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Background. Gene fusions arising from chromosomal translocations have been implicated in cancer. RNA-seq has the potential
to discover such rearrangements generating functional proteins (chimera/fusion). Recently, many methods for chimeras detection
have been published. However, specificity and sensitivity of those tools were not extensively investigated in a comparative way.
Results. We tested eight fusion-detection tools (FusionHunter, FusionMap, FusionFinder, MapSplice, deFuse, Bellerophontes,
ChimeraScan, and TopHat-fusion) to detect fusion events using synthetic and real datasets encompassing chimeras. The
comparison analysis run only on synthetic data could generate misleading results since we found no counterpart on real dataset.
Furthermore, most tools report a very high number of false positive chimeras. In particular, the most sensitive tool, ChimeraScan,
reports a large number of false positives that we were able to significantly reduce by devising and applying two filters to remove
fusions not supported by fusion junction-spanning reads or encompassing large intronic regions. Conclusions. The discordant
results obtained using synthetic and real datasets suggest that synthetic datasets encompassing fusion events may not fully catch
the complexity of RNA-seq experiment. Moreover, fusion detection tools are still limited in sensitivity or specificity; thus, there is
space for further improvement in the fusion-finder algorithms.

1. Background

Direct sequencing of messenger RNA transcripts using the
RNA-seq protocol [1] is rapidly becoming the standard
method for detecting and quantifying genes being expressed
in a cell. One of the key features observed when analyz-
ing cancer genomes is chromosomal abnormality. Genome
rearrangements could result in aberrant fusion genes, and a
number of them have been found to play important roles in
carcinogenesis [2]. The discovery of novel gene fusions can
lead to a better comprehension of cancer progression and
development. The emergence of deep sequencing of tran-
scriptome, known as RNA-seq, has opened many opportuni-
ties for the identification of this class of genomic alterations,
leading to the discovery of novel chimeric transcripts inmany
cancers [2]. In this paper, we compare eight fusion-finder

softwares to evaluate their relative efficacy in detecting in
fusion events.

2. Results

2.1. Fusion Finders. At the best of our knowledge, we have
identified Bellerophontes [3], ChimeraScan [4], deFuse [5],
FusionFinder [6], FusionHunter [7], FusionMap [8], Map-
Splice [9], and TopHat-fusion [10] as the most used tools for
chimeras detection.

The tools can be organized in various subgroups on the
basis of their alignment strategies. In this paper, we propose
the following classification: Whole paired-end, Paired-end +
fragmentation, and Direct fragmentation.

In the Whole paired-end approach, tools align the full-
length paired-end reads on a reference and use discordant
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alignments to generate a set of putative fusion events which
are finally selected using several additional pieces of informa-
tion or filtering steps.

Instead, the tools in the Paired-end + fragmentation class
derive the putative fusion events in two steps. First, as in the
Whole paired-end approach, the full-length paired-end reads
are aligned on a reference, and the discordant alignments
are used to generate new pseudoreference including only the
identified putative fusion events.Then, reads unaligned in the
first step are fragmented and realigned on the pseudorefer-
ence to identify junction-spanning reads. Only the putative
fusion events associated with junction-spanning reads are
selected as input to the filtering step.

Finally, the tools based on Direct fragmentation do not
directly exploit paired-end information; they fragment every
read before the first alignment and find fusion candidates
aligning those fragments to a genomic reference.

Theputative fusion events are then selected implementing
a set of filtering steps.

According to the previous classification the eight tools
compared in this paper can be grouped as following:

(1) deFuse and FusionHunter are Whole Paired-end
based tools;

(2) TopHat-fusion, ChimeraScan, and Bellerophontes are
Paired-end + fragmentation based tools;

(3) MapSplice, FusionMap, and FusionFinder are Direct
fragmentation based tools.

Since all the considered tools implement a set of filters
to reduce the number of false positive fusion events, a brief
description of these filters is reported.

Paired-End Information Filter. It uses the distance between the
tags of a pair to validate the alignment on a fusion.

Anchor Length Filter. Anchor length is an important metric
for quality evaluation of a read spanning across a fusion
junction, and it is defined as the number of nucleotides
overlapping each side of the break point.The filter removes all
the junction-spanning reads having the anchor length lower
than a threshold.

Read-Through Transcripts Filter. It removes the RNA mole-
cules formed by exons of adjacent genes, usually generated by
the RNA-polymerase failing the recognition of the gene end.

Junction-Spanning Reads Filter. It discards all fusion events
supported by a number of junction-spanning reads lower
than a threshold.

