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Abstract
Uncovering and interpreting phenotype/genotype relationships are among the most challenging
open questions in disease studies. Set cover approaches are explicitly designed to provide a
representative set for diverse disease cases and thus are valuable in studies of heterogeneous
datasets. At the same time pathway-centric methods have emerged as key approaches that
significantly empower studies of genotype-phenotype relationships. Combining the utility of set
cover techniques with the power of network-centric approaches, we designed a novel approach
that extends the concept of set cover to network modules cover. We developed two alternative
methods to solve the module cover problem: (i) an integrated method that simultaneously
determines network modules and optimizes the coverage of disease cases. (ii) a two-step method
where we first determined a candidate set of network modules and subsequently selected modules
that provided the best coverage of the disease cases. The integrated method showed superior
performance in the context of our application. We demonstrated the utility of the module cover
approach for the identification of groups ofrelated genes whose activity is perturbed in a coherent
way by specific genomic alterations, allowing the interpretation of the heterogeneity of cancer
cases.

1. Introduction
Complex diseases, such as cancer, are typically caused by a combination of genomic
alterations, epigenetic and environmental factors, and different combinations of such factors
may result in the same disease phenotype. In addition, signals that are associated with each
individual genetic perturbation might be weak and difficult to separate from background
noise. Collectively, these obstacles render the identification of subtle genotype-phenotype
relationships extremely challenging.

Recently, pathway-centric methods have emerged as key approaches that empower studies
on genotype-phenotype relationships. Such pathway-centric studies typically leverage large
interaction networks inferred by high-throughput experiments. Projecting gene expression
data on an interaction network, these approaches infer molecular activities on the level of
biological pathways (subnetworks) rather than individual genes (1–5). Gene expression has
been utilized to assess the activity of subnetworks (6), while genotypic data has lately been
used to identify mutated subnetworks by exploring positions of mutated genes in interaction
networks (7–9). An additional level of understanding of genotype-phenotype relationships
can be obtained when both genotype and gene expression data are available. A recent study
(10, 11) combined copy number alteration and gene expression data and applied a current
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flow approach to identify flow of information from potential genomic causes to
differentially expressed disease genes.

Generally, pathway-centric approaches are based on the premise that different genetic
perturbations often dys-regulate the same pathway, leading to the same disease phenotype.
Therefore, the identification of such dys-regulated pathways is important for the
understanding of a disease, potentially guiding drug development efforts. However, complex
diseases are usually vaguely defined, and typically what can be seen as a spectrum of
diseases is annotated as one disease. In such a heterogeneous set, individual disease cases
may be characterized by various combinations of dys-regulated pathways.

Set cover approaches have been proven useful in the determination of disease markers in
heterogeneous datasets (1, 2, 5, 11). In a set cover, a gene is considered to cover a disease
sample if the gene is dys-regulated in the sample. The underlying assumption of the set
cover approach is that each disease case has some dys-regulated (thus covering) genes but if
the disease is heterogeneous, different cases will typically have different covering genes. In
particular, a multi set cover approach aims to find a set of genes so that each disease case is
represented (covered) by at least a certain number of differentially expressed genes while the
total number of selected genes is minimized (11). However, current set cover approaches do
not consider several important issues: (i) if two different disease cases are covered by two
different sets of genes this does not necessarily means that they are caused by a dys-
regulation of different pathways (ii) signals of associations from an individual gene to
genetic alterations may be weak and noisy.

Combining the strength of the set cover approach with the power and stability of network-
centric methods, we designed a new technique that extends the concept of set cover from
single genes to network modules. In contrast to previous “connected network cover”
approaches which strived to identify one connected subnetwork covering most disease cases
(1, 2, 5), our approach allows us to identify multiple subnetworks (modules), so that each
disease case is covered by a number of modules while the total “cost” of modules is
minimized. In addition to network information, the definition of a module involves a
similarity measure between pairs of genes that is based on eQTL association profiles. While
modules can be comprised of singleton genes, the trade-off between module granularity and
similarity of genes in the module is controlled by a cost function.

Given the above definition of similarity, the module cover approach can be used to find
covering subnetworks such that genes in each module are jointly regulated by the same
genetic alterations. The problem of detecting subnetworks that are influenced by common
genetic alterations has been recently approached with a variant of the LASSO method (12)
and Bayesian partition methods (13) with different objectives in mind. In particular, none of
the approaches was designed to deal with data heterogeneity while our set cover modules
capture the heterogeneity of samples where each module covers a different subset of
samples. In addition, the LASSO based method, GFlasso, in its current implementation does
not scale to large datasets while the Bayesian approach does not utilize network information.

