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Abstract
Resolving the long-term, population-level consequence of vaccine-induced immunity to pertussis
is a key challenge for control strategies and vaccine development. Controlled vaccine efficacy
studies provide invaluable information; however, they are limited in scope by their sample size
and follow-up duration. Long-term time series of incidence data collected by public health
institutions provide insight at a broader scale, especially when the data are spatially explicit and
age stratified. By using modern ecological and statistical methodolgies, which are reviewed in this
paper, new insights into the duration of transmission-blocking immunity and the age-specific
patterns of transmission can be gained. Recent advances in computing power and statistical
software development will increasingly make these methods available to public health
practitioners, vaccine developers and academics alike.
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Pertussis, also known as whooping cough, is a respiratory infection that causes close to
200,000 deaths in children per year, despite the widespread use of a vaccine [1]. It is caused
primarily by the Gram-negative coccobacillus Bordetella pertussis. Based on data from the
pre-vaccine era, pertussis was thought of as a classic, immunizing childhood infection [2],
with few reports of a second bout of whooping cough in adults. The mean age of infection in
urban populations was approximately 4 years, and more than 90% of infections were
observed in children younger than the age of 10 years [3]. In addition, the observed cyclic
dynamics in pertussis reports (Figure 1) were consistent with infections that generate long
lasting, sterilizing immunity. However, even before the vaccine was introduced, anecdotal
evidence suggested that some adults were carrying and transmitting subclinical pertussis
infections to young children, who then got a symptomatic primary infection [4].
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Due to the high prevalence and resultant morbidity and mortality caused by pertussis in
young children, a whole-cell vaccine was developed in the early 20th century. Large-scale
vaccination campaigns were rolled out throughout much of the developed world in the 1940s
and 1950s. For the next few decades, incidence declined steadily, and it appeared that the
vaccine was working as hoped for, protecting individuals from disease and the population
from spread of infection. Beginning in the 1970s, some regions began to see a rise in cases
[5]. In some locations, such as the UK and Sweden, this coincided with a major vaccine
scare (Figure 1B)[6,7]. However, reported incidence increased despite sustained high
coverage in many parts of the world including much of Europe, the USA, Australia and
Taiwan [5,8-13].

Some researchers question whether the increase may in part be a result of the change from
whole-cell to acellular vaccines. However, Argentina has recently experienced an increase in
cases similar to that observed in other countries, despite continued, exclusive use of the
whole-cell vaccine [14]. The resurgence led many to wonder whether the vaccine was
working as well as had been initially assessed. In particular, researchers and public health
workers began to question how long vaccine-induced immunity lasts, whether immunity
prevents transmission or only disease, and whether there has been significant vaccine-driven
evolution of the pathogen population. Alternatively, some suggest that increased awareness
of adult pertussis, coupled with improvements in diagnosis and reporting underlie increased
cases, rather than a rise in transmission [15].

Assessing the diagnostic process is a key challenge in understanding pertussis transmission
and immunity, as many infections are subclinical, and therefore never reported [1].
Reporting fidelity is related to disease severity, and it is thought that disease severity
decreases with age and history of exposure to pertussis [16,17]. In addition, secondary
infections may be less transmissible than primary ones. Explicit transmission experiments
are impossible for obvious ethical reasons, rendering these quantities hard to identify;
however, they are critical for designing successful vaccination strategies. This becomes
especially important, given the new appreciation for the import of age-specific contacts in
pertussis transmission [18]. It seems that infants, who are at the highest risk of severe
morbidity, and even mortality, are most commonly getting infected by older family
members, many of whom have few or no symptoms [19-21]. The aforementioned questions
regarding changes in vaccine-induced immunity and reporting efficiency, due to their broad
scope and inherently dynamical nature, lend themselves to large-scale ecological analyses of
incidence data that supplement traditional vaccine efficacy studies.

