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Abstract

The neurochemical changes underlying human emotions and social behavior are largely unknown. 

Here we report on the changes in the levels of two hypothalamic neuropeptides, hypocretin-1 

(Hcrt-1) and melanin concentrating hormone (MCH), measured in the human amygdala. We show 

that Hcrt-1 levels are maximal during positive emotion, social interaction, and anger, behaviors 

that induce cataplexy in human narcoleptics. In contrast, MCH levels are minimal during social 

interaction, but are increased after eating. Both peptides are at minimal levels during periods of 

postoperative pain despite high levels of arousal. MCH levels increase at sleep onset, consistent 

with a role in sleep induction, whereas Hcrt-1 levels increase at wake onset, consistent with a role 

in wake induction. Levels of these two peptides in humans are not simply linked to arousal, but 

rather to specific emotions and state transitions. Other arousal systems may be similarly 

emotionally specialized.

Due to the link between the loss of hypocretin (Hcrt) neurons and human narcolepsy1-3, 

much work has focused on Hcrt’s putative role in maintaining waking. Its role in preventing 
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cataplexy has remained unclear. Moreover, studies using Fos immunohistochemistry, Hcrt 

knockouts and Hcrt receptor blockers have suggested conflicting conclusions about the 

relation of Hcrt to food intake, anxiety, stress, positive vs. negative emotions and muscle 

tone increase vs. decrease4, 5. Some of these conflicts may stem from the limited temporal 

resolution of the Fos technique, which reflects activity occurring over the entire 2 h period 

prior to sacrifice. Others may be due to species differences and the brain reorganization that 

occurs in Hcrt mutant animals6.

Cataplexy, a sudden loss of muscle tone with maintained consciousness, is the unique 

symptom of narcolepsy. Triggers for cataplexy are strikingly species-specific. In human 

narcoleptics, cataplexy is most commonly triggered by laughter, next most commonly by 

angry interactions, less frequently by athletic exertion and rarely by eating, pain or anxiety7. 

In the narcoleptic sheep, cataplexy is most reliably triggered by the sound of dogs barking or 

by being knocked over, presumably anxiety-eliciting stimuli, but never by eating or by play 

behavior (our unpublished observations and 8). In narcoleptic dogs, cataplexy is triggered by 

eating favored foods or by “playful” running and pulling, never by aversive situations6. In 

narcoleptic cattle, aggressive behavior in the affected animal is the most frequent trigger9. In 

“narcoleptic” rats and mice, exploration and the eating of certain foods are the most reliable 

triggers of cataplexy10.

Although the activity of Hcrt cells may have a role in preventing cataplexy, these neurons 

are not solely active during behaviors associated with cataplexy, a symptom which typically 

happens less than once or twice a week in most human narcoleptics. In the normal rat, Hcrt 

neurons discharge at variable rates throughout the waking period11 and release of this 

peptide, measured in cats, varies considerably across the waking state12. Hcrt unit discharge 

rate, observed in rats is minimal in nonREM sleep. Although rates are low in REM sleep, 

occasional burst discharge of Hcrt cells is seen during this state11, 13.

The functional role of melanin-concentrating hormone (MCH) is also unclear. MCH is 

synthesized in non-Hcrt neurons which are anatomically intermixed with Hcrt neurons and 

these neurons are thought to interact 2, 14-16. Whereas most evidence suggests that Hcrt 

neurons are maximally active during waking, similar evidence suggests that MCH neurons 

are maximally active during sleep17, 18. The release of MCH across the sleep-wake cycle 

and its relation to waking behavior has not been measured in any species.

In the current paper, we first report on the levels of Hcrt-1 and MCH in the rat, showing that 

these levels are synchronously modulated in the amygdala and hypothalamus, increasing the 

likelihood that measurements of levels of these peptides in the human amygdala reflect 

release in widespread brain regions. We then report measurements of Hcrt-1 and MCH 

levels in the amygdala of human patients, each monitored continuously over several days 

during their complete range of spontaneous behaviors and with their assistance in 

quantifying their emotions. We find that maximal Hcrt levels occur during social 

interactions and subject-reported positive emotions or anger. Minimal Hcrt levels occur 

during pain and sleep. MCH levels are maximal at sleep onset and after eating. Minimal 

MCH levels occur during waking pain and during social interaction. This is the first study of 

neurotransmitter levels in relation to human emotions.
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Results

Hcrt-1 and MCH levels in the rat brain

Hcrt neurons produce both Hcrt-1, which is stable and Hcrt-2, which is rapidly metabolized. 

