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Abstract
Objective—To determine common and distinctive brain activation patterns associated with
encoding and recognition of face-name associations and identify the neural structures with BOLD
amplitude differences specific to binding and memory consolidation processes.

Methods—Five healthy adult participants viewed face-name pairs during the encoding phase and
completed the multiple choice recognition memory task after a brief delay. BOLD response
amplitudes in specific regions of interest and whole brain activation maps were analyzed.

Results—Common activations were observed in encoding and recognition memory tasks in
several ROI encompassing the medial temporal and occipital regions. Higher amplitudes occurred
in right fusiform gyrus and right hippocampus during encoding. In contrast, higher BOLD
response amplitudes were detected in the lingual gyrus bilaterally during recognition memory.
Encoding activated distributed prefrontal and temporal cortical regions bilaterally that spanned
attentional, executive, language, and memory systems. Recognition memory recruited
convergence zones in the left prefrontal cortex and the parietal-occipital-temporal region
bilaterally where multimodal visual association, language, memory and decision-making systems
interact.

Conclusions—The higher right fusiform gyrus and right hippocampus activation during
encoding suggests a potentially specific binding pathway. The increased lingual gyrus BOLD
response during recognition memory may indicate a neural substrate for memory consolidation
and long-term knowledge. Average activation maps revealed task-specific differences in areas of
the prefrontal, temporal, and occipital-parietal-temporal cortices. Findings suggest that lesions in
fairly widespread cerebral regions may potentially disrupt specific binding or memory
consolidation processes.
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Introduction
Since reliable fMRI methods have been established, brain activations associated with
memory and cognitive processes have been investigated in order to identify both the
anatomical and physiological substrate for these complex adaptive behaviors. Contemporary
fMRI research is focused in part on undertaking a more in depth investigation of brain-
behavior relationships than may be possible with clinical lesion studies. This can include
contrasts according to age, gender, and multiple task parameters as well as localized
anatomical and networking analyses (Miezin et al., 2000). In this study, we utilized fMRI to
investigate brain activation patterns and BOLD response differences of anatomical regions
specific to associative learning and memory of an essential set of stimuli for everyday
functioning, namely face- name pairs. Such memory complaints are common in clinical
conditions of traumatic brain injury, Alzheimer's disease, and major depression. Face- name
learning and memory are also important areas of research for understanding social cognition
(Haxby et al., 2000), aging-associated cognitive changes, and face-specific processing
disorders such as prospoagnosia (Marotta et al., 2001). However, the neural substrate for
face-name learning is minimally understood.

In extant literature, several studies have focused on brain activations related to viewing faces
only (Allison et al., 1994, Clarke et al., 1997), face processing vs. non-face objects (Haxby
et al., 1991, Chao et al., 1999, Duchaine and Nakayama, 2005), faces associated with
emotions (Sprengelmeyer et al., 1998, Blair et al., 1999, Kilts et al., 2003), scrambled or
inverted faces (Clark et al., 1998, Collishaw and Hole, 2000), and brain activations during
viewing of famous and/or familiar faces (Leube et al., 2003; Leveroni et al., 2000, Bernard
et al., 2004). A smaller set of studies have investigated learning of face-name pairs with
widely different cognitive, electrophysiological and brain imaging methods (Joassin et al.,
2004; Kirwan & Stark, 2004, Naveh-Benjamin et al., 2004, Gimenez et al., 2005; Groninger,
2006; Tsukiura et al., 2006), but none have specifically analyzed functional brain activations
and BOLD response amplitudes during both encoding and recognition of face-name pairs
across multiple anatomical areas (i.e., medial temporal lobe and visual cortex. Although
much research has contributed to the study of the brain's response to faces and to face-name
pairing, there is still considerable ambiguity related to the neural substrate for such learning
and memory. To our knowledge, there have been no region of interest (ROI) studies focused
on specific neural structures in the medial temporal lobe and occipital lobe thought to
mediate encoding and consolidation of face-name pairs, not fMRI studies to evaluate the
BOLD response peak amplitude parameter, allowing comparison of ROI's and their level of
involvement in each task. We were thus interested in analyzing face and name pairing
involved in an encoding as well as retrieval task by using fMRI and comparing structures
level of involvement in each task.