Long-term public health records of infectious disease incidence hold dynamical information
on susceptibility and transmission, and, therefore, help us assess the long-term impacts of
vaccination efforts. Vaccine trials provide a controlled system by which vaccine efficacy can
be measured; however, they are necessarily small in scope, following limited subsets of a
population for only a few years. These studies generate high-resolution data on individual
effects, but are less probable to capture emergent phenomena, such as herd immunity.
Incidence data, on the other hand, are often collected at a broader scale than traditional
vaccine trials, tracking an entire population over many decades. Time series of disease
incidence provide data at a scale commensurate with the breadth and duration of vaccine-
induced protection, and are therefore more likely to provide information concerning the
impact of these mechanisms at the population scale. Time-series data additionally hold
information regarding the dynamics of transmission that are often lost in typical vaccine
trials. Therefore, the authors argue that dynamical systems methods developed for analyzing
ecological systems are an invaluable tool for assessing the long-term, population-wide
impacts of vaccination.
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In this perspective piece, the authors identify metrics that hold information about immunity
in pertussis incidence time series and serosurveys, and discuss what they have learned from
them, propose the use of modern methodologies for efficiently extracting information from
dynamic data, and set goals for future pertussis data collection and analysis. The authors
emphasize the importance of combining different data types and statistical methodologies to
gain insight into the invisible processes, such as subclinical transmission, which drive
pertussis epidemiology and have prevented widespread immunization from achieving the
level of control they initially anticipated.

Statistical signatures in surveillance data
Disease prevalence

An obvious signature in long-term infectious disease surveillance data of a vaccine that
produces some effect is a decrease in disease incidence following its introduction. This
occurred globally with pertussis; every vaccinated region that has been studied experiences
lower incidence on average now than in the prevaccine era (see Figure 1 for examples from
the USA, and England and Wales). However, inference on vaccine efficacy based on
average trends over time suffers from a variety of drawbacks. First, the mean incidence is
highly sensitive to changes in the reporting probability. Second, it will be affected by
vaccines that reduce either disease severity or transmission, making it an unreliable measure
of the utility of a vaccine to generate herd immunity.

Long-term data sets of disease incidence over the span of years or decades hold far more
information than just the mean trend, and these other aspects can help us assess the
effectiveness and duration of vaccine-induced transmission-blocking immunity. By
understanding the various vaccine effects, there is potential for more predictive power
regarding the possibility of local or global eradication and vaccine-driven pathogen
evolution.

Periodicity
A key characteristic of time series of infectious diseases is the interepidemic period or the
time between cyclic outbreaks. Directly transmitted, highly infectious, immunizing
pathogens tend to produce recurrent multiannual epidemics (Figure 1) due to the inherently
nonlinear process of transmission. An infection sparks an outbreak and depletes the
population of susceptible hosts, which causes the chain of transmission to slow down until
newborns replenish the susceptible population, generating the conditions necessary for a
subsequent outbreak. Therefore, the speed of susceptible replenishment is key in
determining the interepidemic period [22]. For a lifetime immunizing infection, this is
determined by the birth rate and effective vaccine coverage. In general, slow susceptible
recruitment, either due to low birth rates or high effective vaccine coverage, leads to a
longer interepidemic period (Figure 2). Importantly, this result only holds when vaccination
blocks transmission. If vaccination only prevents disease, the size of the observed outbreaks
will decrease with higher vaccine coverage, but the interepidemic period will remain the
same. Relatedly, the periodicity is insensitive to changes in reporting over time so long as
they are not directly tied to incidence; this is an important feature for a robust metric given
the notoriously low, age-specific and variable reporting rates for pertussis [23].

