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Abstract
The equations defining the variational explicit polarization (X-Pol) potential introduced in earlier
work are modified in the present work so that multipole point charge distributions are used instead
of Mulliken charges to polarize the monomers that comprise the system. In addition, when
computing the electrostatic interaction between a monomer whose molecular orbitals are being
optimized and a monomer whose electron density is being used to polarize the first monomer, the
electron densities of both monomers are represented by atom-centered multipole point charge
distributions. In the original formulation of the variational X-Pol potential, the continuous electron
density of the monomer being optimized interacts with external Mulliken charges, but this
corresponds to the monopole truncation in a multipole expansion scheme in the computation of the
Fock matrix elements of the given monomer. The formulation of the variational X-Pol potential
introduced in this work (which we are calling the “multipole variational X-Pol potential”)
represents the electron density of the monomer whose wave function is being variationally
optimized in the same way that it represents the electron densities of external monomers when
computing the Coulomb interactions between them.
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1 Introduction
The explicit polarization (X-Pol) potential [1–5] is a force field that is based on the
principles of quantum mechanics, yet is intended to be computationally affordable enough to
be used in simulations of large molecules in condensed phases. The X-Pol potential
approximates the total energy of a large system as the sum of the electronic energy and the
system’s nuclear repulsion energy and an empirically parameterized term that accounts for
the energy of the exchange and correlation interactions that occur between monomers. The
“monomers” may also be called fragments; they can be water molecules, residues of a
biopolymer, substrates, cofactors, or any convenient subsystems of the entire system. The
focus of this work is to modify the way in which X-Pol treats the electrostatic potential
between individual monomers.
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In the original formulation [1] of the X-Pol potential, each monomer is embedded in the
electrostatic field due to the quantum mechanical charge density of the rest of the system,
which is then approximately represented by a set of atom-centered partial charges. The point
charges are obtained through a Mulliken population analysis of the electron density
(specifically the density matrix) of every monomer in the system. Because the electron
density of each monomer ultimately depends on that of all the others, the monomer electron
densities must be determined iteratively and self-consistently. In this way, an X-Pol
calculation can be described by a “double self-consistent field (SCF)” procedure: one does
an “inner SCF” loop to optimize the molecular orbitals for each monomer in the system and
also does an “outer SCF” loop to converge the total potential energy and electron density of
the entire system. The original formulation of the X-Pol potential, however, is not
variational, although each monomer electron density was ultimately self-consistent and the
total electronic energy generally converged to a single value; that value was not stationary
with respect to changes in the orbitals. The double SCF (DSCF) procedure was originally
designed for statistical mechanical Monte Carlo simulations in which internuclear forces are
not needed, and the difference between the DSCF energy and that obtained from fully
variational X-Pol calculations [2] is negligible. To enable efficient molecular dynamics
simulations to be carried out using the X-Pol potential, a subsequent paper introduced the
variational X-Pol method [2]. The electronic energies obtained using the variational X-Pol
potential are stationary such that analytical gradients can be conveniently obtained. In order
to gain this advantage, a complication is encountered in the construction of the Fock matrix
of each monomer: rather than being polarized simply by the Coulomb potential of the
Mulliken charges [6] of the other atoms in the system, the mutual dependence of the
Mulliken population charges on the density matrices must be explicitly incorporated.
Consequently, the total external potential for each monomer consists of half contributions
from the Mulliken charges of the rest of the system, and the other half comes from the
electron densities of the other monomers in the system.