Based upon the clinical and basic neuroscience literatures regarding anatomical regions
involved in learning and memory, we chose eight regions of interest that we suspected
would be involved in the associative face-name encoding and retrieval tasks. These regions
span visual association cortex, medial temporal lobe, and the prefrontal cortex, and include:
1) anterior fusiform, 2) posterior fusiform, 3) hippocampus, 4) lingual gyrus, 5) occiptital
middle gyrus, 6) temporal inferior gyrus, 7) occipital inferior gyrus, and the 8) dorsolateral
prefrontal cortex (PFC). Within each ROI, we were interested in analyzing the BOLD
response peak amplitude and comparing the response differences between tasks as well as

Robinson-Long et al. Page 2

Top Magn Reson Imaging. Author manuscript; available in PMC 2013 March 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between ROI structures. Such knowledge may be important for understanding the structures
involved in associative learning and memory as well as the similarity and distinctiveness of
their roles in each task.

Based on previous findings (Andreasen et al., 1996, Eslinger et al., 1996, Verstichel, 2001,
Henson et al., 2003, Kirwan and Stark, 2004) we predicted that of the eight ROI's that we
chose, the structures of greatest interest in these tasks would be the posterior fusiform, the
prefrontal cortex, and the hippocampus. The posterior fusiform gyrus, particularly on the
right side (Kim, Andreasen et al. 1999, (Hoffman and Haxby, 2000, Takahashi and
Kawamura, 2002) is very popular in the study of the brain's response to human faces. It is
widely known as the “face area” of the brain. The hallmark symptom of unfortunate disease,
known as prospoaganosia, is the inability to recognize faces and occurs due to damage to
this face processing area (Bodamer, 1947). Because of the fusiform gyrus' evident role in
face processing, one would suspect that the BOLD response to faces in this region would
then be similar for both the tasks considering both tasks involve faces. Previous findings
support that this structure is indeed involved in both tasks, but at different levels (Zeineh et
al., 2003). Thus, we expected to find a higher BOLD response peak amplitude in the
encoding task because of the novelty of the faces and the perceptual component involved
and less activation in retrieval due to familiarity and other processes taking place in other
structures (Rhodes and McLean, 1990, George et al., 1999). Recent studies also indicate this
structure to be activated as an “expertise” effect or processing due to encoding of a unique
individual (Gauthier et al., 2000). From this information, we predicted that there would be a
significant BOLD response in the posterior fusiform (higher on the right side) in the
encoding task vs. the retrieval task.

The hippocampus was the second major region of interest of study. Despite,the popular
thought that the hippocampus is tied to memory recognition, recent studies (Clarke et al.,
1997, Eichenbaum, 1997, Guo et al., 2005) show that it is more involved in making
memories and associations, or as Cohen, Ryan et al. (Cohen et al., 1999) describes the
hippocampus as a mediator of “memory binding.” In this study, participants were required to
associate or “bind” a face with a name. We predicted that the hippocampus would be more
highly involved in the encoding task and to a higher extent on the right side, as suggested by
Kirwan and Stark (2004).

Lastly, we sought to analyze was the dorsolateral PFC. Many studies suggest that the PFC is
highly involved in memory retrieval (Buckner et al., 1999, McDermott et al., 1999, Rugg et
al., 1999, Konishi et al., 2000), particularly on the left side (Cansino et al., 2002). While the
left PFC appears to be biased toward language processing (Puce et al., 1996, Cohen et al.,
2000), it has also been implicated in the encoding of faces and names (Haxby et al., 1994,
Summerfield et al., 2006). Combining these findings, we predicted that the left PFC would
be have a higher BOLD response during encoding because of the name/word component as
well as the highly associative demands of face-name pairing.