Many studies have fruitfully used this underlying theory to assess the effectiveness of
pertussis vaccines in preventing transmission. The first study to do so [24], published in
1982, used aggregated data from all of England and Wales, and cited little change in the
range of observed interepidemic periods of pertussis after the introduction of vaccination as
evidence that the vaccine only protected against disease, not transmission. Since then,
various studies have demonstrated a positive association between the interepidemic period
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and vaccine coverage [25,26]. A more recent and detailed study on pertussis in England and
Wales [27] that used data with higher spatial resolution showed evidence for a systematic
increase in the interepidemic period following the inception of vaccination. Taken together,
these studies lend strong credence to the theory that historical vaccines indeed provided
some protection against transmissible disease.

Although the evidence for induction of transmission-blocking immunity is clear, details
regarding its extent and duration remain obscure. A few studies have attempted to estimate
these quantities from data on periodicity as well [26,28]; however, the large number of
parameters that are not well identified makes rigorous inference difficult when using
periodicity as the sole metric. In general, these studies have found that a variety of biological
mechanisms can generate observed periodicity profiles. The variables shown to affect the
interepidemic period other than birth rate and vaccine coverage include the durations of
infection- and vaccine-induced immunity, the relative infectiousness of cases in previously
immune hosts, the primary efficacy of the vaccine, the possibility of immune boosting
without infection upon reexposure and the noise in the system [28,29]. Recently developed
methods for inference on dynamical systems allow for better identification of some of these
mechanisms, which will be discussed later in this article.

Extinction profile
The frequency and duration of local pathogen extinction events also hold information
regarding immunity in a population. Although pertussis is nowhere near eradicated, weeks
or months may pass with no case notifications in sufficiently small populations, suggesting
that it is locally absent (termed a ‘fade-out’), and then reintroduced from an outside source.
As shown in Figure 3, even in the prevaccine era, some populations were below the critical
community size, that is, they were too small to support sustained pertussis transmission [30].
If vaccination is transmission blocking, its introduction is predicted to increase the critical
community size; a larger population will be necessary to prevent local extinction. This result
holds even if immunity is not lifelong; however, a shorter duration of immunity decreases
the critical community size [28] since the susceptible pool is replenished not only by births,
but also by loss of immunity.

There are a few ways to empirically estimate the critical community size, but all relate to the
frequency or duration of fadeouts [31]. This type of analysis has been used less frequently
than the periodicity analysis for pertussis, perhaps, in part, because it is necessary to have
fine spatial and temporal resolution, such as cases aggregated weekly from locations with a
range of population sizes, and perhaps in part because it depends on immigration rates,
which are often not well documented. Data from cities in England and Wales demonstrated a
consistent increase in the number of weeks with zero cases and the duration of each
individual fade-out from the pre- to post-vaccine eras, consistent with the predictions of a
transmission-blocking vaccine (Figure 3) [27]. A similar study using data from small
communities in Senegal also showed an increase in the duration of fade-outs with the
introduction of vaccination [32].

Age structure
A growing body of theory and data predicts how changes in vaccine coverage and disease
transmission should affect age-stratified disease incidence [18,33-35]. The prediction from
dynamical models of immunizing infectious diseases is that a transmission-blocking vaccine
will decrease pathogen circulation, which reduces the force of infection (the rate at which
susceptible individuals become infected) and leads to an increase in the proportion of
primary infections occurring in older individuals [3,22]. The most naive model assumes
homogeneous mixing among all individuals in a population. This implies, for example,
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people are equally likely to interact with all age groups, and there is no assortative mixing
related to vaccination status. Although the impacts of these simplifications are important, the
basic model provides a baseline against which observed data can be observed. In particular,
it predicts that the ages of cases will be distributed exponentially in both the pre- and post-
vaccine eras, but the mean will shift up in the presence of transmission-blocking
vaccination. As with the previously discussed metrics, because this prediction is based on
the dynamics of transmission, the shift in mean age will only occur if the vaccine blocks
transmission.

One of the most widely noted changes in pertussis epidemiology in the past few decades has
been the shift to cases in older individuals. In particular, since the beginning of the
resurgence, there has been a dramatic increase in cases in teenagers [36,37], and epidemics
have broken out in middle- and high-schools with highly vaccinated student populations
[38,39]. As described earlier, the theory predicts that the proportion of cases in teenagers
should increase simply due to a vaccine-induced reduction in transmission. However, the
naive theory does not predict an increase in the number of cases in teenagers.