The appearance of both the Mulliken representation and the full electron density
representation of each monomer’s charge poses a dilemma when parameterizing or
evaluating quantum mechanical methods for treating the monomers because the electrostatic
properties of the full electron distribution may differ significantly from those of the
Mulliken charge distribution, e.g., these representations may have quite different dipole
moments. Furthermore, if one uses extended-basis-set ab initio or density functional
calculations for the monomers, one encounters the difficulty that Mulliken charges are rather
erratic for extended basis sets. In semiempirical methods, one can correct some of the
deficiencies of Mulliken charges and of the overall method by scaling or mapping [7, 8].
Alternatively, one can seek a more faithful representation of the electrostatics implicit in the
density matrix, and in the present work, we propose a version of the X-Pol potential that
eliminates Mulliken charges yet remains variational. There are three main features in the
present representation of the external potential: (1) rather than using Mulliken charges to
represent the electron density distributions of all other monomers in the system, a multipole
distribution of point charges centered on each atom of each monomer is used to represent
those electron densities; (2) when computing the Coulomb interactions between the
electrons of a given monomer and the multipole distributions representing other monomers,
the “neglect of diatomic differential overlap” (NDDO) approximation [9, 10] is made; (3)
multipole distributions centered on each atom are used to represent the electron density of
the given monomer itself as well as those of the external monomers. These features allow
the electrostatics to be treated consistently at various stages of the calculations; also, change
(1) could potentially improve the accuracy of (or at least speed the convergence of) the final
X-Pol energy, because previous studies [11–13] have shown that, when compared to using
atom-centered point charges such as Mulliken, using atom-centered multipole moments
generally (a) provides a more accurate representation of a monomer’s electrostatic potential
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and (b) does not show as great a dependence on the basis set chosen. When one incorporates
all three of these changes into the X-Pol potential described in Ref. [2], one is said to be
using the multipole variational X-Pol potential.

In Sect. 2, the X-Pol theory is briefly reviewed, and the use of multipole distributions in
place of Mulliken charges and the added approximations are described in detail. Section 3
summarizes and discusses the key points of the derivation of the multipole variational X-Pol
potential.

2 Theory
2.1 Review of the X-Pol theory

In order to obtain the X-Pol potential energy of a system, one first divides the system into a
set of subsystems; these subsystems are called “fragments” or “monomers,” and they may be
defined in any way that the user finds convenient: for example, in a protein, one could call
each amino acid a monomer, whereas in a solution, each individual solvent and solute
molecule could be considered to be a separate monomer. The wave function of the entire
system (Ψ) is then assumed to be a Hartree product of individual monomer wave functions
(Φm); the subscript gives the label of the monomer, and M is the total number of monomers
in the system:

(1)

Although, in general, the individual monomer wave functions (Φm) may be obtained using
any desired method of electronic structure theory, for the variational X-Pol potential, they

have been assumed so far to be the antisymmetrized product of spin-orbitals ( ,
where r is the vector containing the three spatial variables, and σ is the spin variable) which

are in turn simply products of a spin function (α or β) and a spatial molecular orbital .
When these assumptions are made, the X-Pol potential energy of the entire system (EX-Pol)
is given by

(2)

where EElec is the electronic plus nuclear repulsion energy of the entire system, and EInt,ED
is an empirical term that accounts for the exchange and correlation interactions that occur
between the electrons of different monomers. (Usually, the exchange is dominated by short-
range exchange repulsion, and the correlation is dominated by long-range dispersion
interactions and medium-range dispersion-like interactions.) For X-Pol calculations
published so far [1–5], EInt,ED is approximated as the sum of Lennard–Jones interactions
between atoms in different monomers. Our focus is on the total electronic energy of the
system, which is also given in Eq. 2 of Ref. [2] using slightly different notation (in Ref. [2],
as explained at the beginning of page 234108/3, a superscript m is omitted on φi, and an
analogous superscript is omitted on other quantities referring to monomer m or any other
monomer n. The present discussion, however, will be clearer if we make the dependence on

monomer label explicit, so we specify φi as , Hi as , etc.):

(3)
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Equation 3 assumes that each monomer is a closed-shell singlet and that all MOs are doubly
occupied. In Eq. 3 and subsequent equations, the letters m and n will be used to label
monomers, the letters i and j will be used to label spatial molecular orbitals, the letters A and
B will be used to label atoms, and notation such as “i ∈ m” and “B ∉ m” should be read
“MO i belonging to molecule m” and “atom B not belonging to molecule m”, respectively.
The individual terms appearing in Eq. 3 are defined in the following paragraphs; throughout
all equations given in this work, a superscripted asterisk (*) means “complex conjugate”,
and atomic units will be used.

 is the expectation value of the one-electron Hamiltonian operators Hm, where Hm is the
sum of the kinetic and electron-nuclear Coulomb attraction energies of electrons and nuclei
belonging to monomer m:

(4)

 is the Coulomb repulsion integral between electrons of monomer m:

(5)

 is the exchange integral for electrons belonging to monomer m:

(6)

 is the repulsion energy between the nuclei of monomer m and the nuclei of all other
monomers in the system:

(7)

where RA is the position of atom A, and ZA is the effective nuclear charge on atom A. In an
all-electron calculation, effective nuclear charge is the same as nuclear charge, but in a
valence-electron calculation, it is the nuclear charge minus the number of core electrons.
Notice that we treat ZA as a unitless positive integer; e is the charge on a proton, and it
carries the units.

