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Abstract
We report a highly diastereo- and enantioselective allylation of azlactones catalyzed by the
combination of a metallayclic iridium complex and an optically inactive phosphate anion. The
process demonstrates an approach to conduct diastereoselective reactions with prochiral
nucleophiles in the presence of metallacyclic allyliridium complexes. The reaction provides access
to an array of enantioenriched allylated azlactones containing adjacent tertiary and quaternary
carbon centers. Preliminary mechanistic studies suggest that the phosphate and methyl carbonate
anions together induce the unusually high diastereoselectivity.

Asymmetric allylic substitution catalyzed by metallacyclic iridium phosphoramidite
complexes occurs with high regioselectivity and enantioselectivity with a variety of
heteroatom and carbon nucleophiles.1 However, none of these reactions with prochiral
nucleophiles occur with high diastereoselectivity.1b, 2 Careful analysis of these reactions
revealed that both diastereomers were generally formed with high enantiopurity.3 Thus, the
low diastereoselectivity originated from the lack of control of the configuration at the
prochiral nucleophiles. Therefore, a novel strategy is needed to control the configuration at
the nucleophilic carbon atom for Ir-catalyzed allylic substitutions to be diastereoselective.

We considered that the configuration at the nucleophilic carbon atom might be controlled by
the counterion.4 Mechanistic studies of Ir-catalyzed asymmetric allylation reactions have
shown that the counterion promoted nucleophilic attack by deprotonation of an acidic
pronucleophile5 or desilylation of a silyl enolate.6 However, a counterion effect on the
diastereoselectivity of Ir-catalyzed asymmetric allylation reactions has not been reported,
presumably due to the lack of appropriate methods to introduce different counterions.7

Here, we report a highly diastereo- and enantioselective allylation of azlactones catalyzed by
the combination of a metallacyclic iridium complex and optically inactive phosphate
cocatalysts. These reactions reveal a new approach to control diastereoselectivity with
iridium catalysts for allylic substitutions.

Because silver salts, such as AgBF4, have been used in the synthesis of metallacyclic
allyliridium complexes,8 we envisioned that counterions for control of diastereoselectivity
could be introduced into the catalytic system by generating the metallacyclic iridium
catalysts in situ from various silver salts (AgX). In this case, the counterion X− would
deprotonate the pronucleophile and modulate the degree of stereocontrol at the new chiral
center of prochiral nucleophiles (Scheme 1). Because azlactones are valuable
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pronucleophiles to access biologically important quaternary amino acids9 and have been
used previously for allylic substitution,10 we chose to explore the counterion effect on
diastereoselectivity in Ir-catalyzed allylic substitutions with this class of reagents.

The reaction of cinnamyl methyl carbonate with azlactone 3 derived from alanine was first
investigated to reveal potential effects of the ligand and counterion on the Ir-catalyzed
allylation reaction (Table 1). Reactions catalyzed by the combination of [Ir(COD)Cl]2,
phosphoramidite 1 and AgBF4 formed the branched allylation product in 31% yield with 7:1
dr and 98% ee (entry 1).11 When AgBF4 was replaced with the silver phosphate 2a prepared
from (R)-1,1′-bi-2-naphthol (BINOL), the yield of the allylation reaction increased
dramatically (83% yield, dr 8:1, 98% ee, entry 2). When 2b, a substituted analog of 2a, was
used as the silver salt, the reaction furnished the product with high yield, enantioselectivity
and diastereoselectivity (87% yield, dr >20:1, 98% ee, entry 3). Variations of the conditions
that gave these high yields and selectivities showed that 8% silver phosphate and 3 Å
molecular sieves were integral to obtaining complete conversion of the carbonate (entries 4
and 5). An assessment of the effect of the configuration of the ligand and counterion on the
product stereoisomer was conducted. In the presence of ent-1 and the same phosphate 2b,
the reaction yielded the enantiomer of the allylation product just described. Moreover, the
reaction with ent-1 occurred with only slightly lower diastereoselectivity (88% yield, dr
20:1, −98% ee, entry 6). Therefore, the configuration of the ligand dictated the absolute
configuration of the product.

