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Abstract
Lung adenocarcinoma is the most common type of primary lung cancer. The purpose of this study
was to delineate gene expression patterns for survival prediction in lung adenocarcinoma. Gene
expression profiles of 82 (discovery set) and 442 (validation set 1) lung adenocarcinoma tumor
tissues were analyzed using a systems biology-based network approach. We also examined the
expression profiles of 78 adjacent normal lung tissues from 82 patients. We found a significant
correlation of an expression module with overall survival (adjusted hazard ratio or HR=1.71; 95%
CI=1.06-2.74 in discovery set; adjusted HR=1.26; 95% CI=1.08-1.49 in validation set 1). This
expression module contained genes enriched in the biological process of the cell cycle.
Interestingly, the cell cycle gene module and overall survival association were also significant in
normal lung tissues (adjusted HR=1.91; 95% CI, 1.32-2.75). From these survival-related modules,
we further defined three hub genes (UBE2C, TPX2 and MELK) whose expression-based risk
indices were more strongly associated with poor 5-year survival (HR=3.85, 95% CI=1.34-11.05 in
discovery set; HR=1.72, 95% CI=1.21-2.46 in validation set 1; and HR=3.35, 95% CI=1.08-10.04
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in normal lung set). The 3-gene prognostic result was further validated using 92 adenocarcinoma
tumor samples (validation set 2); patients with a high-risk gene signature have a 1.52 fold
increased risk (95% CI, 1.02–2.24) of death than patients with a low-risk gene signature. These
results suggest that network-based approach may facilitate discovery of key genes that are closely
linked to survival in patients with lung adenocarcinoma.
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Introduction
Adenocarcinoma is the most frequent type of lung cancer. Gene expression profiling
analysis has been extensively used to identify molecular signatures in predicting patient's
prognosis and survival [1]. These analyses have identified prognostically different tumor
subgroups [2-5]; the results supported the combined use of clinical and molecular
information when building prognostic models for lung cancer. However, given differences
in study design, assay platform, and patient selection, the results of these studies lacked
consistency both in terms of the number of genes in the predictors and in the specific genes
included in each signature. So far, we have very limited knowledge on the specific survival-
related key genes.

Traditionally, microarray-based expression profiling analysis treats thousands of genes
independently, ignoring potential relationships among these genes. In recent years, a
systems biology-based network analysis approach [6, 7] has been proposed and used in
various scenarios to dissect disease-related transcriptional networks and identify key genes
that contribute to the disease phenotypes [8-11]. By focusing on correlated gene modules
rather than on individual genes, the network approach may greatly alleviate the multiple
testing problems inherent in microarray data analysis. In this study, we applied a weighted
gene co-expression network analysis (WGCNA) approach [6, 7] to identify survival-related
expression modules and gene signatures in lung adenocarcinoma.

Patients and Methods
Patients

For the Mayo Clinic discovery set, patients with lung cancer were identified and recruited
between January, 1997, and September, 2008. Never smokers were defined as individuals
who had smoked less than 100 cigarettes during their lifetime. A detailed explanation of the
recruitment process has been reported previously [12-14]. Briefly, new cases diagnosed with
lung cancer were enrolled after they gave consent. Interviews were conducted and patients’
medical records were abstracted. All patients were followed up beginning six months after
diagnosis, with subsequent annual follow-up by mailed questionnaires. Annual verification
of patients’ vital status was accomplished through the Mayo Clinic's electronic medical
notes and registration database, next-of-kin reports, death certificates, and obituary
documents filed in the patients’ medical records, as well as through the Mayo Clinic Tumor
Registry and Social Security Death Index website.

The available fresh frozen lung tumor and matched normal lung tissues were sectioned and
reviewed by a pathologist to confirm the diagnosis of adenocarcinoma, histological grade,
tumor purity, and lack of tumor contamination in the normal lung. Tumor samples with
>=70% tumor-cell content from 82 patients were used in the study, of which 78 were found
to have matched normal tissues that were taken from the farthest distance to the tumor in the
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resected lung. These normal lung tissues were also included in the study. All tissues were
collected prior to any radiation or chemotherapy. Research protocols were approved by the
Institutional Review Boards of Mayo Clinic (Rochester, MN, USA).

For the validation set, we used two published data set of 442 and 92 patients with
adenocarcinoma as described previously [5, 3]. Table 1 and Supplementay Table 1 provide
descriptive characteristics of patients in both the discovery and two validation data sets.

Outcomes
Overall survival time, as the primary endpoint, was defined as the time from lung cancer
diagnosis to either death or the last known date alive. Patients known to be alive were
censored at the time of last contact.

Microarray analysis and data processing
For the discovery data set, RNA was extracted from fresh frozen tissues using the Qiagen
miRNeasy Mini Kit (Qiagen, Valencia, CA). Illumina Human WG DASL beadchip
(Illumina, Inc, San Diego, CA, USA) was used for gene expression profiling. Raw intensity
data were generated in three batches. For each batch, samples were loaded into BeadStudio
3.1 (gene expression module 3.4) for quality control and calculation of gene or probe level
intensity for each individual sample. Samples with a signal-to-noise ratio (ratio of 95% vs.
5% percentile signal intensity) less than 10 were excluded or repeated. Samples that passed
quality control were normalized together using R package Fastlo function [15]. After the
normalization, further quality control was done to assess a potential batch effect, and
adequacy of normalization with principal components analysis (PCA), unsupervised
clustering, and sample replicates. No noticeable batch effect was seen, and the correlation
among the replicates across batches was generally high (r2>0.95). All 82 adenocarcinoma
tumor and 78 matched normal lung tissues were used for network analysis. The expression
data consisted of 24,526 microarray probes, representing 18,626 unique genes.