As defined in Ref. [2],  is an approximation of the interaction energy of the electron
density due to the doubly occupied spatial molecular orbital MO i (φi) of monomer m under
the external potential due to the charge densities of all other monomers in the system (qB is
the Mulliken charge [6] in units of e on atom B, which is not a member of molecule m. qB is
defined in Eq. 18 of Ref. [2]; it will be replaced with other terms when we derive the
multipole variational X-Pol equations):

(8)
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 gives the energy of the Coulomb interactions between atom A of molecule m with the
Mulliken charges assigned to all other atoms in the system (again, these Mulliken charges
will be replaced with other terms in the multipole variational X-Pol potential):

(9)

Since the Mulliken charges are partitioned from the electron density distribution of the
monomer to which they belong, and the MOs of each monomer in turn depend on the
Mulliken charges of the other monomers in the system, this makes the determination of the
X-Pol potential an iterative procedure: the Mulliken charges of the non-interacting
monomers are used to obtain a set of monomer electron densities that are polarized by the
Mulliken charges of the other monomers; these polarized monomer electron densities are
then used to obtain a new set of Mulliken charges for each monomer, which are then used to
obtain new electron densities, and so on until the Mulliken charges and/or the total energy of
the system (given in Eq. 3) have/has converged. The multipole variational X-Pol potential,
which will be described in Sects. 2.2 through 2.3, replaces each monomer’s Mulliken
charges with sets of point charges that approximate the monopole and dipole terms in atom-
centered multipole expansions of the electrostatic potential due to that monomer’s electron
density. Two new approximations are introduced for the multipole variational X-Pol
potential, and these will be discussed in detail in Sects. 2.2 through 2.3 as well.

2.2 Replacing Mulliken charges and orbital electron densities with multipole distributions
in the X-Pol potential

In the X-Pol method, the expression for the total electronic energy is given in Eq. 3 above.
This equation involves quantities defined in Eqs. 8 and 9, and previous applications have
made use of scaled Mulliken charges to approximate the external potential. Here, we replace
both Eqs. 8 and 9 by including the dipole moment term that accounts for the sp-type
polarizations on non-hydrogen atomic centers. As noted above, the quantity Ii in Eq. 8 gives
an approximation to the one- and two-electron Coulomb integrals between MO i (φi) of
monomer m and the charge densities of all other monomers in the system:

(10)

where  is the electrostatic interaction energy between the electron density due to MO i
and the charge density of monomer n, which is the sum of the nuclear charge density and the
electron density ρn of monomer n:

(11)

where Nj is the number of doubly occupied orbitals on monomer j. In Eq. 11,  are the MOs
of monomer n. Let us now assume that the MOs of each monomer may be expanded in a set

of normalized atom-centered basis functions, :

(12)
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We also introduce a density matrix Pn that is defined by the expansion coefficients of MO j:

(13)

where the factor of 2 accounts for the double occupancy of each spatial MO. One may then
rewrite Eq. 10 as:

(14)

The notation can be simplified by introducing the following definitions:

(15)

(16)

Equations 10 and 14 may then be written in a much simpler form:

(17)

Now, we make the neglect of diatomic differential overlap [9, 10] (NDDO) approximation.
This has the effect that if χp and χq are centered on different atoms, their differential

overlap (or, to put it another way, the electron density due to their overlap)  is
approximated as zero at all points in space (we will write this in a shorthand way as |pq〉 ≈
0).

Next, we introduce the minimum valence basis set approximation. In this approximation, the
basis set {χp} on each atom is assumed to be a minimal basis consisting of a single s
function if the atom is hydrogen and consisting of four functions, s, px, py, and pz, if the
atom is a p block element, and core electrons are absorbed into the nucleus.