Because the configuration of the phosphate in 2b had a negligible effect on the
diastereoselectivity of the reaction, an easily accessible silver phosphate 2c derived from an
optically inactive biphenol was examined as the source of the counterion.12 The reaction
provided the product with yield, diastereoselectivity and enantioselectivity (89% yield,
>20:1 dr, 98% ee, entry 7) that were comparable to those of the reactions with the optically
active phosphate anions. Furthermore, the reactions conducted with the phosphate
containing two phenols in place of the biphenol, AgO(O)P(OPh)2 (2d), furnished the
substitution product with only slightly lower yield and diastereoselectivity (entry 8).
Because of the easy access to the biphenol12a in the silver phosphate 2c and the high
solubility of the silver phosphate 2c in various organic solvents, we conducted our further
studies with this silver salt.

The scope of the reaction under the conditions just described is shown in Table 2. A broad
range of para-substituted cinnamyl carbonates possessing diverse electronic properties were
examined. The reactions with cinnamyl carbonates containing a halogen in the para position
furnished the products in high yields with excellent diastereo- and enantioselectivities
(entries 1 and 2). The substrate containing a MeO group in the para position afforded the
product in 68% yield with >20:1 dr and 98% ee (entry 3). Although the substrates
possessing strong electron-withdrawing groups were less reactive, the reaction still yielded
the product with good enantioselectivity (82–83% yield, >20:1 dr, 84–94% ee, entries 4 and
5). The substrate containing a meta-fluoro substituent reacted in high yield and selectivity
(96% yield, dr >20:1, >99% ee, entry 6). The lowest selectivities were observed with the
ortho-MeO substituted cinnamyl carbonate (81% yield, 7:1 dr and 80% ee; entry 7). Ortho-
substituted cinnamyl carbonates typically undergo Ir-catalyzed allylic substitution reactions
with lower enantioselectivity than do the meta- and para-substituted isomers.13

The reactions of electrophiles containing heteroaryl, alkenyl and alkyl substituents were also
examined. Carbonates containing furyl and indoly groups reacted like the cinnamyl
carbonates (81–90% yield, 15:1 dr, 95–98% ee, entries 8 and 9). Dienyl carbonates also
furnished the branched substitution product with high yield (83%) and stereoselectivity
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(14:1 dr and 94% ee; entry 10). Aliphatic allylic carbonates reacted with low
diastereoselectivity.

The reactions of various azlactones derived from natural amino acids were also examined.
Azlactones containing benzyl, iso-butyl and thioether groups underwent the reaction
smoothly and with high stereoselectivity (entries 11–13). Even the reaction of the azlactone
containing a bulky iso-propyl group at the prochiral center proceeded in acceptable yield and
high stereoselectivity when [Ir(dbcot)Cl]2

14 was used as the iridium source (69% yield,
>20:1 dr, 99% ee, entry 14). In contrast to the prior allylations of azlactones to give
branched products,10b, 10d the current process occurs with allylic carbonates containing
alkenyl groups and electron-deficient aryl groups in yields that are comparable to those of
the reactions of allylic carbonates containing electron-rich aryl groups.

To gain insight into the mechanism of this reaction, we first conducted experiments to test if
the metallacyclic structure present in prior systems is the active form of the catalyst
generated with silver phosphates. Reactions conducted with catalytic amounts of the
preformed metallacyclic iridium phosphoramidite complex were conducted (Scheme 2). In
the absence of phosphoric acid 2e, the product was obtained in 92% yield with 3:1 dr and
98% ee. However, in the presence of 4 mol% of phosphoric acid 2e the product was
obtained with a high >20:1 dr and 98% ee. These results imply that: (1) the reactions are
catalyzed by a metallacyclic iridium complex and (2) the phosphate anion, not the silver
cation is responsible for the high diastereoselectivity.