Both peptides are derived from preprohypocretin19, 20. We first undertook studies of Hcrt-1 

and MCH levels in 4 rats to determine whether there were strong regional differences 

between levels in the hypothalamus, the location of all Hcrt and most MCH cell bodies, and 

the amygdala, one of the many brain regions innervated by collaterals of Hcrt and MCH 

axons and the region sampled in all of our human subjects, as dictated by clinical 

considerations.

In the rat, average waking Hcrt-1 concentrations were 0.11±0.02 fmol/10 μl in the 

hypothalamus and 0.06±0.01 fmol/10 μl in the amygdala. Average waking MCH 

concentrations were 0.10±0.03 fmol/10 μl in the hypothalamus and 0.10±0.03 fmol/10 μl in 

the amygdala. Hcrt-1 levels in the hypothalamus were highly correlated with Hcrt-1 levels in 

the amygdala. MCH levels in the hypothalamus were also highly correlated with MCH 

levels in the amygdala (Table 1).

Microdialysis setup in human patients

All eight patients were psychologically normal and had seizures of suspected unilateral 

temporal lobe origin. Patients were implanted with bilateral probes to localize the side which 

contained the primary seizure focus, for subsequent surgical removal. Using angiography 

and magnetic resonance imaging, electrode trajectory was adjusted to avoid major blood 

vessels. Electrodes generally passed though the temporalis muscle and dialysis probes were 

in the amygdala (Fig. 1). Some patients reported episodic pain localized to the muscle, 

whereas others did not have significant pain. Microdialysis experiments were performed 

between 2 and 5 days after electrode implantation. Only one patient had a seizure during the 

period in which we collected dialysate. No data from the 5 h period after seizure onset was 

used in the current study. Primary seizure foci were found to be in ipsilateral or contralateral 

cortical regions (See Table 2).

Continuously recorded videos were scored for TV watching, social interactions (talking to 

physicians, nursing staff or family), eating, pain reports, clinical manipulations and sleep-

wake transitions. Notes of activities were made throughout the study, every 15 min in 

synchrony with our 15 min microdialysis sample collection interval, by an experimenter in 

the patients’ room. The subjects rated their moods and attitudes on our questionnaire, 

administered every hour during waking (see Supplementary Methods).

Hcrt-1 and MCH levels in the human brain

Average waking (Awake, Fig. 2) Hcrt-1 concentration in samples from the amygdala of 

humans was 0.16±0.01 fmol/15 μl. Average waking MCH concentration was 0.09±0.01 

fmol/15 μl. We compared levels in our 15 min microdialysis samples from the left and right 

amygdala of two patients to determine if changes in the levels of these peptides were 

bilaterally correlated. Hcrt-1 levels in the right and left amygdala were significantly 

correlated in the 24 h period monitored in both patients, as were MCH levels (Patient 4; 
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Hcrt-1, r=0.81, p=0.0001, df=77; MCH, r=0.40, p=0.0003, df=77; Patient 5: Hcrt-1, r=0.60, 

p=0.0001, df=76; MCH, r=0.22, p=0.048, df=76, Pearson product-moment correlation 

coefficient). All the data presented below were derived from the left amygdala.

Hcrt-1 and MCH levels correlate with emotional state

After log transformation, one-way ANOVA of peptide levels measured during the 13 

behaviors evaluated showed significant differences for both Hcrt-1 (F=7.4, p<0.0001) and 

MCH (F=3.4, p<0.001). The number of observations for the ANOVAs and Fisher’s Least 

Significant Difference post-hoc comparisons are provided in Table 3. We found that high 

levels of Hcrt-1 in humans consistently occurred during social interactions (p<0.002), 

comparing the mean Hcrt-1 levels during social interaction with awake levels 

(awake=waking without social interaction or emotion reports; Fig.2A, Fig.3D, Fig.4). 

Waking periods with positive emotion had significantly higher levels than waking periods 

with negative emotion (p<0.02; Fig 2A).