Based on the increase in teenage cases, many researchers postulated that immunity, at least
to disease, is being lost increasingly rapidly due to either new pathogen strains that elicit
shorter-lasting immunity [14,40,41] or reduced natural immune boosting arising from a
reduction in pathogen circulation [35,42]. However, an alternative explanation has been
proposed: the increase may result from an age-varying force of infection even if vaccine-
induced transmission-blocking immunity is long lasting. A recent study by Rohani et al.
showed that the documented high contact rates among teenagers, especially with each other
[43], can explain the recent increase in teenage cases in Sweden, where pertussis vaccination
was reintroduced in 1996 after a 17-year hiatus [18,44]. Studies have demonstrated that the
pertussis vaccine prevents against transmission for at least a short time [45,46], and that its
effectiveness at preventing disease wanes with time [39,46]. The extent to which disease in
successfully vaccinated individuals contributes to transmission and maintenance of
population-level immunity remains an open question [47].

Expert commentary: methods for dynamical inference & hypothesis
comparison
Comparing models & data

Thus far, we have described how a variety of metrics calculated from surveillance data –
interepidemic period, extinction profile and age structure – can be compared with dynamical
model predictions to make inference regarding various components of vaccine efficacy.
Dynamic models of epidemics expressed as systems of differential equations date back to
the early 20th century [48]. In the past, they were largely informed by epidemiological
intuition regarding key processes and parameter estimates from outside sources, such as
household transmission studies on the infectious period. The early models primarily
described large-scale, qualitative patterns in data. The methods described in the preceding
section allow for quantitative contact between models and data. Although these methods do
not allow for definitive rejection or acceptance of a hypothesis, like other statistical
methods, they do allow us to assess the relative merits of different hypotheses regarding the
underlying processes driving epidemic patterns.

Each metric has its strengths and weaknesses because it is sensitive to different changes in
model assumptions and data collection. Looking at each individually, we are confronted
with statistical trade-offs, for example, between the duration of immunity and the probability
of immune boosting [28], that prevent us from choosing between two competing hypotheses.

Lavine and Rohani Page 5

Expert Rev Vaccines. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Modern statistical methodologies that take advantage of rapid computing power allow the
data to speak for themselves; they comprehensively search potentially high-dimensional
parameter spaces to optimize a given model in the face of data, and provide a rigorous,
quantitative framework for choosing between optimized models.

Probe matching
We may consider each metric described earlier as a summary statistic of a set of spatially
explicit, age-stratified time series of incidence data. In all of the aforementioned examples,
the full data set was aggregated in some way and reduced to a particular statistic, which was
then compared with a theoretical prediction. For example, in [28], all age groups were
lumped together to form one time series for each location. These were then summarized by
two metrics separately: the dominant period observed in each location and the proportion of
weeks in which zero cases were observed. A number of parameter values (i.e., durations of
immunity and rapidity of boosting) were chosen along with a corresponding transmission
rate to ensure the mean age of infection was consistent with observations, and these values
were then used to simulate from a dynamic model, governed by stochastic differential
equations. Summary statistics of the simulated time series were compared with summary
statistics of the data to identify which parameter value was most consistent with the data.
This same basic idea has recently been developed further to allow for two improvements to
the methodology and is known as ‘probe matching’ [49]. First, the method allows for
simultaneous comparison of arbitrarily many summary statistics, and accounts for the
covariation between them. Second, it is implemented in a likelihood-based frame-work, the
synthetic likelihood, such that models with different numbers of parameters can be
compared using standard likelihood theory.