Several experiments were conducted to reveal the origin of the effect of the phosphate anion.
First, the reaction of cinnamyl carbonate with azlactone 3 in the presence of 4 mol% diethyl
phosphoric acid, along with the analogous reaction of the corresponding allylic phosphate,
were conducted. The reaction with added phosphate formed the substitution product in 52%
yield with 20:1 dr and 97% ee (eq 1). However, the reaction of cinnamyl phosphate formed
the substitution product in only 35% yield, with just 4:1 dr, and 67% ee (eq 2). In contrast,
the same reaction of methyl cinnamyl carbonate in the presence of 4 mol% added cinnamyl
phosphate gave the product with 16:1 dr and 96% ee (eq 3), albeit in only 25% yield. The
difference in diastereomeric ratio between the reaction of the cinnamyl phosphate alone and
the reaction with the two cinnamyl electrophiles together suggests that the
diastereoselectivity results from the presence of the carbonate and phosphate anions
together. This conclusion is consistent with a dependence of the diastereoselectivity of the
reaction of cinnamyl electrophiles with azlactone 3 on the identity of the carbonate leaving
group (see Table 1 of the SI).

The iridium complexes present in the catalytic system were revealed by NMR spectroscopy.
The 31P NMR spectrum of the mixture of [Ir(cod)Cl]2, ligand 1, silver phosphate 2c and
cinnamyl carbonate consisted of a major peak at 122.5 ppm. This spectral feature was
consistent with the 31P NMR chemical shift of allyliridium complexes containing
cyclometallated phosphoramidites characterized previously.8a, b A broad peak between −2.0
and 2.0 ppm in the 31P NMR spectrum was attributed to the phosphate. Therefore, we
suggest that the reaction proceeded through a metallacyclic allyliridium complex generated
in situ and nucleophilic attack by the azlactones assisted by the phosphate and carbonate.15

The absolute configuration of the allylation product was consistent with nucleophilic attack
from the face opposite to iridium moiety.16 Further studies on the details of the mechanism
are underway in this laboratory.
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(1)

(2)

(3)

To demonstrate the utility of this allylation chemistry, we applied the substitution process to
prepare an enantioenriched pyrolidine, which is a member of a family of compounds
possessing monoamine reuptake-blocking activity (Scheme 3).17 The reaction of carbonate
6a with azlactone 3 provided the substitution product 6b in 93% yield with 15:1 dr under the
standard conditions. The enantiomeric excess of this product was determined to be 94%
after 6b was converted to the corresponding methyl ester 6c. Hydroboration and oxidation
yielded the terminal alcohol, which was converted to the corresponding tosylate 6d in 57%
yield over three steps. Cyclization in the presence of NaH delivered 6e in 95% yield.

In summary, we have revealed a strategy to achieve high diastereoselectivity for allylic
substitution reactions of a prochiral nucleophile catalyzed by the phosphoramidite-derived
metallacyclic iridium complex, which had catalyzed enantioselective, but not
diastereoselective, reactions previously. This stereoselectivity is achieved by the addition of
an optically inactive phosphate anion. Preliminary mechanistic data suggest that the reaction
proceeds by the generation of a metallacyclic iridium allylcomplex, and both the carbonate
and phosphate contribute to the high diastereoselectivity observed. Considering the
multitude of carbon nucleophiles that react with allyliridium complexes and the availability
of structurally diverse phosphates, this approach should be widely applicable to the control
of diastereoselectivity with iridium catalysts. Studies to expand the scope of the prochiral
nucleophiles that undergo similar diastereo- and enantioselective Ir-catalyzed allylation
reactions are ongoing.
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Scheme 1.
Envisioned Ir-Catalyzed Allylation Assisted by the Counterion X−
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Scheme 2.
Allylation of 3 Catalyzed by the Preformed Metallacyclic Iridium Catalyst with and without
the Phosphoric Acid 2e
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Scheme 3.
Synthesis of Pyrrolidine 6ea, b

a(a) 2 mol % [Ir(cod)Cl]2, 4 mol % 1, 8 mol % 2c, toluene, 3Å MS; (b) MeOH, K2CO3; (c)
9-BBN, THF; NaBO3·4H2O; (d) TsCl, triethylamine, DCM; (e) NaH, DMF. bAbsolute
configurations were assigned by analogy.
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Table 2

Ir-Catalyzed Allylation of Azlactonesa,b

a
See the SI for experimental details.

b
Absolute configurations were assigned by analogy. The diastereomeric ratios were determined by 1H NMR analysis of the crude reaction

mixtures. The ee’s were determined by chiral HPLC analysis.

c
8% linear product was identified.

d
[Ir(dbcot)Cl]2 was used.

J Am Chem Soc. Author manuscript; available in PMC 2014 February 13.