Materials and Methods
Study Participants

The fMRI protocol was conducted on 5 healthy, volunteer participants 20-50 years of age (4
male, 1 female). All subjects had at least a high school education.

fMRI Study Procedures
Preparation and Positioning—The present study was carried out on a 3.0 tesla Philips
MRI scanner (Philips Medical Systems, the Netherlands). Subjects laid flat in a head
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restrainer which minimized the amount of motion as well as provided proper positioning and
comfort. We used a boxcar paradigm, consisting of alternating intervals of baseline and
cognitive activation. During scanning, subjects responded to visual stimulation by pressing
the buttons on a fiber optic button box.

Image Acquisition—Data was acquired by the MRI scanner. A T1 –weighted three-
dimensional image (3-D TFE) was acquired for anatomical structure with time of repetition
(TR)/ echo time (TE)/ flip angle (FA)=8.05ms/ 3.7ms/ 8°, FOV=256 × 150 mm3, acquisition
matrix=256 × 256×150, and a SENSE factor =2. Echo planar imaging (EPI) was used for
data acquisition with TR=3600ms, TE=30ms, FA=90°, 28 axial slices, slick thickness=2.5
mm, FOV=210 × 210 mm3, acquisition matrix=80 × 80, reconstruction resolution=128 ×
128, and SENSE factor=2 . Two tasks were administered in each imaging session. For each
session, 64 images were acquired during 8 blocks of stimulation and baseline. Each subject
underwent two runs.

Encoding and Memory Recognition Paradigms—Black-and-white faces with hair
removed and names displayed below were viewed through a reflection mirror in front of the
eyes of the subject. Images were presented using E-Prime software (Psychology Software
Tools, Inc, Pittsburg, PA, USA). The first task was an encoding task where the subjects
viewed 16 faces paired to an uncommon first name (8 males, 8 females). Each face-name
pair was presented for 3.6s. After 4 face-name pairs were presented, the baseline, which was
a screen with a plus, would be displayed for 14.4s. During the second task, which alternated
with each 4 face-name encoding block, the subjects would view a face with a choice of four
names. The subjects were required to recognize the face-name pair and press the
corresponding button (one of four) on the control device. Each face and choice of four
names was presented for 3.6 seconds. There were a total of 16 face (each with four names)
stimuli, divided into 4 blocks. After each recognition block, there was a 14.4 s baseline. The
total scan duration was 230.7s.

Data Analysis—The fMRI data collected during the tasks was processed with SPM2
software (Wellcome Department of Cognitive Neurology, London, UK) implemented in
Matlab (Mathworks, Inc.). Functional images were re-aligned to remove any minor
movements. The anatomical high resolution T1-weighted images were co-registered with
fMRI images and spatially normalized to the Montreal Neurological Institute brain template.
The time-course images were normalized using the same normalization parameters and then
smoothed with a 6×6×8 mm3 Gaussian smoothing kernel. A statistic parametric map (SPM)
was generated for encoding and retrieval tasks by fitting the stimulation paradigm to the
functional data which was convolved with a hemodynamic response function. Activation
from the baseline paradigm was subtracted from the stimulation paradigms, allowing us to
see activation specific to encoding and retrieval processes. For group analysis, average
activation maps were generated (one-sample t- test, p<.001). Group activation maps that
subtracted the opposite task activation were generated by a paired t-test (p<.001). For BOLD
response amplitude measurements (units measured in signal change percentage), each
subject's time course was averaged to give a hemodynamic curve from which the height
could be recorded. T-tests (two-sided) were used to compare encoding and retrieving
stimulation within several regions of interests.

Results
Subjects performed with an average accuracy of 41.41% (SD±12.02%) in the retrieval of
face-name pairs. The average response time for the tasks was 1828.91ms (SD±390.07ms).
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Activation maps for the encoding and memory recognition tasks were analyzed with
summary of activated clusters in Table 1. Across the 2 tasks, there were common, prominent
activations detected in primary visual cortex and multiple secondary visual areas including
extensive portions of Brodmann's areas 18 and 19 bilaterally (mainly in the inferior
infracalcarine regions) but with notable extension to occipital-temporal regions (areas 37
and 20/21) as well as occipital-parietal and cuneus regions. There were also common
hippocampal activations bilaterallyfor the 2 tasks. When encoding and memory recognition
conditions were contrasted, more specific distinctions were observed (see Figure 1). Results
indicated that during encoding , hippocampal regions were activated bilaterally, whereas
during memory recognition, the most prominent activations occurred in the visual
association areas.

