

in the role of proposer and made offers to 20 other people.

They were informed that these were other participants in the

experiment. Participants then had their picture taken and

were told that other experimental participants would make

proposals to them after viewing their picture, and that they

would decide whether to accept or reject these offers while

being scanned in a subsequent session (Session 2). This

two-stage procedure was designed to increase the plausibility

that participants were interacting with real people. The aver-

age delay between Sessions 1 and 2 was 6.39 days

(s.d.¼ 2.59).

Expectations
Prior to being scanned, we elicited participants’ beliefs about

the kinds of offers they expected to encounter, with partici-

pants being asked the number of people out of 100 that they

believed would make an offer between [0,7] dollars. These

elicited expectations were used to create a distribution of

the frequency of offers that they expected to encounter

(Figure 1A). The weighted mean of this distribution was

used to represent each participant’s initial expectation

(Sanfey, 2009). Formally, the weighted mean �x of the set

of offers x¼ [0,7] with the accompanying set of belief

weights b is the quantity

�x ¼

Pn
i¼1 bixiPn

i¼1 bi

ð1Þ

where n is the number of offers in x.

Ultimatum game
Participants played a standard single-shot UG in the role of

responder with 48 different proposer partners while under-

going fMRI (Figure 1B). In this game, a proposer is charged

with splitting a sum of money with a partner. The responder

then decides either to accept or reject this proposed offer. If

accepted, the money is split as suggested, but if rejected then

neither player receives anything (Guth et al., 1982).

Twenty-four of the partners used were human, 12 were com-

puters, and 12 were non-intentional humans (i.e. humans

whose responses were randomly generated). Each offer was

preceded by a picture of their partner for that round.

Though participants were told that the human-intentional

offers would be made by other players, in actual fact all offers

were controlled by the experimenter, and all participants saw

the same set of offers. This set consisted of equal numbers

(12 each) of {1,3,5} dollar offers, all of which were

made from a $10 pot. For each participant, partner pictures

were randomly paired to an offer amount, ensuring that

there was no potential picture by offer amount interaction.

Only the human intentional offers were included in the

modeling analyses. Participants were paid $20 for participat-

ing with an additional $5 bonus, which they believed was

based on their performance in the game. While participants

were not specifically queried about the extent to which they

believed they were playing with real people, no participant

questioned the cover story, and our behavioral results are

consistent with studies that did not employ deception

(Camerer, 2003).

Data analyses
All behavioral statistics were computed using the R statis-

tical package (R Development Core Team, 2008). A mixed

logit model (Jaeger, 2008) with the amount of money

offered, and participant’s initial expectation was used to

predict participant’s decisions to accept or reject. We

allowed the slopes for the offer parameter to randomly

vary by subject, but did not estimate a parameter for

the intercept because of the linear dependence on partici-

pant’s expectations.

Modeling

To demonstrate the importance of considering expectations

in the UG, we compared a novel expectation model, which

incorporates expectations to the standard inequity-aversion

model, which posits that people are motivated to minimize

the difference between their payoffs.

Expectation model
The expectation model (Smith, 2009) was developed in the

context of Psychological Game Theory (Geanakoplos et al.,

1989; Battigalli and Dufwenberg, 2009) which describes a

mathematical framework in which beliefs can be modeled

in the utility function. Similar to other models of emotion
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(Dufwenberg and Gneezy, 2000; Battigalli and Dufwenberg,

2007), this model operationalizes anger as a belief dependent

emotion and predicts that people experience anger when

their beliefs about behavioral norms in a given context are

violated. In the UG, offers that are lower than participants’

expectations should bias participants to reject the offer.

Formally, Player 2’s utility U of a given action i can be

defined as

Ui ¼
M2 � � E2S1 � S1ð Þ

þ
� 10� S1ð Þ

0

where i¼Accept
where i¼Reject

�
ð2Þ

In this model, Player 2 is interested in both maximizing

the amount of money they will make (M2) and minimizing

their anger, which is defined as the non-negative difference

between the amount of money that they expect Player 1 to

offer (E2S1) and the amount of money that Player 1 actually

offers (S1). The anger term is scaled by a free parameter

which is constrained 0 < � < 1 and is modulated by the size

of the offer.