To solve the module cover problem, we developed an integrated method that simultaneously
determines network modules and optimizes the cover of disease cases. For comparison, we
also implemented a two-step method where we first determined candidate network modules
and subsequently selected a subset of modules that cover disease cases. While the
performance of the integrated method is superior to the two-step method, the two-step
approach still performed better than a naïve method that was based on a single gene cover.

We applied the module cover approach to discover modules associated with genomic
alterations in cancer patients, utilizing genomic alteration and gene expression data.
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Representing each gene by its eQTL (expression Quantitative Trait Loci) association profile
our algorithms harness profile similarities between genes and identify modules of genes with
highly correlated eQTL profiles that collectively cover all disease cases.

We start by introducing a mathematical formalization of the module cover problem and
subsequently describe our two algorithms: Integrated Module Cover and Two-Step Module
Cover. Next, we introduce rigorous measures to compare the quality of the modules
obtained by the two algorithms. Finally, we analyze the modules obtained by the Integrated
Module Cover that was applied to Glioblastoma Multiforme (GBM) and ovarian cancer
data. We conclude with a discussion of a broader spectrum of additional applications of the
proposed approach.

2. Methods
2.1. Introduction of the Module Cover Problem

Here, we extended the concept of the minimum multi-set cover problem to a minimum
multi-module cover problem. The classical minimum multi-set cover is formally defined as
follows: Given a set of elements E = {e1, e2, …, en}, a family of subsets S = {E1, E2, …, Em|
Ei ⊆ E} and a positive integer k, the goal is to select a subfamily of S so that each ei is
included at least k times. In our problem formulation, disease cases are the elements, and a
subset of disease cases Ei corresponds to a gene where it is differentially expressed in those
disease cases. More specifically, a gene g covers a disease case c (cover(c, g)=1) if the gene
is differentially expressed in the given case, and cover(c, g) = 0 otherwise. To obtain the
most prominent disease genes, we aim to select the smallest set of genes to cover all disease
cases at least k times (11). Fig. 1A shows an example of a multi-set cover where disease
cases are elements to be covered by selected genes. An edge between a gene and a case
exists if the gene covers the case.

In the module cover approach, we select modules (instead of single genes) to cover disease
cases (Fig. 1B). To ensure that genes in a selected module are coherent, the ‘cost’ of
modules was defined so that we preferentially assigns low cost to modules with genes that
are close to each other in the network and are coherent according to a given similarity
measure, such as correlation of expression or eQTL association profiles. In eQTL analysis,
gene expression is considered as a quantitative phenotype and controlled by genotypic
information. Utilizing matching gene expression and copy number variation, we determined
eQTL profiles of each gene by computing significance levels of associations of each gene to
genomic alterations (See Section 5.3 for the details).

Let sim(g1, g2) be the eQTL similarity of the two genes, which is computed based on the
correlation of their eQTL profiles. We assume that 0 ≤ sim(g1, g2) ≤ 1. Let distance(g1, g2)
be the shortest distance between the two genes in the interaction network. We first adjust the
similarity by the distance as

(1)

where avg_dist is the average distance between all pairs of genes in the network. Since our
weight function adjusts the similarity value with interaction information we obtain higher
weight if two genes have more similar eQTL profiles and are in close proximity in the
network. We define the weight function as follows:

(2)
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where θ is a threshold parameter. The weight is positive (i.e. benefiting module cost) if the
adjusted similarity is >θ. Consequently, we define the cost of a module M as

(3)

where α is the module initializing cost when a new module is created. We include this initial
module cost to minimize the number of selected modules. With a larger α, a smaller number
of modules with larger average size will be obtained, since costs increase when a new
module is created. The objective of the second term (i.e. the number of genes) is to minimize
the total number of selected genes. Finally, we subtract the cost computed as the sum of
average weights of genes in the module, ensuring coherence of modules since the cost of a
module decreases as the weights(and similarities) between genes increase.