In addition, we employ the Dewar–Thiel approximation [14] of computing the two-electron
repulsion integrals (which is used in the MNDO, AM1 [15], and PM3 [10, 16, 17] models).
In this treatment (explained in detail in Refs. [14] and [18]), if p and q are centered on the

same atom, one can represent the electron density of the product  as a set of point
charges that yields the monopole, dipole, and quadrupole terms in the multipole expansion
of the electrostatic potential due to that electron density.

There is one further simplification in the present treatment. In particular, in treating , we
neglect the quadrupole contributions. Note, however, that we retain these for the
intramonomer terms in Eq. 3 if the NDDO formalism (MNDO, AM1, PM3, etc.) is also
being used to obtain the individual monomer wave functions.
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Table 1 shows how NDDO theory approximates all possible forms of  that can occur on
a single atomic center using a minimum valence basis set. This table considers both the
intramonomer and intermonomer cases, but in the discussion that follows, we discuss only
the intermonomer terms (the intramonomer terms are unchanged from MNDO and are
presented in Ref. [14]).

We now introduce another shorthand notation:

(18)

where n(B) denotes the monomer n that contains atom B,  is one of the point charges
used in the multipole distribution that represents electron density |pq〉, basis function χp is
on atom A(p), basis function χq is on atom A′(q), and a is an index that ranges from 1 to
Apq, where Apq is the number of charges used to represent the multipole distribution
associated with electron density |pq〉 given in Table 1 (for this work, Apq is at most 2). The
constant capq is 1 if a monopole charge distribution is used to represent |pq〉, whereas it is
either ½ or −½ if a dipole distribution is used to represent |pq〉; furthermore, capq is zero if
χp and χq are not on the same atom (as enforced by the first kronecker delta in Eq. 18).
Table 2 lists the values of capq associated with every possible electron density |pq〉 when a
minimum valence basis set (as specified above) is used to describe the MOs on monomer n

and when the NDDO approximation is invoked. The charge  will be placed at

coordinates . If a monopole charge distribution is being used, Apq equals one, and 
equals the coordinate rB of the atom on which basis functions χp and χq are centered. If a

dipole distribution is being used, Apq equals two;  will be a distance D1 away from RB,

and  will also be a distance D1 away from RB but in the opposite direction. D1 depends
on the principal quantum number and the orbital exponents of basis functions χp and χq; see
Fig. 2 and Eq. 15 of Ref. [18] for further clarification. (Equation 15 of Ref. [18] covers the
case of 2s2p charge distributions, but does not apply to 1s2p charge distributions; however,
the formula for 1s2p distributions can be derived analogously).

With these approximations and this new notation in hand, we will proceed in two steps. In
the first step, we will replace the partial charges on the “MM monomer” n by charge and
dipole distributions, and in the second step, we will replace the orbitals of the “QM
monomer” m by charge and dipole distributions. (“MM” stands for “molecular mechanics”,
indicating that this monomer’s electron density is represented as a set of point charges, as it
would be in a classical MM calculation of the potential energy. “QM” stands for “quantum
mechanics”, indicating that this monomer’s electron density is being allowed to adjust itself
in order to yield the minimum potential energy possible in its current environment). At the
end of these two steps, the QM and MM monomers will be treated equivalently as far as the
intermonomer interaction is concerned.

Unlike MNDO and other NDDO methods, we will calculate the true Coulomb interaction
energy between point charge distributions rather than using a damped Coulomb energy
formula; this is because we assume that, although charge penetration is likely to occur in
intramonomer interactions, it is much less likely to occur in intermonomer interactions.
However, in some cases, this assumption may be too severe [19], especially when modeling
systems that involve covalently bonded monomers and/or π-π stacking such as DNA [20],
and it can be replaced by a more realistic radial interaction without a major change in the
formalism.
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The first step is to replace the partial charges on the MM monomer n by charge and dipole
distributions. To accomplish this, we approximate Eqs. 10, 14, and 17 in the following
manner:

(19)

The second step is to replace the orbitals of the QM monomer m by charge and dipole
distribution. Note that Eq. 3 involves the quantity

(20)

and it will be preferable to work with Im rather than just with . From Eq. 19, we have

(21)

Using the notation developed above, we have

(22)

Then, Eq. 21 becomes

(23)

Replacing the overlap densities of monomer m with multipole distributions then yields

(24)

Finally, we consider the entire interaction between all pairs of monomers. From Eq. 3, we
see that this is given by

(25)

where  is given in Eq. 9, and  is given in Eq. 7.