Inequity-aversion model
This popular model of social preferences (Fehr and

Schmidt, 1999; Bolton and Ockenfels, 2000) predicts that

people value fairness and will be biased to reject offers as

inequity increases (Fehr and Camerer, 2007; Tricomi et al.,

2010). Formally, Player 2’s utility for a given action i can be

defined as

Ui ¼
M2� � M1 �M2ð Þ

þ where i¼Accept
0þ � M1 �M2ð Þ

þ where i¼Reject

�
ð3Þ

where M1 is the amount of money that Player 1 will

receive and M2 is the amount of money that Player 2

will receive.1 The superscriptþ indicates that these differ-

ences must be non-negative. The inequality term is scaled

by a free parameter which is constrained 0 < � < 1.

Choice rule
The probability P of taking an action i (i.e. accept or reject)

was computed by placing the utility values for each decision

into a softmax function.

Pi ¼
eUi

eUaccept þ eUreject
ð4Þ

Parameter estimation
Best fitting parameters were derived using the MATLAB

fmincon function (Nelder and Mead, 1965) by maximizing

the log likelihood of the data under each model on a

trial-to-trial basis. Multiple start locations were used to

reduce the likelihood of the optimization algorithm getting

stuck in local minima. LLEs were calculated separately for

each participant as

LLE ¼
X

t

ln Pi,t

� �
ð5Þ

where i denotes the participant’s choice for a given trial t.

Fig. 1 Ultimatum game. (A) Participant’s expectations about the Ultimatum game. Solid red line reflects average weighted mean. Dotted lines reflect �1 s.d.
(B) A trial timeline. (I) Fixation cross. (II) Picture of their partner for the round. (III) Offer revealed and participant decision (accept or reject offer). (IV) Summary of earnings
for the round.

1It is important to note that because we only have one data point for expectations per participant the two

models could in principle converge on identical predictions regarding the set of offers examined here if an

intercept was included in the inequity aversion model. However, we do not believe there to be a principled

psychological reason to estimate such a parameter in the model, as it would allow for flexibility in the fairness

reference point and extend the model beyond strict inequity. Useful future work could directly manipulate

expectations and/or include offers greater than 50% of the endowment to fully test the divergent predictions

of the two models. Here, we have attempted to limit the potential for over fitting and opted to compare the

purest conceptual implementations of the two models, allowing only one free parameter in each.
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To evaluate the model fits we calculated the Bayesian

Information Criteria (BIC) (Schwarz, 1978), which is a

metric of model fit that rewards the most parsimonious

model by adding a penalty for additional free parameters.

BIC ¼ �2 � ln L þ k ln nð Þ ð6Þ

where L is the maximized value of the likelihood function for

the model, k is the number of free parameters estimated, and

n is the number of observations.

We also computed a Pseudo R2 measure, which compares

the improvement in LLE gained by the model compared to

a model that chose randomly (i.e. probability¼ 0.5 for each

trial).

PseudoR2 ¼
LLE� r

r
ð7Þ

where r is the LLE for the random model.

Model simulation
The behavioral predictions for the models were computed by

using a theta value of 0.3 (the approximate value estimated

in the model fitting procedure) and then calculating the

probability of accepting each offer from the set [0,5] using

equations (2), (3), and (4). For the expectation model,

we varied expectations between [3,5], which was the range

we encountered in our behavioral sample (See Figure 1A).

Neuroimaging analyses
Data acquisition
Each scanning session included a T1-weighted MPRAGE

structural scan (TR¼ 11 ms, TE¼ 4 ms, matrix¼ 256 X

256, slice thickness¼ 1 mm, gap¼ 0 mm), followed by five

functional runs. The first three functional runs contained the

UG trials and the last two contained the memory trials (see

(Chang and Sanfey, 2009) for more details about the

memory study). Functional scans used a three-shot multiple

echo planar imaging (MEPI) GRAPPA sequence using par-

ameters selected to maximize signal in regions associated

with high susceptibility artifact, such as orbitofrontal

cortex and medial temporal lobe (Chang et al., 2011)

(TR¼ 2000 ms, TE¼ 256 ms, matrix¼ 96 X 96,

FOV¼ 192 mm, slice thickness¼ 3.0 mm, 42 axial slices,

voxel size 2 X 2 X 3).