Average Hcrt-1 levels in the 15 min period of wake onset (Fig 2A) were significantly higher 

than levels during sleep (p<0.01) and during the 15 min period prior to sleep (p<0.05). 

Surprisingly, average Hcrt-1 values during periods of waking pain were as low as sleep 

values (Fig. 2A, Fig 3C, Table 3).

MCH levels were significantly increased after eating compared to awake levels (p<0.01; Fig 

2B, Fig3A). We found an interesting dissociation between Hcrt-1 and MCH levels at sleep 

onset. Hcrt-1 levels did not significantly change at sleep onset because Hcrt-1 levels were 

reduced prior to sleep onset and remained below awake levels throughout sleep (p<0.01, 

Fig. 2A). Conversely, MCH level was maximal at sleep onset (Fig. 2B, Fig 3B) and this 

value significantly exceeded wake onset levels (p<0.01).

We found a significant negative relation between MCH levels and the level of questionnaire-

indicated pain (r=-0.32, df=45, p=0.03). There was also a significant positive correlation 

between Hcrt-1 levels and the level of questionnaire-indicated anger (r=0.49, df=45, 

p=0.043), consistent with anger being a common trigger of human cataplexy7.

Discussion

In the current study, we found that Hcrt-1 level is not a simple function of arousal. Hcrt-1 

levels were higher when subjects showed laughter or excitement than when subjects 

reported feeling frustrated or sad. Furthermore, we found that Hcrt levels were low during 

waking pain. Allowing for species differences, these human data bear considerable 

resemblance to data on Hcrt cell activity in animals. Our prior studies of Fos expression, an 

indication of elevated rates of neuronal discharge, in Hcrt neurons of wild type mice found 

that these neurons are maximally active during performance of rewarded behaviors5 and that 

Hcrt knockout mice were strikingly deficient in staying awake to perform rewarded 

behaviors. Two other studies reported a similar involvement of Hcrt neurons in positive 

reinforcement21, 22. Our studies of Fos expression in wild type mice also showed that Hcrt 

neurons were not activated beyond baseline levels during foot shock, or foot shock 

avoidance behavior, despite high levels of EEG arousal5. We have also reported that Hcrt 
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unit activity in rats is suppressed in novel situations eliciting withdrawal, despite maximal 

levels of EEG activation. In contrast, Hcrt unit activity is high during grooming and 

exploration11. In studies in normal dogs, we found that treadmill running does not elevate 

Hcrt level, whereas play behavior of similar cardiovascular intensity greatly increases Hcrt 

level23, 24. Our prior studies of Fos expression in animals in combination with our current 

results in humans suggest the Hcrt system promotes arousal associated with positive 

emotion and anger, rather than arousal in general.

The amygdala is known to be a vital structure in sleep regulation25-30. We have found sleep 

active and cataplexy active neurons in the amygdala of narcoleptic dogs25 and evidence that 

pathology in the amygdala is linked to the symptoms of canine narcolepsy29. However, the 

pattern of Hcrt-1 release that we see in the amygdala is unlikely to be restricted to the 

amygdala. The branching pattern of individual Hcrt neurons31 suggests that a similar pattern 

of release is likely to be observed in all target regions. In prior investigations of arousal 

related systems with similar widely branching axons, we and others have found, for 

example, that serotonin, norepinephrine and dopamine release in the spinal cord are highly 

correlated with release in the brainstem32. In a prior study we have found that Hcrt release 

follows the same profile in the hypothalamus and the brainstem locus coeruleus12, and in the 

current study we see the same pattern in the amygdala and hypothalamus of rats.

Humans who have attempted suicide have reduced levels of Hcrt-1 in their cerebrospinal 

fluid33. Furthermore, a study of the performance of depressed humans in a structured task 

found that although they work as hard as non-depressed individuals to avoid loss of money, 

they do not work as hard as controls to acquire additional money34. This parallels our animal 

studies showing activation of Hcrt neurons during positively motivated tasks, but not during 

negatively motivated tasks5. The current results, in concert with these prior animal and 

human studies suggest that depression and reported difficulties with social interaction in 

narcolepsy and Parkinson’s 35 may be related to the loss of Hcrt cells in both of these 

conditions2, 14, 36. However, we cannot eliminate the indirect role of the disability that 

accompanies these disorders in generating depression in humans. Our data suggest that Hcrt 

antagonism may be a risk factor for depression and that Hcrt supplementation may have 

antidepressant effects.