PCR-Artifact Filter. It identifies and removes all duplicated
reads introduced by the PCR amplification process.

Homology-Based Filter. It removes candidate fusions with a
high number of reads on homologous or repetitive regions.

Quality-Based Filters. It is a group of filters that uses different
metrics (e.g., entropy, base quality, etc.) for computing the

Table 1: Filtering steps embedded in the algorithms.

Filters Fusion finders
FF THF MS FM FH DF BF CS

Pair distance X X X X
Anchor length X X X
Read-through X X X X X
Junction-spanning X X X
PCR artifact X X X
Homology X X X
Quality X X
FF: FusionFinder; THF: TopHat-fusion; MS: MapSplice; FM: FusionMap;
FH: FusionHunter; DF: deFuse; BF: Bellerophontes; CS: ChimeraScan.

fusion quality.Then, all the candidateswith quality lower than
a threshold are removed.

In Table 1, we report the implemented filters for each
considered tool.

2.2. Fusion Detection Sensitivity. To compare the sensitivity
of chimera finder algorithms, we used three datasets.

The first dataset is synthetic (FM set), while the other
two are based on real data (Edgren set [11] and Berger set
[12]). All the datasets are paired-end ones.The synthetic set is
composed of 75 nts reads, while the other two contain 50 nts
reads. FM set encompasses 50 fusion events, supported by
9 to 8852 paired-end reads. The Edgren set encompasses a
total of 27 experimentally validated fusion genes, detected
in BT-474, SK-BR-3, KPL-4, and MCF-7 breast cancer
cell lines [11]. Berger set encompasses a total of 12 experi-
mentally validated fusion genes, detected in 501Mel
(Melanoma), K-562 (Leukemia) cell lines, and in 5 samples
from primary human melanoma [12].

In this analysis of sensitivity, we considered three param-
eters: (i) the total number of true positive fusions detected by
the different tools (called all), (ii) the number of true positive
fusions detected by the correct orientation of the two genes
(called right), and (iii) the number of true positive fusions
detected by erroneous orientation of the two genes (called
wrong).

Using the syntheticFM set, five out of eight analyzed tools
show a good sensitivity, since they detect 40 out of 50 fusions
(Figure 1(a), blue bars). ChimeraScan was the least sensitive
detecting only nine out of 50 fusions (Figure 1). FusionFinder
and ChimeraScan were the only tools that did not make any
error in the detection of the fusions orientation (Figure 1(a),
red bars). It is notable that Bellerophontes was calling all
fusion events in both possible orientations, essentially leaving
to further down-stream analysis the definition of the correct
orientation of fusion events.

The same analysis performed on the Edgren set provided
a completely different view of sensitivity of the analyzed
tools (Figure 2). From this analysis, ChimeraScan performed
better than all the other tools concerning the number of
detected chimeras and the correct orientation of the fusion
events; 19 out of 27 fusions were all detected in the right
orientation. TopHat-fusion was as sensitive as ChimeraScan
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Figure 1: Fusion events detection performances on positive data set
encompassing 50 synthetic fusion events (FM set). Total number of
detected fusions is shown on the top of each bar set. FF: Fusion-
Finder; THF: TopHat-fusion; MS: MapSplice; FM: FusionMap; FH:
FusionHunter; DF: defuse; BF: Bellerophontes; CS: ChimeraScan.

detecting 19 chimeras, but only 8 of them were in the correct
orientation. Furthermore, the 19 true fusionswere part of a set
of more than 130000 events, which makes quite difficult the
task of purging the false positives. deFuse and FusionFinder
came in sensitivity after ChimeraScan and TopHat-fusion,
detecting 16 and 13 chimeras, respectively. FusionHunter and
FusionMap performancewas very poor, with 8 and 4 detected
chimeras. MapSplice and Bellerophontes data could not be
collected because, after 10 days from the beginning of the
analysis, the tools were still filtering fusions events.

We also evaluated the level of overlap between the various
tools for the Edgren set chimeras (Figures 2(b) and 2(c)).
ChimeraScan encompasses all genes detected by FusionMap
and the majority of the fusions detected by the other tools.

Another interesting point is the strong difference between
tools in the number of fusions called. At the two extremes
are TopHat-fusion, calling more than 130000 chimeras, and
FusionHunter, calling only 26 chimeras. We also observed
that the best two tools, ChimeraScan and TopHat-fusion,
are the ones with the highest number of called fusions. The
number of called chimeras is, however, not proportional with
the number of detected true positives; for example, both
ChimeraScan and TopHat-fusion detect 19 true positives.
However, the number of chimeras detected by TopHat-fusion
is approximately ten times greater than those detected by
ChimeraScan (Figure 2).