Data pre-processing
Functional imaging data were preprocessed and analyzed

using the FSL Software package 4.1.4 (FMRIB, Oxford,

UK). The first three volumes of each functional run were

discarded to account for T1 equilibrium effects. Images were

corrected for slice scan time using an ascending interleaved

procedure. Head motion was corrected using MCFLIRT

using a six-parameter rigid-body transformation. Images

were spatially smoothed using a 5-mm full width at half

maximum Gaussian kernel. A high-pass filter was used to

cut off temporal periods longer than 66 seconds. All images

were initially co-registered to the participant’s high reso-

lution structural scan and were then co-registered to the

MNI 152 person 2-mm template using a 12-parameter

affine transformation. Scanner artifacts, physiological arti-

facts (i.e. cardiac and respiration) and head movement

related artifacts were removed from the data using independ-

ent components analysis (Beckmann and Smith, 2004; Tom

et al., 2007). All functional analyses are overlaid on the

participants’ average high-resolution structural scan in

MNI space.

General analysis methods
A three-level mixed effects general linear model (GLM) was

used to analyze the imaging data. A first-level GLM was

defined for each participant’s functional run that included

a boxcar regressor for each epoch of interest (e.g. decision

phase) convolved with a canonical double-gamma hemo-

dynamic response function (HRF). The duration of epochs

in which participants submitted a response were modeled

using the participant’s reaction time (Grinband et al.,

2008). To account for residual variance, we also included

the temporal derivatives of each regressor of interest, the

six estimated head movement parameters, and any missed

trials (i.e. trials in which participants failed to respond,

n¼ 6) as covariates of no interest. The resulting general

linear model was corrected for temporal autocorrelations

using a first-order autoregressive model. A second-level

fixed effects model was fit for each subject to account for

intra-run variability. For each participant, contrasts were

calculated between parameter estimates for different regres-

sors of interest at every voxel in the brain. A third-level

mixed effects model using FEAT with full Bayesian inference

(Woolrich et al., 2004) was used to summarize group effects

for every specified contrast. Statistical maps were corrected

for multiple comparisons using whole brain cluster correc-

tion based on Gaussian random field theory with an initial

cluster threshold of Z > 2.3 and a Family Wise Error cor-

rected threshold of P < 0.05 (Worsley et al., 1992).

Imaging analysis 1: trial analysis
To examine the neural responses to linear deviations in ex-

pectation violation, we subtracted the amount of money

offered at each trial from the participants’ initial expect-

ations and coded them as 0, 1, 2 or 3þ. Thus, this model

consisted of the four expectation violation predictors, two

additional predictors for the other phases of the task (i.e. face

phase, summary phase and computer and non-intentional

human control trials), a regressor indicating missed trials,

the temporal derivatives of these nine regressors and the six

motion parameters, which resulted in a GLM with a total of

24 predictors. We then used a within subject linear contrast

of the expectation deviations (i.e. �2 �1 1 2) to examine the

neural signals that parametrically tracked these deviations.
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Imaging analysis 2: model prediction
While Analysis 1 reveals neural responses associated with

trial-to-trial deviations of expectation, these violations are

necessarily correlated with the amount of money offered

(i.e., smaller offers are always associated with larger expect-

ation violations). To examine the independent effect of ex-

pectations, we restricted our analysis to the intermediate $3

offers and examined neural responses that linearly tracked

with participants’ initial expectations. We selected the $3

offers for this analysis because the model simulation revealed

that these offers should be most susceptible to expectation

effects (Figure 2A). Thus, this model included the following

regressors: face phase, human $1 offers, human $2 offers,

human $3 offers, human $5 offers, non-intentional human

control trials, computer trials, summary phase trials, missing

trials and head motion parameters. Together with the tem-

poral derivatives, this produced a model with a total of 24

regressors. For this analysis, we used a linear contrast of

expectations [i.e. expectations that were between 2.5–3.4

(n¼ 3), 3.5–4.4 (n¼ 11) and 4.5–5.4 (n¼ 3)] to examine

neural responses that linearly tracked with expectations for

the intermediate $3 offers across participants. Importantly,

our randomization procedure ensured that there were no

other systematic differences across the $3 trials such as the

face of the partner, which was confirmed using a Fisher’s

Exact test using Monte Carlo Simulation with 10 000 sam-

ples, P¼ 0.93.