We found that Hcrt levels do not decrease significantly at sleep onset. This suggests that a 

reduction in Hcrt-1 level may be linked to the quiet waking that precedes sleep, rather than 

being directly linked to sleep onset. Furthermore, our findings of low levels of Hcrt during 

pain in humans and low levels of Hcrt unit activity during anxiety in rats and mice5, 11 

suggest that Hcrt antagonists, now being developed as hypnotic agents37, may not be 

effective in sleep induction in insomnia resulting from these aversive conditions, since the 

current data suggest that activity of the Hcrt system is already minimal at these times. On the 

other hand, our finding that MCH levels are maximal at sleep onset suggests that stimulation 

of the MCH system may alleviate insomnia.

Although we did not find that Hcrt-1 levels significantly decreased at sleep onset, Hcrt-1 

levels showed a substantial increase at awakening. This is consistent with our prior work in 

rats showing that Hcrt neurons burst prior to awakening11 and with the finding that 
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optogenetic activation of Hcrt cells can induce waking in mice38. Increased activity at wake 

onset, however, is not confined to Hcrt neurons, but is also seen in medial reticular39 

noradrenergic, serotonergic40, histaminergic and other neurons39.

The concept of an ascending activating system and the subsequent realization that there are 

several components to this system led to suggestions that these systems worked in concert 

and redundantly, i.e. that cholinergic, adrenergic, histaminergic and hypocretinergic systems 

were active simultaneously to sustain waking 41. The current results suggest the existence of 

a substantial level of specialization for the Hcrt system and perhaps for other traditionally 

designated “arousal systems.” The minimal level of Hcrt-1 during pain indicates that other, 

as yet unidentified, systems must be responsible for pain-induced arousal in humans. 

Narcoleptics have been reported to be hyperalgesic42.

A large amount of data has suggested, but not proved, a reciprocal relationship between the 

activity of MCH cells and Hcrt cells15, 43-45. Our data are not inconsistent with the general 

idea of a reciprocal relationship. We see high levels of Hcrt-1 in relation to social activity 

and emotion, particularly positive emotion. We see minimal levels of MCH during emotion 

and during social interaction. However, our data show that the levels of these peptides are 

not always inversely related. The levels of both are minimal in pain. The major increase in 

MCH at sleep onset is not matched by a major decrease in Hcrt-1. Conversely the major 

increase in Hcrt-1 levels at wake onset is not matched by a major decrease in MCH levels. 

The activity of these peptides also differed after food consumption with a significant 

increase in MCH levels but no significant change in Hcrt-1 levels. A considerable amount of 

work has suggested that Hcrt release is linked to food intake20, but some recent work has 

raised doubts about the specificity of this relation4, 23, 46. In the current study we have 

directly compared the effects of eating with the effects of mood on Hcrt-1 level in humans 

and find that the latter has a far greater effect on Hcrt-1 levels.

Fos studies have produced conflicting conclusions regarding the determinants of Hcrt cell 

activation. When stress lasting for 5-30 minutes was followed by release back into the home 

cage, Fos was expressed in Hcrt neurons47. However, when stress was maintained for the 

entire 2h incubation period for Fos expression, little or no Fos expression was observed in 

Hcrt neurons48. Furlong et al.49 concluded that Fos expression in Hcrt neurons was maximal 

during exploration, consistent with our prior data on Hcrt unit activity in the rat11. These 

data suggest that the increased Fos expression in Hcrt neurons reported in a few papers with 

restraint, shock or “panic”50 may be due to increased waking and grooming subsequent to 

the aversive stimulus, compared to controls, rather than the aversive situation itself. 

Furthermore, studies of cerebrospinal fluid retrieved from the lumbar cistern50 are difficult 

to interpret since lumbar CSF levels represent an average of peptide release over the prior 6 

hours.

Laughter, social interaction, and anger are the three most frequent triggers of human 

cataplexy, the most debilitating symptom of narcolepsy in many patients7. Animal studies 

cannot shed much light on why this is so, since important aspects of these behaviors are 

qualitatively unique to humans. Our current findings show that a common element in these 
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three behaviors in non-narcoleptic humans is a surge of hypocretin levels, a peptide that is 

pathologically deficient in those who have cataplexy, i.e. narcoleptics1, 2.