As before, we must replace the Mulliken approximation that yields a partial charge, in
particular qA, by a corresponding multipole distribution. Doing this yields, after algebra
similar to that in going from Eqs. 10 to 24 above, the following expression for V:
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(26)

Our next goal is to derive the variational X-Pol equations using Eq. 26 of this work in place

of the sum over m of  and the last row of Eq. 3. In carrying out this derivation, we must

notice that  depends on  by Eq. 18 above, where n is the monomer that contains atom
B.

2.3 Variation of density matrix elements with changes in the variational coefficients
In many electronic structure theories, the wave function of a singlet system is constructed
from a product (or antisymmetrized product) of Ni doubly occupied molecular orbitals
(MOs), which are functions of the three spatial coordinates (r). Each member of the set of
MOs {ϕi(r)} is assumed to be a linear combination of Nbasis atom-centered basis functions
{χp(r)} :

(27)

Equation 27 is a more general form of Eq. 12, and it may be written in matrix–vector
notation as:

(28)

where ϕ is an Ni-dimensional row vector whose components are the MOs, χ is an Nbasis-
dimensional row vector whose components are the basis functions, and C is an (Nbasis × Ni)
matrix of the expansion coefficients. We may also define an Nbasis-dimensional column
vector ci which is the ith column of C so that

(29)

We define the elements of density matrix P in the following way (which is essentially the
same as the definition given in Eq. 13):

(30)

where, as in Eqs. 12 and 13 above, p and q are indices that denote atom-centered basis
functions and i is an index that denotes a molecular orbital. We find that we may write:

(31)

If we define the elements of a matrix T(p,q) in the following way,
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(32)

then we may write:

(33)

or

(34)

(Notice that the T(p,q) matrix is simply a matrix where the (p,q)th element is 1 and where all
other elements are 0). The superscript “†” means “adjoint” or “complex conjugate of the
transpose”.

For the multipole variational X-Pol method, we will need to know how each matrix element
Ppq varies with an infinitesimal change in the ci (δci). We simply use the product rule to
find:

(35)

2.4 Variation of the electronic energy with changes in the variational coefficients
In the multipole variational X-Pol method, point charges are used to represent multipole
moments of the differential overlap between two basis functions centered on the same atom.

If  is the ath point charge in the set of point charges representing the monopole and
dipole terms of the electrostatic potential due to electron density |pq〉 centered on atom A,
then we write

(36)

as explained in Sect. 2.2. Because the only term in Eq. 36 that depends on ci is ,, we
find that the variation in the multipole point charges is:

(37)

We take variations with respect to the coefficients of MOs on each molecule m, so the
variation in V is given by:

(38)
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The variation in V in terms of variations in the expansion coefficients is given in Eq. 39
below.

(39)

Now that we know the variation in V due to variations in , we seek the variation in the
total electronic energy of the entire system (EElec). After substituting V for sum over m of

 and the final row of Eq. 3, we have:

(40)

From Eq. 40 and from the reasoning in Eqs. 27 through 35 of this work, we may write:

(41)

where the operators H, Jj, and Kj are defined by their relationships to matrix elements

 through the MO coefficient vectors  :

(42)

(43)

(44)

Notice from Eqs. 5 and 6 that the operators Ji and Ki depend on the complete set of

coefficients that define MO j of monomer m: . Taking variations in matrix elements

 with respect to both  and then summing over both i and j has the same

effect as simply taking variations with respect to , summing over both i and j, and then
doubling the result. This explains why a factor of two appears before the sum over i in Eq.
41. See Sect. 2 of Ref. [21] for a more detailed explanation.