RESULTS
Behavioral
As expected (Sanfey et al., 2003), participants were more

likely to reject offers as they became less equitable (param-

eter estimate¼�6.90, s.e.¼ 1.24, odds ratio¼ 0.001,

z¼�5.56, P < 0.001). Importantly, however, after control-

ling for offer amount, participants were more likely to

reject offers when they had higher initial expectations, par-

ameter estimate¼ 2.98, s.e.¼ 0.39, odds ratio¼ 19.60,

z¼ 7.71, P < 0.001. These results (Figure 2B), suggest that

participants’ prior beliefs about the social norm are import-

ant in determining whether or not an offer will be accepted.

Modeling
To better understand the computational mechanism

underlying this result, we compared the ability of the two

competing models to explain the behavioral data. The re-

sults, summarized in Table 1, revealed that the expectation

model was a better account of the data than the inequity-

aversion model as evidenced by differences in participants’

BIC scores for each model, t(16)¼�2.08, P < 0.05.2

Simulations of the models (Figure 2A) illustrate that they

both make identical predictions when participants believe

that the social norm is $5 (50% of a $10 pot). However,

the models make divergent predictions for behavior as

expectations decrease, with the largest difference being for

the intermediate $3 offers.

Trial analysis
Using a parametric contrast of deviation from expectations

on a trial-by-trial level, we find increasing activity in left

insula, ACC and pre-supplementary motor areas as offers

increasingly violated individual participants’ expectations

(Figure 2C, and Table 2). We did not observe any significant

results associated with positive violations of expectation,

even at a lower threshold (P < 0.005 uncorrected).

Model prediction
We then used the model’s predictions to highlight neural

processes specifically associated with the tracking of expect-

ation violations, which are computationally distinct from

tracking inequity. A whole brain analysis for regions that

linearly track with the model’s predictions for the $3 offers

reveals that only the ACC, SMA and precentral gyrus under-

lies this process (Figure 2D, and Table 2). Participants with

higher expectations demonstrated increased activity in ACC

when deciding about the intermediate $3 offers.

DISCUSSION
In this study we were interested in examining the role of

expectations in social decision-making, and in particular

how social norms impact perceptions of fairness. We used

a simple behavioral economic bargaining game to examine a

financially consequential social decision. Replicating a pre-

vious behavioral study (Sanfey, 2009), responder’s expect-

ations about how they believed proposers would play the

UG appeared to impact their decisions regarding unfair

offers. Specifically, we found that responders who expected

proposers to make lower offers were more likely to accept

these offers. This effect cannot be explained by the popular

notion that people merely prefer to minimize inequity in

payoffs (Fehr and Schmidt, 1999; Bolton and Ockenfels,

2000). Instead, we find that our formal model of expect-

ations (Smith, 2009) provides a better account of partici-

pants’ behavior than the competing inequity-aversion

model. This suggests that people have context-specific beliefs

about what to expect and are more likely to reject offers that

violate these expectations.

We were further interested in examining the neural sys-

tems that play a computational role in this process.

Violations of expectation at the single trial level were asso-

ciated with the insula, ACC and DLPFC, which is highly

consistent with what has previously been associated with

inequity in previous experiments using the Ultimatum

Game (Sanfey et al., 2003; Tabibnia et al., 2008; Guroglu

et al., 2010; Kirk et al., 2011).3 In fact, because negative ex-

pectation violations were necessarily correlated with inequity

2A significant difference between the two models was also found for the pseudo-r2 measure.