Location of the eight specific ROI are shown in Figure 2. We measured the BOLD response
amplitude response for each task in each ROI and then compared the amplitude difference
between encoding and memory recognition tasks in each structure. The results are shown in
Figure 3. Specifically, in the encoding task, both the right posterior fusiform [E (encoding)
A (amplitude) = 0.226, R (recognition) A (amplitude) = 0.112; p=0.027], and the right
hippocampus (EA = 0.182, RA = 0.011, p.= 0.013) generated significantly higher BOLD
response amplitudes than in the memory recognition task. The right anterior fusiform (EA =
0.225, RA = 0.130, p = 0.073) approached significance in respect to higher BOLD response
amplitude during encoding vs. memory recognition. In the memory recognition task, the
right lingual gyrus BOLD response (RA = 0.331, EA = 0.215, p = 0.07) also approached
significance while the left lingual gyrus (RA =.304, EA = .095, p = 0.003) was significantly
higher in comparison to the encoding task. We did not detect significant differences in
BOLD response between encoding and recognition tasks in the remaining ROIs.

With regard to large scale cerebral activation patterns for encoding and memory recognition,
we were interested in identifying general trends in activation differences between the tasks.
During encoding, there were much broader right frontal-temporal activations, whereas
memory recognition recruited a broad expanse of posterior temporal-occipital-parietal
cortices bilaterally and left prefrontal activity (see Figure 4 for 3-D representations).

Discussion
Findings support the conclusion that there are clear and consistent brain activation
differences related to associative encoding and memory recognition processes, suggesting
somewhat distinct neural substrates. Associative encoding of face-name information aligned
with significantly increased BOLD response amplitudes in the right posterior fusiform gyrus
and right hippocampus in healthy adults. In contrast, BOLD response amplitudes were
increased in the lingual gyrus during subsequent memory recognition. These findings
suggest that the right hippocampus may be more involved in the information binding or
associative mechanisms of face-name encoding, consistent with the observations of Kirwan
and Stark (2004) as well as Cohen (1999), but also add an important extension to the neural
substrate. That is, increased BOLD response amplitude was concurrently detected in the
right posterior fusiform gyrus, a known face-processing area, suggesting that encoding may
also depend upon linkages of the hippocampus with cortical processing areas. The right
anterior fusiform region showed a trend toward a difference between tasks with a higher
BOLD response during encoding, though we are uncertain whether this was due to its
proximity to the hippocampal region and the networking of the neural structures involved in
encoding.

Contrast of memory recognition to encoding identified a unique increase in the BOLD
response amplitude in the lingual gyrus, which as a visual association area may be critical to
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long-term representation of acquired knowledge. Contrary to our predictions, the BOLD
response amplitudes in the PFC were not significantly different between tasks or
hemispheres, although the PFC had the highest overall BOLD response amplitude in both
tasks compared to the other regions of interests, suggesting an important physiological role
in associative processing.

We know that visual information at the cortical level is first processed through the primary
visual cortex and then depending on its characteristics may engage either the dorsal/”where”
and/or ventral “what” specialized streams. In this case of face-name stimuli, feed-forward
pathways from inferior occipital cortex extend to more rostral occipital, temporal and
parietal structures (Eacott and Gaffan, 1992; Shen et al., 1999; Haxby et al., 1999, Ishai et
al., 1999). Our results support the role of these feed-forward pathways in face-name
associative learning and recognition and suggest that pathophysiology from a variety of
causes in these regions (e.g., stroke, anoxia, trauma, neoplasm) may have clinically
significant disruptive effects on such learning and memory.

With regard to the neural substrate mediating associative face-name encoding, we propose
that the right anterior and posterior fusiform regions together with the right hippocampus are
key neural resources. Because of the attentional, associative and working memory demands
of the task, the PFC is also likely to play a key role during learning (Kanwisher et al., 1997).
The PFC is linked closely with the hippocampal region through strong interconnections
(Grady et al., 1995, Sperling et al., 2003, Bernard et al., 2004) and likely contributes to how
disparate information can be bound in sufficient fashion to be available for consolidation
and long-term storage in association cortices (Squire et al., 1992).