Because the operators H, Jj Kj, and T(p,q) are Hermitian, we may write:
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(45)

where superscript T means “transpose”. (In going from Eqs. 41 to 45, we have used the
identity xÂy = yTÂ*x*, where x and y are vectors belonging to the same vector space and Â
is a Hermitian operator that acts on vectors in that vector space.)

Let us call everything in curly braces in Eq. 45 our Fock operator for molecule m (Fm); that
is,

(46)

Now we have:

(47)

We seek the set of  that minimizes EElec,, but we have a constraint: the final MOs on each
monomer must be orthonormal; that is,

(48)

where δij is a kroenecker delta and Sm is the overlap matrix for the basis functions centered
on atoms in molecule m:

(49)

Taking the variation of Eq. 48 with respect to variations in the  yields:

(50)

or, because Sm is Hermitian,
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(51)

We multiply the restriction given in Eq. 51 by a Lagrangian multiplier  and sum
together all of the resulting restrictions:

(52)

Notice that

(53)

Thus, Eq. 52 may be written:

(54)

When we take the sum over all i and j belonging to fragment m, we may switch the order of
the indices without changing the value of the sum, so Eq. 52 could just as well be written:

(55)

One may then write Eq. 52 in the following way:

(56)

One can show [21] that , so if we add the equivalent of zero given in Eq. 56 to the
variation in electronic energy given in Eq. 47, we obtain:

(57)

We set δEElec = 0 in order to locate a stationary point (hopefully the minimum) of the
electronic energy in the space of the MO coefficients on each monomer. Because the

variations  are arbitrary, this means that each of their coefficients in Eq. 57 must be
equal to zero:

(58)
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(59)

We see that Eqs. 58 and 59 are equivalent, because Eq. 59 is simply the complex conjugate
of Eq. 58. If Em is the matrix composed of elements εij for molecule m, we may write the
requirements given in Eqs. 58 and 59 concisely as the matrix equation:

(60)

Thus, we see that the set of expansion coefficients that minimizes the multipole variational
X-Pol electronic energy is found by self-consistently solving the Roothaan equations [21]
for each monomer in the system where the individual monomer Fock operators are defined
in Eq. 46.

3 Summary and discussion
Because the variational X-Pol potential in [2] treated the electrostatics of a given monomer
differently at different stages of the double SCF process, the variational X-Pol Fock matrix
contains terms that give the impression that the monomer’s wave is partially polarized by
the surrounding Mulliken charges and partially polarized by the full electron densities of the
other monomers in the system, even though the term that involves the full electron densities
is really consequence of making the total X-Pol energy variational when each monomer is
polarized by the surrounding Mulliken charges. To remove this complication from the
variational X-Pol potential, one must treat all monomer–monomer interactions
“symmetrically”: the continuous electron density of the “QM monomer” (i.e., the monomer
that on which an “inner SCF” is being performed to optimize its molecular orbitals) must
interact with the continuous electron densities of the “MM monomers” (i.e., all other
monomers in the system; those whose MOs are not being variationally optimized). This is
equivalent to computing all two-electron Coulomb integrals between different fragments.
Because the X-Pol potential is intended for use in simulations involving large molecules
and/or a large number of small molecules, the less computationally demanding method is
preferred. Therefore, to determine the multipole variational X-Pol potential energy of a
given system, the electrostatic interactions between the QM monomer and the MM
monomers are computed using the Dewar-Thiel approximation with discrete charge–charge
interactions. Rather than using a single Mulliken charge to represent the charge density
surrounding each atom of each monomer, however, a distribution of point charges is used to
represent the electron density surrounding each atom of each monomer.

The way in which the point charge distributions for the multipole variational X-Pol potential
can be obtained is summarized below:

1. Assume that only a minimum valence basis set is centered on each atom of each
monomer; that is, use only valence s and p basis functions to describe each atom
when calculating “QM monomer–MM monomer (QM/MM)” interaction energies.

2. Assume that diatomic differential overlap may be neglected; that is, for all two-
electron integrals that represent the Coulomb interaction between two-electron
densities (each arising from the product of two basis functions such as in Eq. 16),
assume that the electron densities arising from basis functions centered on different
atoms are vanishingly small everywhere in space, making any Coulomb integral
involving that electron density essentially zero.
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3. Represent all electron densities arising from a pair of valence basis functions
centered on the same atom with a distribution of point charges that approximates
the monopole and dipole contributions to a multipole expansion of the electrostatic
potential due to that electron density. Use the MNDO methodology [14, 18] to
determine the locations of the point charges in the multipole distribution around the
given atom; use the density matrix element corresponding to the given pair of basis
functions to determine the magnitudes of the point charges.