We further confirm that ChimeraScan performs better
than the other tools also on Berger set (Figure 3). It is
notable that the fusion discovery sensitivities for FusionMap,
FusionHunter, deFuse, TopHat-fusion, and ChimeraScan,
previously observed in the Edgren set, are also kept in
the Berger set, and TopHat-fusion is again the best tool in
sensitivity after ChimeraScan. However, it is notable that also
in Berger set, we have a very high number of called fusions
for ChimeraScan and TopHat-fusion, which may make their
use in a real experimental setting unpractical.

2.3. False Discovery of Fusions. As shown in the previous
paragraph, real datasets are useful to test tools in conditions
that resemble their everyday usage. However, real datasets
have the limitation that the exact number of true positive
fusions is not known; thus, false positive detection cannot
be assessed. For this reason, we have used a negative data set
(called negative set) encompassing 70million reads 2 × 50 nts
[13].

FusionHunter and Bellerophontes are the only tools not
detecting false chimeras in the negative dataset (Figure 4).
The number of false positives increases progressively from
FusionMap, deFuse, ChimeraScan, FusionFinder, and
MapsSplice to TopHat-fusion, which has the highest number
of false positive detected chimeras.

We try to evaluate, for ChimeraScan, if there is a bias
in the discovery approach of the tool, which could lead to
find the same fusions in different datasets. Intersecting the
fusions detected in the Edgren set and in the Berger set and
those detected in the negative set, the overlap is marginal.
Sixty fusions are found in common between the negative set
and the Edgren set, 197 between the negative set and the
Berger set, and only 38 fusions are in common between the
previous two comparisons. This observation suggests that
false positives aremainly dataset specific and not significantly
biased by the tool characteristics.

2.4. Optimizing Removal of False Positive Fusions. Being
ChimeraScan the most efficient tool in detection of fusion
events in the right orientation, we evaluated various filtering
approaches to reduce the false positive fusions contaminating
the real fusion events. Specifically, we used the characteristics
of the chimeras detected in the negative set to define false
positive filters. We observed that many chimeras found in
the negative set by ChimeraScan were supported by reads
encompassing the two exons of the genes involved in the
fusion and were missing reads spanning over the fusion
junction. Since the presence of junction-spanning reads is an
important positive parameter for the definition of a fusion
event [2], we decided to filter-out all the chimeras detected in
the Edgren set but not supported by reads spanning over the
fusion junction.The filter is very efficient since we retain only
681 fusions out of the initial 13346 detected by ChimeraScan.
Concerning the true positives, 17 out of the 19 detected
fusions are also retained. RPS6KB1:SNF8 and CPNE1:PI3 are
instead lost.

It is interesting to note that RPS6KB1:SNF8 can be
detected by deFuse, FusionHunter, and TopHat-fusion, while
CPNE1:PI3 could be found by FusionFinder and TopHat-
fusion. All the previously mentioned methods manage to
detect spanning reads for RPS6KB1:SNF8 and CPNE1:PI3,
suggesting that ChimeraScan algorithm fails to detect those
spanning reads. We are currently trying to find out the
reason why ChimeraScan failed in detecting the prviously
mentioned fusion junction spanning reads. Furthermore,
tools already implementing a filter based on the number of
junction-spanning reads consistently show a lower number
of reported fusions.

We have also observed the presence of a high number of
fusions encompassing intronic region in the fusions detected
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Figure 2: Analysis of sensitivity of fusion finders in a real data set encompassing 27 validated fusions (Edgren set). (a) Total number of detected
fusions is shown on the top of each bar set. (b) and (c) Venn diagrams showing the overlaps between fusions founded by different tools. The
ellipse of the ChimeraScan is highlighted in red. FF: FusionFinder; THF: TopHat-fusion; MS: MapSplice; FM: FusionMap; FH:FusionHunter;
DF: defuse; BF: Bellerophontes; CS: ChimeraScan.

in negative set. These fusions generate very large transcripts,
which do not produce in frame transcripts. Removing them
from the 681 fusions detected in the Edgren set,we retain 249
chimeras, without loss of true positives. Again, some of tools
include alignment approaches with an effect similar to this
filter by aligning reads to the transcriptome.