3It is important to note that we also replicate these extant results in the current study using a linear contrast

of inequity at 0.005 uncorrected.
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by our design, it is possible that these results can also be

explained by inequity aversion. However, we were able to

examine processes specific to expectation violations by re-

stricting our analysis to the intermediate $3 offers, which

were demonstrated to be the most susceptible to variations

in individual expectations by our model simulation. A whole

brain search revealed that the ACC was integral in tracking

the predictions of our formal model with participants with

higher expectations demonstrating increased activity in the

ACC when receiving the $3 offers. The ACC has previously

been associated with many other expectation-based effects

such as anticipating aversive events (Ploghaus et al., 1999),

detecting novel events (Downar et al., 2000), placebo effects

(Wager, et al., 2004), weighting social prediction errors

(Behrens et al., 2008) and conforming to others’ expectations

(Klucharev et al., 2009). A previous study found that while

this region was associated with increasingly unfair offers, it

did not underlie decisions to reject (Sanfey et al., 2003). This

Table 1 Modeling results

Model LLE (s.d.) BIC (s.d.) Pseudo-R2 (s.d.) Theta (s.d.)

Anger �3.84 (2.36) 10.86 (4.71) 0.77 (0.14) 0.28 (0.26)
Fehr–Schmidt �4.45 (1.75) 12.07 (3.49) 0.73 (0.11) 0.26 (0.23)

Notes: Values given for the subject average log likelihood estimate (LLE), Bayesian
information criteria (BIC), pseudo-r2 and the estimated theta parameter for each
model.

Fig. 2 Ultimatum game results. (A) Results of the model simulations for �¼ 0.3. Participants are more likely to accept unfair offers as a function of their initial expectations.
(B) Average acceptance rates for each offer amount for varying expectations. Importantly, the acceptance rates closely follow the pattern predicted by the Expectation model.
(C) Neuroimaging results of a linear contrast of deviations from expectation, revealing linearly increasing activity in left anterior insula, anterior cingulate cortex and
supplementary motor area. (D) Neuroimaging results for the linear contrast of expectation across subjects for $3 offers. Activity in the ACC/preSMA increases as a function
of expectations. The color bar reflects Z-statistics. Imaging analyses are corrected for multiple comparisons using cluster correction, Z > 2.3, P < 0.05.
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suggests that a neural signal, perhaps akin to a prediction

error signal in basic reinforcement learning (Cavanagh et al.,

2010), may be leveraged to calculate conflict between indi-

vidual preferences and social norms (Klucharev et al., 2009)

and thereby bias decision-making. This interpretation is

highly consistent with a recent proposal that this region is

involved in processing both negative affect and cognitive

control (Shackman et al., 2011).

This result also fits with broader ideas of how expectations

are important in social decision-making. We have previously

demonstrated that people are motivated by guilt to cooper-

ate in order to avoid disappointing a relationship partner’s

expectations, a process mediated by the insula, ACC and

SMA (Chang et al., 2011). In the present study, we find

that people generate a similar neural signal when others vio-

late their expectations, which may serve as an emotional

signal to bias behavior to enforce a social norm. Together,

these two studies demonstrate that a coherent network in the

brain associated with both conflict and emotion underlies

decisions to behave consistently with a social norm. This

provides a plausible unitary neurobiological mechanism to

explain observations that violations of a norm by others

leads to feelings of anger, while violations of the norm by

oneself lead to feelings of guilt (Haidt, 2003; Giner-Sorolla

and Espinosa, 2011).

In summary, these results provide compelling evidence for

the role of expectations in social decision-making behavior.

Our model provides not only a better account of the behav-

ioral data than an inequity aversion model, but reveals that

the process of detecting expectation violations underlying

decisions to reject is associated with the same neural network

that has previously been demonstrated to underlie other,

more basic, expectation-based effects. Overall, these results

demonstrate that people do not use simple heuristics such as

equal splits in considering their responses to financial pro-

posals, but rather rely on their context-specific beliefs about

the social norm to make their decisions.
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Notes: This table reflects the results of the two imaging analyses and shows the local maxima of clusters surviving cluster correction Z > 2.3, P < 0.05 in MNI space. Cortical and
subcortical regions were identified using the Harvard-Oxford Probabilistic Anatomical Atlas. Abbreviations: LOC¼ lateral occipital cortex, SMA¼ supplementary motor area,
ACC¼ anterior cingulate cortex.
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