Our goal is to find a minimum cost set of modules that cover all disease cases at least k
times where the depth of coverage is a user defined parameter. More specifically, we search
for a module set S′ = {M1, M2, …, Mt} that minimizes ΣMi∈S′ Cost(Mi) with the constraint
that ΣMi∈S′ Σg∈Mi cover(c,g) ≥ k for each disease case c. The minimum module cover
problem is NP-hard as it is a generalization of the minimum set cover, which is known to be
NP-hard. In the following two subsections, we describe two different heuristic algorithms:
Integrated Module Cover and Two-Step Module Cover. In the integrated module cover
algorithm, we discover modules on the fly while we select genes to cover disease cases. In
the two-step module cover algorithm, we first cluster genes based on their similarity to
obtain a candidate sets of modules and subsequently select a subset of modules to cover
disease cases.

2.2. Integrated Module Cover
In this algorithm, we greedily select genes to cover disease cases and simultaneously create
modules of ‘similar’ genes. In each iteration, we consider all unselected genes and compute
the cost of adding each of those genes, assuming two ways to add a gene:

1. add the gene as a separate module: the cost of adding the gene is simply α + 1.

2. add the gene to an existing module: To maintain the coherence of a module, we
first check if for the candidate gene g the average weight w(g, v) over all other
genes in the module is positive. That is, we can add a gene g to a module M only if
Σv∈M w(g,v) > 0. The increased cost resulting from adding gene g to module M is
Cost(M+{g}) – Cost(M).

To find the best extension of the cover we proceed as follows: Let P(g) be the set of existing
modules with a positive average edge weight with g as described in the case (2) The cost of
adding a gene g is

Since we want to cover disease cases to the largest degree, we also account for the ‘benefit’
of adding genes. Considering the set of disease cases C′ that were covered less than k times
by the end of the previous iteration we define the benefit by adding gene g as
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In each iteration, we greedily choose a gene with minimum IC (g)/Benefit (g). If the
minimum cost of gene g is obtained adding gene g to an existing module M, the module is
updated as M U{g}. Otherwise a new module {g} is created.

2.3. Two-Step Module Cover
In the Two-Step heuristic, we first find a candidate set of modules by clustering genes based
on their similarity and interaction data. Subsequently, we apply a covering algorithm to
select the best set of modules. Specifically, we used Markov Cluster Algorithm (MCL), an
unsupervised clustering algorithm based on simulation of stochastic flow in a network (14).
Note, that a predefined set of modules/pathways may be used instead as well. Given a
network of interacting genes, we weight each edge by the corresponding similarity value and
obtain a candidate set of modules {M1, M2, …, Mm} using MCL. We then select modules
with coherent/similar genes, covering as many samples as possible. The cost of selecting a
module M is given by (3), and we define the benefit of selecting a module as the total
coverage

Where, as before, C′ is the set of disease cases not covered k times by the end of the
previous iteration. In each iteration, we greedily select a module with minimum Cost (M)/
Benefit (M).

3. Results
We applied our module cover algorithms to two data sets: the first dataset includes the data
for 158 Glioblastoma Multiforme patients (GBM) and 32 non-tumor control samples. The
data was collected by the NCI-sponsored Glioma Molecular Diagnostic Initiative (GMDI),
which includes matching mRNA expression and copy number variation data for each patient
(http://rembrandt.nci.nih.gov/). The second dataset includes 489 Ovarian Cancer data
samples from TCGA (The Cancer Genome Atlas). The technical details of data processing
are described in the Materials section.

3.1. Analysis of Glioblastoma Multiforme Data from GMDI
First, we wanted to estimate which of the two methods provides a better heuristic in the
context of our application. Since our goal was to selectmodules whose members are
associated in a coherent way with genotypic changes, we evaluated the two methods based
on significance, strength, and coherence of the association.

3.1.1. Comparison of the Module Cover approaches—We applied the integrated
greedy module cover algorithm with k = 300 and α = 1, allowing 5 samples (3%) to be
coveredless than k times to exclude outliers. We discuss the more detailed parameter
selection in online Appendix Section 2. In particular, we found that the number of non-
trivial modules (i.e. ≥ 3 genes) starts to level with k = 300, prompting us to choose this
parameter value for our main analysis. We obtained 249 modules that contained a total of
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513 genes including 41 non-singleton modules. The average distance between genes inside a
module was 2.5.

For the two-step module cover, we applied MCL to the network of molecular interactions
that have been weighted by correlating eQTL profiles of interacting genes. Using inflation
parameter = 4 we obtained 3,401 candidate modules (see Appendix Table A1 and Figure A1
for details of parameter selection). The average size of the candidate modules was 3.21 and
2,677 modules were non-singleton. Subsequently, we greedily selected modules as described
in Section 2.3. The two-step cover algorithm selected 801 genes in 454 modules. 233
modules (of which 171 modules are of size 2) were non-singleton. The average distance
between genes inside a module was 1.1, indicating that the MCL cover provided more
compact modules than the integrated module cover approach.