Derived from our activation maps, we also found that structures specific for encoding
included the superior and middle temporal gyri and the posterior cingulate gyrus in the left
hemisphere. The middle temporal gyrus has been implicated in processing names in relation
to faces (e.g. (Gorno-Tempini et al., 1998) and the superior temporal gyrus has been linked
to social perception of facial characteristics, such as eye gaze and lip movement (Puce et al.,
1998). The posterior cingulate gyrus has significance in that it seems to be a connecting
pathway between anterior structures and the hippocampus (Goldman-Rakic et al., 1984).

With regard to the neural substrate related to recognition memory for face-name processing,
although face stimuli must be processed by the “face structures” such as the fusiform, there
is significantly less of a BOLD response than in the encoding task, suggesting that retrieval
uses a different network. We detected significantly less activation in the right hippocampus
as well, suggesting again that this may not as essential a part of the recognition network for
face-name pairs. Our results, however, showed a significantly higher BOLD response
amplitude in the bilateral lingual gyrus during recognition, indicating that this structure may
mediate more of an important role than previously thought. In recognition, increased activity
of the PFC may signal the initiation of a top-down cascade of regulatory processing that
works to retrieve episodic visual associations such as face-name pairs from long-term
memory (Haxby et al., 1996, Tomita et al., 1999, Joassin et al., 2004, Ranganath et al.,
2004).

Recognition memory studies concerning face-name information have not been given as
much attention as encoding studies, and therefore do not have overwhelming evidence
supporting a specified network, although the medial frontal gyri, the inferior parietal lobe,
supramarginal gyrus, and inferior frontal gyrus in the left hemisphere have been raised as
possibilities (Gorno-Tempini et al., 1998, Campanella et al., 2001, Leube et al., 2003). We
propose that the parietal lobe activations detected from the average activation maps may be
of interest. These regions seem to act as convergence zones that are accessible to many
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cortical association areas including the PFC, and that can provide multimodal resources
important for recognition and episodic retrieval (Yonelinas et al. 2005, Culham and
Kanwisher 2001, Vincent 2007, Wagner et al. 2005). Taken together, the findings suggest
that there are both key regions of processing in the hippocampal and visual association
cortices that are necessary for associative encoding and recognition memory of face-name
information, as well as processing resources provided by regions of the PFC, temporal and
parietal cortices that are vital to effective learning and memory retention. With such a large-
scale network, pathophysiology in the form of trauma, cerebrovascular disease,
neurodegeneration, and neoplasm can cause symptoms that range from being clinically
disabling (from damage to key structures) to milder deficits (from damage to resources
areas) that can be managed with compensatory learning and memory strategies.
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Abbreviations

fMRI functional MRI

r right

l left

post fusi posterior fusiform gyrus

ant fusi anterior fusiform gyrus

hippo hippocampus

temp inf temporal inferior gyrus

lingual lingual gyrus

occ inf occipital inferior gyrus

occ midd occipital middle gyrus

PFC dorsal lateral prefrontal cortex
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Figure 1.
Activation clusters associated with encoding and memory recognition tasks. Red represents
activations specific to encoding in contrast to memory recognition. Blue represents
activations specific to memory recognition in contrast to encoding. (Level of axial slice
noted by z coordinate). P =.005 with a 10 voxel threshold.
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Figure 2.
The eight regions of interest chosen for comparison of the BOLD response between
encoding and memory recognition tasks.
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Figure 3.
Structures that had a significant or an approaching significance difference in BOLD
response between encoding and retrieval tasks. P<.001 used for posterior fusiform right
(post fusi r), and lingual gyrus right and left (ling r and l). P<.001 used for anterior fusiform
right (anti fusi r), and hippocampus right (hippo r).
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Figure 4.
Average activation maps overlaid on a 3D- image of the brain. Red represents encoding
activations. Green represents memory recognition activation. (p=.005 with a threshold of 10
voxels).
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