Likelihood methods
All of the methods discussed so far require summarizing time-series data and model outputs
with individual statistics or ‘probes’. In addition, a variety of methods exist that allow for
comparison of model predictions with each data point in a time series, rather than choosing
certain metrics and discarding the rest of the information contained in the data. These
methods, termed ‘sequential Monte Carlo’ or ‘plug-and-play’, utilize the statistical quantity
of the likelihood, and are ideal for comparing biologically motivated hypotheses because
they require that only one can encapsulate a hypothesis in a model in which each time step
depends only on the preceding one (a so-called Markov chain) [50,51].

The likelihood of the data given fixed values of the governing parameters can be estimated
by comparison with simulations. By exploring a wide range of parameter values and
combinations, we can find the optimal parameters for a given model and data set. For
example, in Figure 4B, we compute the maximum likelihood (y-axis) of models with
different R0s (x-axis) in the face of a time series from the prevaccine era in Copenhagen
(Denmark) by fixing that parameter and optimizing the others. Even when all the other
parameters in the model (duration of immunity, rapidity of boosting and others) are allowed
to vary to best fit the data, likelihood theory suggests that an R0 larger than 20 or less than
12 (range of x-values above dashed gray line) provides a significantly worse fit to the data.

Between the development of rapid optimization algorithms for maximizing the likelihood
and the explosion in computing power, it is now feasible to search high-dimensional
parameter spaces and identify even small differences in the explanatory power of hypotheses
encapsulated in mathematical models against large and detailed data sets. The ability to
optimize the likelihood grounds model comparison in well-developed statistical theory.
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A pure likelihood-based iterated filtering algorithm [51,52] was recently used to test
hypotheses regarding the duration of immunity and the importance of natural immune
boosting based on a long time series from the prevaccine era in Copenhagen (in review,
Figure 4). All parameters were estimated simultaneously, thereby allowing the data to speak
for themselves. Despite many degrees of freedom, key quantities were tightly constrained.
For example, the basic reproductive number, R0, was estimated to be 16, with 95% CI: 12–
19 (Figure 4B). Interestingly, values outside that range produced simulations that were not
visibly worse (compare Figure 4A with Figures 4C and 4D); however, the statistical
methods were able to harvest information from patterns not obvious via a visual comparison.
A particularly useful result of simultaneously estimating all the parameters in this fashion
was that the reporting efficiency, or observation probability, was well identified at
approximately 15% (maximum likelihood estimate: 15.2%, Figure 5, dark, solid line), with a
95% CI only spanning 14.7–16.1% (Figure 5, light circles and arrow). This is an important
point to emphasize because the value of analyzing incidence reports is often questioned on
the grounds of incomplete notification. Unlike the metrics described in the previous section,
this likelihood maximization method not only takes reporting efficiency into account, but
can quantify it based on the dynamical information contained within the time-series data.

Five-year view
In the same way that running a t test was once a laborious statistical procedure before the
advent of the calculator, but is now simple and commonplace, so these more sophisticated
statistical methods are increasingly accessible to public health workers, biologists and
vaccine manufacturers alike with the advent of well-built statistical packages and cloud
computing. Free and open-source implementations of these methods, such as the recently
developed package pomp in the statistical environment R [52,53], make these tools available
without a cost barrier. In conjunction with the burst in cloud computing options, very little
overhead is necessary to implement them. The largest barrier to general use of these
methods by researchers may be the skills required to convert biological hypotheses to
mathematical models and write computer codes describing them. Recent efforts to create a
web-based graphical user interface for these methods take us a step closer to making these
methods generally accessible and usable. The price tag and need for a specialized skill set
are therefore diminishing impediments to using these methods to gain a better understanding
of the emergent properties of immunity engendered by pertussis immunization efforts.