Testing which of the two approaches provided modules whose members were associated in a
more coherent way with genotypic changes, we evaluated modules with respect to
significance, strength and coherence of the association.

For each non-singleton module M, wefirst defined the significance of the association to each
of tag loci as the average association significance of the genes in the module. Formally,

(5)

where si(g) represents −log10 p-value of the association provided by the linearlyregressi ng
between expression values of gene g and copy number variation of i-th tag locus (see
Section 5.1 for more details).

The upper panel of Fig. 2A shows such association significance profiles of the 10 largest
modules. We found strong associations with tag-loci on chromosome 7 and 10. These
chromosomes carry signature alterations of GBM, coinciding with the genomic locations of
GBM related genes such as EGFR and PTEN. In the lower panel of Fig. 2A, we show
association significance profiles of the 10 largest modules selected by the two-step
algorithm. We observed that associations obtained by the two-step algorithm were weaker
based on several different measures of quality introduced below.

To compare the approaches more quantitatively, first note that the total cost of modules
selected by the integrated and two-step algorithms was 744 and 1439.05, respectively
(Appendix, Table A1). The total weights between genes in modules (the third term in cost
function (3)) were 18.63 and −184.05, showing that the modules selected by the integrated
algorithm were much more coherent compared to the modules obtained by two-step
algorithm.

To further quantify the quality of modules in terms of their association to genomic
alterations, we devised several measures: The strength of association significance of a
module was defined as the maximum significance of the associations of the given module
over all loci:

(6)

We also computed the entropy of association profiles for each module. Since entropy
measures the uncertainty of data, a good quality module (with only a few strong
associations) is expected to have low entropy while entropy increases as data is more
uniformly distributed. Formally, for each module M, we partitioned the range from 0 to
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strength (M) into 10 bins of equal sizes and assigned loci according to their significance. In
each bin, we computed the percentage pj of loci and defined the entropy as

(7)

For an association to be specific in a given module, only a few regulatory associations
should have highly significant p-values while the remaining loci are expected to have
insignificant p-values. Thus, we defined the specificity of a module M as the area of a
cumulative histogram of association significance values. Specifically, we partitioned the
range from 0 to strength (M) into 10 bins of equal sizesand defined cj to be the cumulative
percentage of j-th bin. Then the specificity is defined as:

(8)

Similar to entropy, specificity quantifies the distinction between significant associations and
the remainder of the loci. However specificity approaches 1 only if a small number of
significant loci exist whereas theoretically entropy can be low in the case when there is a
few insignificant and many significant loci.

We found that the integrated module cover outperformed the two-step module cover
approach based on all three measures (as summarized in Online Appendix Table A1). The
average strength of modules (size ≥ 3) selected by the integrated module cover algorithm
was 6.4, significantly outscoring an average of 3.6 of modules obtained by the two-step
module cover algorithm (P < 10−8, Wilcoxon test). Similarly, the average specificity for the
integrated module cover was 0.9 while the average was 0.83 for the two-step cover (P <
10−4, Wilcoxon test). The average entropy of modules selected by the integrated algorithm
and two-step cover were 1.6 and 2.2, respectively (P < 10−4, Wilcoxon test).

Fig. 2B, C presents a detailed comparison of the performance of the module cover
approaches with respect to the mentioned measures. In addition, we included results
obtained by the basic set cover algorithm labeled “single” in Figs. 2 B, C using the same
parameter k = 300 and at most 5 outliers. In this case we defined the modules as the
connected components of the subgraph spanned by the genes that were selected as the cover.
We observed that modules of size ≥ 3 obtained by the integrated module cover approach
were on average larger than modules found with the two-step approach. Specifically,
modules identified by the integrated approach had significantly smaller entropy compared to
modules obtained by the two-step approach (Fig. 2B, P < 10−6, Kolmogorov-Smirnov test).
In addition, these modules showed significantly higher strength (Fig. 2C, P < 10−5,
Kolmogorov-Smirnov test). However, the quality of modules obtained with both approaches
was still superior to results of a single gene set cover, demonstrating general benefits of the
module cover approach.

All alogrithms were implemented in Python and compute the solutions for the inputs of
~10,000 genes in a few minutes on NCBI linux machines.