Relatively little work has been done on the behavioral correlates of MCH cell activity. 

Studies with sleep deprivation and sleep rebound44 suggest that MCH activity may promote 

sleep in accordance with the current findings. However, these cells have not yet been studied 

during the performance of operant tasks in waking that might allow comparison of their 

discharge with Hcrt cells.

In summary we found that Hcrt-1 level, as assayed in the amygdala, was not linked to 

arousal per se, but was maximal during positive emotions, anger, social interaction and 

awakening in humans. Conditions that trigger cataplexy and high Hcrt-1 levels may be those 

that elicit approach. In contrast, we found that conditions associated with minimal Hcrt 

levels are those eliciting withdrawal, such as pain, or in the case of our prior animal work, 

anxiety5, 11. In contrast, MCH levels were maximal during sleep onset and minimal during 

social interactions. Together these results suggest a previously unappreciated emotional 

specificity in the activation of arousal and sleep induction systems in humans. Abnormalities 

in the pattern of activation of these systems may contribute to a number of psychiatric 

disorders.

Methods

Rat studies

All animal studies followed NIH guidelines and were approved by the Institutional Animal 

Care and Use Committee of the VA Greater Los Angeles Healthcare System. Rats were 

anaesthetized with a ketamine/xylazine injection (100 mg/kg and 15 mg/kg, i.p.). Anesthesia 

was maintained with 0.5-1.0% isoflurane. Using a stereotaxic frame under aseptic 

conditions, 2 guide cannulae were implanted in each rat. The cannulae tips were directly (0.5 

mm) above the right hypothalamus (perifornical area; A -3.2, L -1.6, H -7.5) and left 

amygdala (central nucleus; A -2.5, L 4.1, H -7). Stainless steel screws were implanted 

bilaterally over the frontal and parietal areas for EEG recording, and EMG was recorded 

with stainless steel wires inserted into the dorsal neck muscles.

Microdialysis probes with 2 mm membranes (Eicom probes C-I-14-02, Hospal membrane, 

40 kDa cut-off) were inserted through the guide cannulae (AG-14, Eicom) into the target 

areas. 1.0 mm Teflon tubing (JT-10-100, Eicom) was connected to the inflow and outflow 

portions of the probe. aCSF (Harvard Apparatus, MA, USA) with 0.025% rat serum albumin 

(Sigma) was continuously perfused at 2 μl/min using a syringe pump (EPS-64, Eicom). 

Samples were collected every 5 minutes using a fraction collector with an electronic cooler 

(EFC-82 and EFR-82, Eicom). Samples were stored at -80°C until analyzed with 

radioimmunoassay (RIA). Each sample was analyzed for both peptides by sequential 

multiple antigen solid-phase radioimmunoassay (RIA)51 providing IC50/limit of detection 

of 0.6/0.025 fmol and 1.5/0.025 fmol for Hcrt-1 and MCH, respectively. To determine probe 

recovery, a probe similar to the ones used in this study (2 mm membrane, C-I-14-02, Eicom) 

was placed in solutions of 0.1 nM, 1 nM and 10 nM unlabeled hypocretin-1 (Hcrt-1) and 

melanin concentrating hormone (MCH) (Phoenix Pharmaceuticals) in aCSF and 0.025% 
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RSA and perfused at a rate of 2 μl/min. The in vitro recovery of Hcrt-1 and MCH across a 

2.0mm long membrane was 1.5 +/- 0.2% for Hcrt-1 (n=4) and 3.5 +/- 0.8% for MCH (n=4). 

Measured concentrations can be assumed to reflect changes in release as well as any 

changes in the metabolic breakdown of the peptides.

Human studies

Eight patients (Table 2), diagnosed with pharmacologically resistant epilepsy were studied. 

These patients required implantation of depth electrodes to identify the brain area generating 

their seizures because pre-surgical diagnostic evaluation with scalp EEG, MRI and PET 

scans had localized no anatomically or functionally abnormal site for curative surgical 

resection. All patients gave their informed consent for participation in this study, and the 

protocol was approved by the UCLA Medical School Institutional Review Board. Because 

the area in the brain generating seizure activity is usually quite limited, in our experience, 

identification and subsequent removal of the seizure focus renders the great majority of 

patients free from seizures for the remainder of their lives 52. After the surgical implant the 

subjects recovered in the Neurological Intensive Care Unit for approximately 24 hours, and 

they were then transferred to the Medical-Surgical Specialty Unit where the studies were 

done.