Although 249 chimeras represent a significant reduction
of the initial number of detected chimeras, they are still
too many to be all experimentally validated. Sorting the 249
chimeras in descending order, on the basis of the number
of fusion junction-spanning reads, we show that with the
top 17 chimeras, 10 were part of the 17 true positives. The
rationale of this ranking procedure is that biological effect
also depends on the amount of the expressed mRNA; thus,
highly expressed fusions, that is, fusions with a high number
of junction-spanning reads, might have a more important
role in cancer physiology.

3. Discussion

The main goal of this paper is to understand strength
and limits of the main fusion detection software currently
available. To reach our aim, we have evaluated sensitivity and
false fusion discovery for eight state-of-the-art fusion finders:
Bellerophontes, FusionHunter, FusionMap, FusionFinder,
MapSplice, deFuse, ChimeraScan, and TopHat-fusion. We
run this comparison using both synthetic and real datasets.

Concerning sensitivity, we observed that a comparison
analysis run only on synthetic data could generatemisleading
results. Sensitivity analysis run on the synthetic data only
results in ChimeraScan being the least sensitive tool, while
it is actually the most sensitive tool on real datasets. We think
that discrepancies between results obtained on synthetic
and real data are due to the actual lack of knowledge of
the real complexity of RNA-seq data that does not allow
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Figure 3: Analysis of sensitivity of fusion finders on a real data
set encompassing 12 validated fusions (Berger set). Total number
of detected fusions is shown on the top of each set of bars. FM:
FusionMap; FH: FusionHunter; DF: defuse; CS: ChimeraScan; THF:
TopHat-fusion.
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Figure 4: False positive fusion detected using a synthetic dataset
without chimeras. FF: FusionFinder; THF: TopHat-fusion; MS:
MapSplice; FM: FusionMap; FH: FusionHunter; DF: defuse; BF:
Bellerophontes; CS: ChimeraScan.

the construction of fully significant synthetic datasets. The
analysis of real datasets allows us to identify ChimeraScan
as the most sensitive tool for chimeras detection although
ChimeraScan output is affected by a very high number of
called fusions, a number too big to make a functional experi-
mental validation feasible. A synthetic dataset, free of fusion
events by construction (negative set), represents an interest-
ing instrument to understand the basic characteristics of false
fusions detected by ChimeraScan and to define specific filters
to remove them. It was observed that themain characteristics
of false positive fusions in the negative set are both the lack of

fusion junction-spanning reads and the inclusion of intronic
regions in the fusion. The application of two filters, based
on the previous false positive characteristics, proves to be
very efficient in reducing the 13346 initially detected fusions
(Edgren set) to 249, with the limited loss of two true positive
chimeras. It is also notable that ranking chimeras on the basis
of the number of fusion junction-supporting reads also helps
to further narrow the set of chimera to be experimentally
validated.

4. Conclusions

This paper highlights that fusion detection tools are still
not fully adequate to provide a direct solution for the
discovery of chimeras in a dataset. Many algorithms have
been proposed, and each of them has specific biases at the
level of sensitivity or specificity. Tools having low sensitivity
are also characterized by a limited number of false positives.
Moreover, results obtained by the low sensitivity tools show
very limited overlap in the results. On the other hand, tools as
ChimeraScan and TopHat-fusion show a good sensitivity but
also the presence of a high number of false positives. Filters
devoted to the removal of false positives can significantly
improve the ratio between true positives and false positives,
but there is clearly space for algorithm improvements.

5. Methods

5.1. Fusion Detection Softwares and Data Analysis.
FusionHunter, FusionMap, FusionFinder,MapSplice, deFuse,
ChimeraScan, Bellerophontes, and TopHat-fusion were
downloaded from the repositories indicated in their publica-
tions and installed following requirements indicated in their
manuals. Software was run using default configuration. All
analyses were performed on a 48-core AMD server with
512Gb RAM and 9Tb HD, running linux SUSE Enter-
prise 11. Statistics and data parsing were executed using R
scripting, taking advantage of Bioconductor [14] packages,
that is, Biostrings, org.Hs.eg.db, GenomicRanges, and
oneChannelGUI [15].

5.2. Positive Dataset. FusionMap developers provide a syn-
thetic dataset of simulated paired-end RNA-seq reads
(∼60,000 pairs of reads, 75 nt, fragment size = 158 bp). Fifty
fusions are representedwith a range of supporting pairs going
from 9 to 8852. Real datasets encompassing experimentally
validated chimeras were retrieved fromNCBI Sequence Read
Archive (SRA:SRP003186) as described in [11] and fromNCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo/), SuperSeries Accession no. GSE17593 as described in
[12].

5.3. Negative Dataset. The negative dataset was generated
using BEERS [16], and its construction is described in [13].
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