The approaches suggested here glean information from multiple, large and diverse data sets
simultaneously. For example, it is now possible to take a broad range of location- and age-
specified time series from the pre- and post-vaccine eras, and compare the ability of various
hypotheses to explain their patterns, even in the face of covarying parameters and under-
reporting. A key goal for the future is therefore to incorporate diverse data sets into unified
analyses to better understand the global drivers of pertussis epidemiology. Two actions are
necessary for this to become a reality: collaboration among public health departments and
researchers to bring together the necessary data on pertussis incidence, demographic
characteristics and vaccine policies over time, and a digital platform for storing and sharing
these data, with all proper privacy protections, metadata and credit given to the people and
institutions who collected them. Organizations such as the pan-European pertussis research
group, Eupert, offer a model for the type of international collaboration necessary, and others
such as the Wellcome Trust and the journal Epidemiology, are supporting the move toward
making public health data a public resource [54,101].
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Conclusion & the path forward
Despite the early development and widespread deployment of a pertussis vaccine, whooping
cough still plagues even highly vaccinated human populations. The causes for the lack of
control remain in question, in part, because key aspects of immunity and vaccine efficacy
are poorly understood and challenging to study. We cannot directly measure how long
vaccine-induced protection lasts. The closest we come to a direct observation is via
serological data; however, the lack of antibodies against pertussis antigens does not imply
lack of protection [55]. The transmissibility of a case resulting from secondary exposure is
even more obscured from direct observation than reinfection itself, which may at least result
in a serological signature of boosted antibody titers or mild symptoms that can be observed.
Fortunately, these invisible events leave their footprints in large-scale dynamical, time-series
data. Modern statistical methods for dynamical systems can x-ray data, extracting
information about transmission and reporting rates contained in dynamical patterns that are
invisible to the naked eye.

In addition to helping us quantify unobservable aspects of vaccine efficacy, dynamical
models pinpoint the myriad factors that affect pertussis transmission in complex and
sometimes counterintuitive ways. Recent models have demonstrated the epidemiological
outcomes of pertussis vaccination are sensitive to age-specific contact mixing patterns [18],
the ease with which immunity may be boosted upon re-exposure [35], and the impact of the
population-level profile of immunity on pathogen evolution [56]. A variety of other factors
are likely to impact pertussis epidemiology as well. For example, congeneric species, such
as Bordetella parapertussis and Bordetella holmesii have recently been implicated in many
outbreaks of whooping cough-like disease [57-59]. In addition, different vaccines and
vaccination schedules elicit different types and levels of immunity, and the large-scale
effects of this variation require further exploration. We require further theoretical studies
and models to assess which of these factors have the potential to be key drivers of pertussis
dynamics. Thus far, these more complex models are largely informed by intuition, expert
knowledge and external parameter estimates, as the simpler ones were 30 years ago, and
provide primarily qualitative predictions and comparisons to data. We are now at the cusp of
being able to test complex and increasingly realistic models against vast and diverse data
sets. Techniques for statistical inference not only yield important quantitative information,
they also provide a theoretically sound platform for hypothesis testing.

Each year, new datasets are collected and published on biological and sociological
phenomena that affect disease transmission. High-resolution time-series data from various
geographic locations may provide clues as to the key drivers of seasonality in pertussis
dynamics. Sociological studies on the contact patterns among age groups in different locales
and cultures provide a grounding for testing hypotheses regarding the age-specific routes of
pertussis transmission, and, in particular, may offer strategies to provide indirect protection
to infants [43,60]. At a different scale, the spatial and temporal patterns of B. pertussis
population genetics are being uncovered; the growing bank of sequence data provides
information on patterns of transmission, as well as the evolutionary processes that impact
pertussis epidemiology. In the future, by considering models and methods that concurrently
incorporate various types of data and encompass a broad range of hypotheses, we will gain
new insights into the effects of vaccines on pertussis transmission, and thereby develop
strategies to better control it.
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Key issues

• Pertussis, or whooping cough, remains a significant cause of morbidity and
infant mortality despite high vaccine coverage.

• The causes of the poor control remain obscure, and questions abound regarding
the duration and type of protection provided by currently used vaccines.