The depth EEG electrode was 1.25 mm in diameter and consisted of MRI-compatible, 

flexible, polyurethane probes with six or seven 1.5-mm-wide platinum contacts with 

intercontact separations of 1.5 to 4 mm (Fig. 5a). It was stereotaxically inserted under 

general anesthesia through temporal lobe cortex into the amygdala (Fig. 5b, Fig 1). The 

lumen of the EEG electrode allowed insertion of the microdialysis probe. The microdialysis 

probe consisted of two fused silica tubes used for inflow (105 and 40 μm outer diameter 

(OD) and inner diameter (ID) respectively; length 39 cm) and outflow (150 and 75 μm OD, 

ID; length 39 cm) (Fig. 5a). The tubes were inserted into a 20 mm long Cuprophan (12 kD 

cutoff, 220 μm OD, 200 μm ID) membrane (made by Membrana GmbH, Wuppertal, 

Germany), or into a Hospal membrane in the case of patient d378. Dialysis membranes 

extended 5 mm beyond the EEG probe (Ad-Tech Medical Instrument Corp BF-7 Macro 

Depth Electrode) and connected to a fraction collector via fused silica tubing (Polymicro 

Technologies, 375 and 150 μm OD and ID; length 150 cm). A mini-pump (CMA 102) was 

used to perfuse sterile phosphate-buffered aCSF through the probes at a flow rate of 1 μl/

min. Samples were collected continuously at 15 min intervals (30 min for patient d378) for a 

period of 2-4 days and stored at -80° C. The in vitro recovery of [125I] Hcrt-1 with a 

Cuprophan membrane constructed in the same manner as those used in this study was 

approximately 4.5%. The recovery of Hcrt-1 and MCH as measured by RIA with the 

Cuprophan probe was 2.4 +/- 0.7% for Hcrt-1 (n=10) and 1.4 +/- 0.3% for MCH (n=10). 

The actual probes used in the patients of this study could not be tested for peptide recovery 

as residual peptides could trigger an immune response when implanted into the brain. These 

probes were tested for glutamate and aspartate or monoamines and average recovery was 

found to be 29% for aspartate, 31% for glutamate and 23%, 27%, and 45% for 

norepinephrine, dopamine, and serotonin, respectively. Our early work establishing the 

feasibility of measuring peptides with microdialysis51 demonstrated that the thin-wall 

thickness version of the Cuprophan membrane was the optimal membrane for the current 
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studies. A 12kDA cut-off is above the molecular weight of both peptides studied here (3,561 

and 2,387 for Hcrt-1 and MCH, respectively).

The statistical analyses presented above included only the seven patients implanted with the 

Cuprophan membranes (six in the case where one patient did not have data on an examined 

parameter). The results with the Hospal membrane (Fig. 4) were similar to those found with 

the Cuprophan membrane. A total of 843 15-min samples were collected and analyzed for 

both peptides (Table 2).

The microdialysis procedure was also being used in these patients to sample 

neurotransmitter levels prior to and during seizures to better understand the seizure initiation 

process and its variation across patients52-56. We found that Hcrt and MCH levels assayed 

with our Cuprophan membrane were stable for as long as 4 days. We have been able to 

measure glutamate and glutamine with these electrodes for up to 6 days 57.

Daytime light levels averaged 1000 lux and nighttime light levels were reduced to 50 lux. 

For the analysis of sleep onset, the pure wake sample preceding the transition and the 

following sample containing a transition to sleep were analyzed. For the analysis of wake 

onset, the pure sleep sample preceding the transition and the following sample containing a 

transition to wake were analyzed. State transitions were determined behaviorally. For 

analysis of the eating data, 60 minutes prior to and after eating were averaged to calculate 

peptide levels before and after eating. “During eating” included all samples which contained 

periods of eating. Eating periods ranged from 15-60 minutes. “Awake” samples were those 

not assigned to social interaction, emotion or sleep categories.