Once the magnitudes and locations of the point charges in multipole distributions have been
determined, one can calculate the Coulomb potential between the point charge distributions
of the QM monomer and those of the MM monomers as an approximation of the Coulomb
interaction energy between the overall electron densities of those monomers.

When calculating the variationally optimal energy and electron density of each monomer in
a large system, the multipole variational X-Pol potential approximates the electron density
of the QM monomer in the same way in which it approximates the MM monomer electron
densities. In so doing, the multipole variational X-Pol potential eliminates a complication
that arose in the original formulation of the variational X-Pol method without losing the
advantage of yielding a variationally optimized potential energy and wave function (or
electron density) of the entire system.
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Appendix
See Appendix Table 3.

Table 3

Additional values of capq associated with multipole distribution representations of
monatomic differential overlap distributions when interfragment quadrupole interactions are
included

|pq〉 Index a capq

|pxpx〉 2 −½

|pxpx〉 3 ¼

|pxpx〉 4 −¼

|pxpy〉 1 ¼

|pxpy〉 2 ¼

|pxpy〉 3 −¼

|pxpy〉 4 −¼

|pxpz〉 1 ¼

|pxpz〉 2 ¼

|pxpz〉 3 −¼

|pxpz〉 4 −¼

|pypy〉 2 −½

|pypy〉 3 ¼

|pypy〉 4 −¼
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|pq〉 Index a capq

|pypz〉 1 ¼

|pypz〉 2 ¼

|pypz〉 3 −¼

|pypz〉 4 −¼

|pzpz〉 2 −½

|pzpz〉 3 ¼

|pzpz〉 4 −¼

Including intermonomer quadrupole interactions will probably not be necessary in most cases. A study of 27 water dimers
(10 of which were stationary points on the potential energy surface) showed that the sum of the quadrupole interactions
consistently made up less than 0.5% of the total damped Coulomb interaction energy between the multipole charge
distributions centered on the two oxygen atoms of each water dimer tested
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Table 1

NDDO approximations of electron densities due to monatomic differential overlap using a minimum valence
basis set (see Ref. [10], pg 19)

Atomic
orbitals (|pq〉)

Multipole distributiona Number of
chargesb

|ss〉 Monopole 1 [1]

|spx〉 Dipole 2 [2]

|spy〉 Dipole 2 [2]

|spz〉 Dipole 2 [2]

|pxpx〉 Monopole [+ linear quadrupole] 1 [4]

|pxpy〉 [square quadrupole] 0 [4]

|pxpz〉 [square quadrupole] 0 [4]

|pypy〉 Monopole [+ linear quadrupole] 1 [4]

|pypz〉 [square quadrupole] 0 [4]

|pzpz〉 Monopole [+ linear quadrupole] 1 [4]

a
The distributions not in brackets are used in both intermomoner and intramomomer terms; those in brackets are used only in intramonomer terms

b
In this column, the first value is the number of charges used in evaluating the intermonomer term  (these values are equivalent to Apq for the

given pair of basis functions χp and χq; see text), and value in brackets is the number used in intramonomer terms
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Table 2

Values of capq associated with multipole distribution representations of monatomic differential overlap
distributions

|pq〉 Index a capq

|ss〉 1 1

|spx〉 1 ½

|spx〉 2 −½

|spy〉 1 ½

|spy〉 2 −½

|spz〉 1 ½

|spz〉 2 −½

|pxpx〉 1 1

|pxpy〉 1 0

|pxpz〉 1 0

|pypy〉 1 1

|pypz〉 1 0

|pzpz〉 1 1

This table assumes that quadrupole interactions are neglected for differential overlap between atoms on separate monomers; Table 3 of the
Appendix gives the additional rows that one should add if quadrupole interactions are included (although preliminary studies have indicated that
this probably will not be necessary; see footnote a of Table 3)
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