• Classical vaccine efficacy studies are invaluable, but limited in their ability to
assess emergent phenomena, such as herd immunity.

• Ecological methods developed for dynamical studies of populations over time
can be applied to time series of disease reports to gain new insights into long-
term, population-level processes.

• Particularly informative features of time-series data for estimating the duration
of transmission-blocking immunity include periodicity, frequency of fade-outs
and age-stratified incidence.

• Rigorous model comparisons via simulation-based calculations of the likelihood
are possible due to recent developments in statistical methodologies and new
algorithms for optimization across many unknown quantities simultaneously.

• The aforementioned methods provide strong evidence for transmission-blocking
immunity provided by vaccination and a relatively narrow estimate of the
reporting efficiency based on dynamical feedbacks reflected in incidence data.
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Figure 1. Pertussis incidence in the USA and England and Wales
(A) Annual incidence from the USA from 1951 until 2010 (solid line). Pediatric
immunization is thought to have been implemented in the late 1940s, though uptake
information is not available. Historical DTP vaccine estimates from 1962 to 1985 obtained
from [61] are plotted using a dark, dashed line (axis on right) and DtaP estimates for three
and four doses have been obtained from the National Immunization Survey and plotted in
light, dashed line. (B) Weekly incidence of pertussis in England and Wales (solid line),
accompanied by estimated DTP uptake (dark, dashed line). The national immunization
program was initiated in 1957. Note the drop in vaccine uptake starting in 1974.
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Figure 2. Impact of vaccine coverage and loss of immunity on a predicted interepidemic period
The dark, dashed line shows that when immunity is long lasting, the interepidemic period is
sensitive to vaccine coverage, ranging from 2.7 years in the absence of vaccination to 4.2
years with 90% coverage. For scenarios in which immunity is lost more rapidly, the
interepidemic period is shorter and less sensitive to vaccination. All curves were calculated
according to [22] with the following parameter values: per capita annual birthrate (μ) of
0.02; mean infectious period (1/γ) of 21 days; transmission rate (β) of 200 per year,
corresponding to a basic reproductive number (R0) of 11.5.
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Figure 3. Pertussis extinction profiles in England and Wales
For the 60 largest cities, the authors plot the number of weeks per year during which no
pertussis cases were reported against the respective population size. The prevaccine (1944–
1957) and vaccine (1957–1974) era are plotted in dark and light filled circles, respectively.
To illustrate the concept, the incidence reports for three different cities, Birmingham,
Sunderland and Walsall, for both prevaccine (dark) and vaccine (light) eras have also been
presented. The dots in these insets indicate that no pertussis cases were reported during that
week.

Lavine and Rohani Page 16

Expert Rev Vaccines. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Model simulations and likelihood profile over R0
(A) Sample model simulation from the maximum likelihood parameters (dark line) along
with pertussis incidence data from Copenhagen (Denmark) from 1900 to 1937 (light line)
[62]. (B) The likelihood profile for the basic reproductive number, R0. The value of R0 is
fixed at points along the x-axis, the likelihood maximized using iterated filtering and the
corresponding estimated maximized likelihood shown on the y-axis. The point circled in
green represents the maximum likelihood estimate. Points below the dashed line represent
values that are outside the approximate 95% CI for R0. (C & D) Simulations from models
with low and high R0 values, respectively. Because these are simulations from stochastic
models, other simulations with identical parameters can look quite different.
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Figure 5. Likelihood profile for the reporting efficiency obtained from analyses of the
Copenhagen pertussis data described in Figure 4
Log-likelihood values that fall below the dashed line are outside the approximate 95% CI of
the maximum likelihood estimate. The dark, solid circled point has the highest log-
likelihood, and therefore corresponds to the maximum likelihood estimate for the reporting
efficiency, 0.152. The two light, dashed circled points correspond to the most extreme
reporting probabilities that have likelihoods within the confidence bounds, and the arrow at
the bottom shows the CI for reporting efficiency, 0.147–0.161.
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