3.1.2. Analysis of GBM data—We further analyzed modules provided by the integrated
method. First, we determined enriched GO terms in modules using BINGO (15). Out of 21
modules with at least 3 genes, we found 14 modules having at least one GO term that they
significantly enriched with (FDR < 0.05). In addition to modules enriched with typical
cancer-related processes such as cell division, cell cycle, and immune response we also
obtained more glioma-specific modules such as the WNT signaling pathway and glial cell
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differentiation. For example, only some subsets show dys-regulation of immune response or
of WNT signaling while the cell cycle module is dys-regulated in almost all samples.
Although our modules have been selected by using eQTL association profiles they allow us
to recover GBM subtypes that previously were determined with expression profiles of single
genes. Importantly, we observed that different modules were covering different sets of
samples in a nonhierarchical (non-nested) way (Online Appendix, Fig. A2). This
overlapping pattern of covering modules might explain why the number of GBM subtypes
has been difficult to establish (16, 17).

3.1.3. Analysis of Ovarian Cancer Data—We also used the integrated module cover
algorithm to analyze a set of 489 Ovarian Cancer samples from The Cancer Genome Atlas
(TCGA). Applying the integrated module cover algorithm with k=70, α = 1, and 25 outliers,
we selected 485 genes grouped in 235 modules including 54 non-singleton modules. As in
the analysis of GBM data, we choose k for which the number of nontrivial modules starts to
level. Out of 12 modules of size at least 5, 9 modules were enriched with at least one GO
terms significantly (FDR < 0.05).

To visualize the coverage of disease cases by modules of size ≥5, we counted the number of
genes covering each sample (Fig 3A). Similarly to GBMs, we found that different modules
are covering different subsets of samples. Note that a gene may cover a sample when it is
either significantly upregulated or downregulated. In Fig 3B, we investigated the expression
patterns of individual genes in the modules. Performing hierarchical clustering of the genes
based on expression level, we obtained clusters consistent with the existing classification of
cancer subtypes (18), in which the gene expression profile of ~1,000 selected genes was
used to define 4 disease subtypes. Using only 185 genes in the 12 largest modules from our
module cover, we successfully recovered these 4 subtypes (Fig 3B) despite the fact that
these genes have not been selected explicitly to classify expression based subtypes. In the
TCGA analysis (18), the authors attempted to identify genes whose differential expression
helped to define each disease subtype. However, we found that our module-based analysis
often provided a more informative picture. For example, in (18) one subgroup of the
collagen gene family was found to support the Mesenchymal subtype while another
subgroup of this family as well as the LUM gene which binds collagen fibrils was associated
to the Differential subtype. In contrast, our approach grouped all these genes into
“extracellular matrix organization” module, also containing several matrix metalloproteinase
(MMP) genes. We found that genes in this module had very similar expression and were
overexpressed in the Mesenchymal subtype.

4. Discussion
Uncovering modules that are associated with genomic alterations in a disease is a
challenging task as well as an important step to understand complex diseases. To address
this challenge we introduced a novel technique - module cover - that extends the concept of
set cover to network modules. We provided a mathematical formalization of the problem
and developed two heuristic solutions: the Integrated Module Cover approach, which
greedily selects genes to cover disease cases while simultaneously detecting modules and a
Two-Step approach that first detects modules and subsequently selects a cover. Using
several quality measures, we established that the integrative approach outperformed the
alternative two-step approach. However, both methods showed better performance than a
naïve single gene based set cover approach. We also constructed modules utilizing gene
expression rather than association profiles to define a similarity measure (data not shown).
We observed that the modules obtained by the integrated approach based on gene expression
showed lower association specificity/association strength than modules that were provided
by eQTL profiles. However, expression based modules would be clearly preferred for
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uncovering expression patterns that occurs regardless of the association to genetic
variations.

In general, the module cover approach is especially helpful in analyzing and classifying
heterogeneous disease cases by exploring the way different combinations of dys-regulated of
modules relate to a particular disease subcategory. Indeed, our analysis indicated that the
gene set selected by module cover approach may be used for classification. Equally
important, the selected module covers may help to interpret classifications that were
obtained with other methods.