During the period of observation the subjects were free to walk about the room and 

hallways, watch television, play video games, make phone calls and receive visitors. 

However, most of our observations, including mood assays, eating and sleeping 

observations were made with the patients in bed or seated next to their bed. Our 

questionnaire was given to the subjects during waking at hourly intervals synchronized with 

the corresponding 15 min aliquot.

Behavior was scored as social interaction if the patient talked with another person or persons 

for at least one-third of the 15 min sample duration. Samples were scored for emotion if the 

patient stated a positive or negative emotion or openly and objectively showed some 

emotional expression such as laughing or crying at least once during the sample period. 

Positive emotion included laughing or excitement (example: watching a sports game and 

seeing the favored team score a home run) and negative emotion included sadness or 

frustration. In four patients, mood was also assessed with the questionnaire (Supplementary 

Methods), presented at hourly intervals. All behavioral judgments were recorded prior to 

analysis of the samples.

The samples used in the present study were all derived from amygdala electrodes that 

physiological analysis determined not to be an independent seizure focus. All data were 

collected during periods free of seizures.
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Statistical analysis

Data with multiple comparisons were analyzed with one-way ANOVA and Fisher’s Least 

Significant Difference post-hoc comparisons after normalization and log transformation 

(GB-Stat, Silver spring, MD). Table 3 presents the number of samples for each category 

along with means and standard errors. Correlation studies of anger and pain were calculated 

across trials. Statistical significance of all findings was determined by p<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Location of microdialysis probes in human subjects. Placements of membranes at the tip of 

each probe are labeled by subject number. Horizontal lines on either side of each subject 

number are to scale, and their total length indicates the 5.0 mm area sampled by each 

membrane. The position of each membrane in the amygdala is drawn to scale. The anatomic 

outline graphic was adapted from the human brain atlas by Mai et al.58. Bm refers to 

basomedial nucleus of the amygdala; BL, basolateral nucleus of the amygdala, La, lateral 

nucleus of the amygdala; V3, third ventricle, FX, fornix; GP, globus pallidus; PUT, 

putamen; CL, claustrum; EC, entorhinal cortex; OT, optic tract; AC, anterior commissure.
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Figure 2. 
Hcrt and MCH levels across waking and sleep activities. (A) Maximal Hcrt levels in waking 

are seen during positive emotions, social interactions and awakening, minimal levels are 

seen prior to sleep and while reporting pain. Changes during and after eating are smaller 

than those during monitored non-eating related activities. Waking values in shades of green, 

sleep in blue. Awake indicates samples in which subjects were awake but were not 

exhibiting social interaction or reporting emotion. (B) Maximal MCH levels are seen at 

sleep onset and after eating. Minimal levels are seen during wake onset, social interaction 

and pain. Error bars represent ±SEM.
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Figure 3. 
Examples of single case raw data on Hcrt and MCH release from individual patients. 

Release pattern over time shows that (A) MCH levels increase after eating, (B) MCH levels 

increase at sleep onset, (C) both Hcrt and MCH levels are low during pain and (D) Hcrt 

levels increase with social interaction. With the exception of the example shown in C, all 

data in this study were collected during morphine-free periods. See figure 2 for average 

levels in each condition.
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Figure 4. 
Time course of Hcrt release over a 20 h period in patient d378. A Hospal dialysis membrane 

was used in this subject who was therefore not used in the statistical comparisons with the 

other 7 subjects. However the results with these two membrane types were 

indistinguishable. Hcrt release is minimal during sleep and maximal during periods of social 

interaction.
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Figure 5. 
Design and placement of electrodes. (A) Electrode contained external contacts for localizing 

seizure focus and internal space for a 200μm diameter microdialysis membrane. The 

membrane protruded 5 mm from the outer cannula. aCSF flowed in through a 105μm outer 

diameter silica tube and flowed out of the Cuprophan membrane through a 150μm outer 

diameter silica tube. Dialysates were collected at 15 min intervals and immediately frozen to 

-80 degrees. Samples were subsequently analyzed for both Hcrt-1 and MCH using our 

multiple antigen solid state RIA51. (B) Image of implanted probe in the amygdala (metal 
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contacts produce MRI artifact). CT image of electrode was superimposed on MRI after 

computer registration (alignment in 3 dimensions) of the two scans.
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