5. Materials
5.1 Data Treatment for Glioblastoma Multiforme Data from GMDI

Differentially Expressed Genes—Briefly, all samples were profiled using HG-U133
Plus 2.0 arrays that were normalized at the probe level with dChip (16, 19). Among probes
representing each gene, we chose the probeset with the highest mean intensity in the tumor
and control samples. We determined genes that are differentially expressed in each disease
case compared to the non-tumor control cases with a Z-test. For a gene g and case c, we
define cover(c, g) to be 1 if nominal p-value < 0.01 and 0 otherwise.

eQTL Profiles—To detect copy number alterations, samples were hybridized on the
Genechip Human Mapping 100K arrays, and copy numbers were calculated using
Affymetrix Copy Number Analysis Tool (CNAT 4). After probe-level normalization and
summarization, calculated log2-tranformed ratios were used to estimate raw copy numbers.
Using a Gaussian approach, raw SNP profiles were smoothed (> 500 kb window by default)
and segmented with a Hidden Markov Model approach (20–22). We first performed local
clustering, allowing us to obtain 911 tag loci (11). For each gene/tag-locus pair, we
computed nominal p-values by linearly regressing gene expression and genomic alteration
for all samples. We then define the eQTL significance profile for each gene, g, as Assoc (g)
= {s1(g), s2(g), … s911(g)}, where si(g) represents the −log10 p-value of the association
given by the linear regression between expression values of gene g and copy number
variation of locus i. Using such profiles, we defined the similarity of two genes g1 and g2,
sim(g1, g2), as Pearson’s correlation coefficient of Assoc (g1) and Assoc (g2).

Weights of Gene Pairs: We utilized human protein-protein interaction data from large-scale
high-throughput screens (23–25) and several curated interaction databases (26–29), totaling
93,178 interactions among 11,691 genes. As a reliable source of experimentally confirmed
protein-DNA interactions, we used 6,669 interactions between 2,822 transcription factors
and structural genes from the TRED database (30). As for phosphorylation events between
kinases and other proteins we found 5,462 interactions between 1,707 human proteins
utilizing networKIN (31, 32) and phosphoELM database (33). Combining all interactions,
the network contains 11,969 human proteins and 103,966 interactions. We computed the
weights of each gene pairs using equation (1) with avg_distance = 3.6 and θ = 0.63, a
threshold that corresponds to the top 1%ile of weights of any pairs.

5.2 Data Treatment for Ovarian Cancer Data from TCGA
We utilized the unified expression data compiled in (18) based on expression values from
three different expression platforms. Since there is no control (non-cancer data) in this
dataset, we defined that a gene covers a sample if its expression in this sample was in the
extreme 3% of the expression distribution. We then narrowed down the set of genes to 1,889
genes by considering genes that covered at least 5% of the samples. As for copy number
variations, we used level 4 data obtained with GISTIC (34) and selected 1,923 genes with
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copy number alterations (calls = ±2) in at least 5% of all samples. For each differentially
expressed gene we used linear regression to compute associations of the expression of this
gene with copy number variation of each of the 1,923 genes. We used p-values of these
associations to compute association profiles as explained in 5.1. Edge weights in interaction
graph were calculated as described in 5.1 with θ = 0.58, a threshold corresponding to the top
5% ile.
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Figure 1. Set Cover vs. Module Cover
(A) In a classical set cover, an edge from a gene to a disease case exists if the gene is
differentially expressed in the disease case (i.e. covering the case). Genes {B, C, E, F, G}
are selected, and all cases are covered at least 3 times. (B) A module cover selects coherent
modules. Red edges between genes represent the similarity between genes (e.g. based on the
correlation coefficient of their eQTL profiles or gene expression patterns). In the example,
modules {A, B, C}, {F}, {G, H} are selected, and all cases are covered at least 3 times.
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Figure 2. Comparison of module covers approaches in GBMs
(A) Manhattan plots of module associations show average association significance for each
tag-locus for the 10 largest modules we obtained with both methods. Modules obtained
using the integrated method had more significant eQTL associations. In the upper panel, we
also labeled associations that correspond to functionally coherent modules shown in Online
Appendix Fig. A2. (B, C) Comparing the quality of modules, we observed that the
Integrated method generated modules with higher strength, lower entropy and higher
specificity Module size is indicated by the sizes of corresponding circles. The label “single”
refers to modules we obtained using a set cover approach.
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Figure 3. Modules in ovarian cancer obtained by the integrated module cover method
(A) For each disease case (y-axis) we displayed in the heat map the number of genes in each
module that covered the sample (B) Expression based clustering of the genes in the modules
provided clusters consistent with the existing classification of cancer subtypes. Arrows
indicate genes of the extracellular matrix module discussed in the text. The fraction of genes
assigned to a given cluster in (18) is shown next to the cluster name.
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