For the validation data set 1 (tumor tissues only), 442 samples with good quality of the
clinic, pathological, and array data were included. The microarray data was generated with
Affymetrix Human Genome U133 Array Chip A (22,277 probe sets representing 12,969
unique genes) and downloaded from National Cancer Institute Array Data Management
System (https://caarraydb.nci.nih.gov/caarray/publicExperimentDetailAction.do?
expId=1015945236141280). Links to pathological and clinical data are also available at this
site. Raw data was imported into Genome Suite (Partek, St. Louis, MO), and normalized
using Robust Multichip Average (RMA) method. Potential sample outliers were examined
by clustering and PCA. No outlier sample was found.

We downloaded validation data set 2 (tumor tissues only) from National Cancer Institute
Array Data Management System (https://array.nci.nih.gov/caarray/project/details.action?
project.id=191). The microarray data was generated with Affymetrix Human U95A
oligonucleotide probe arrays and consisted of 12625 microarray probes, representing 9128
unique genes. Raw data was normalized using the same method as validation set 1. A total
of 92 adenocarcinoma tumor samples with complete clinic information were included for
validation analysis. The characteristics of the patients were summarized in the
Supplementary Table 1.
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Data Analysis
Gene Network analysis

WGCNA tool [6, 7] was used to evaluate the gene networks and their association with
clinical outcome. Because the software tool was computationally intensive when running on
large numbers of genes, we simplified the computation by selecting the top 5,000 most
variable genes based on coefficient of variance for each data set. We input expression
profiles of these selected genes and constructed weighted gene co-expression modules [6, 7,
16]. We used a hierarchical clustering with dissimilarity based on topological overlap as the
distance measure to produce a hierarchical clustering tree of genes. We chose a Static Tree
Cut method to identify modules with a height cutoff of 0.95 and a minimum size (gene
number) cutoff of 40 for the resulting dendrogram. In the network analysis, a cluster of
highly correlated genes in expression is called module. A summary profile of each module is
the module eigengene (ME) that corresponds to the first principal component of the module.
The ME can be considered as the most representative gene expression in the module.

Module eigengene and clinical trait association analysis
To test if a module was correlated with clinical variables, we calculated the correlation
between MEs and clinical characteristics (gender, age, stage, and tumor grade of
differentiation). For module-survival association analysis, we first standardized the ME
values by dividing the MEs with the standard deviation in a given module. We then used
Cox proportional hazards regression to assess the associations between MEs and overall
survival. We applied a stepwise selection process to select the clinical variables for
subsequent adjustment from known prognostic variables, including tumor stage, grade of
differentiation, age at diagnosis, sex, race, comorbidity, and treatment modality. The
significant variables were kept as covariates in all subsequent analyses.

Gene significance and hub genes
Gene significance (GS) was the absolute value of the correlation coefficient between an
individual gene expression and a clinical trait. For survival-based GS, we used a univariate
Cox proportional hazards regression model to regress patient’ overall survival on the
individual gene expression levels. The survival-related GS was defined as minus log10 of
the univariate Cox-regression p-values. Hub genes were those that show high network
connectivity (K). K measured how a given gene was connected (co-expressed) with other
genes in a given module. Based on the GS and K, we used scatter plots to identify hub genes
that showed high correlation with clinic traits as well as high connectivity in the trait-related
modules.

All analyses were conducted using SAS version 9 (SAS Institute, Cary, NC, USA) or R
statistical packages (www.r-project.org).

Gene ontology and pathway analysis
To explore whether genes in each module share a common biological function, we searched
for overrepresentation in gene ontology (GO) categories. The WGCNA package has a
function to perform GO enrichment analysis. For each module, the analysis calculated
enrichment scores (Fisher exact test p value) for all GO terms in the specified ontologies
(biological processes), and collected information about the terms with the highest
enrichment. Multiple testing was corrected using the Bonferroni method. Gene pathway
annotation was performed by MetaCore software (GeneGo, Inc. St. Joseph, MI) [17].
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Outcome prediction
To estimate the survival prediction enhancement by the top gene signature, we generated a
risk index for each case that is a linear combination of the log2 gene expression multiplied
by its estimated regression coefficient (beta coefficient) from the univariate Cox model for
each gene. Patients were then classified as either low or high risk, depending on whether
their risk index was above or below the median (50th percentile cutoff point) of the risk
indexes. The time-dependent receiver operating characteristic curves (ROC) and the area
under the curve (AUC as measured by C index) over a 5-year follow-up period were
generated using clinical variables along with or without this binary index. AUC plots were
created using RisksetAUC function for R (www.r-project.org). The Kaplan-Meier curves
and log-rank tests were used to assess the differences in survival time by low- or high-risk
groups. The Cox proportional hazards model was applied to assess the independent value of
the risk prediction along with conventional predictors of age, gender, stage, grade of tumor
cell differentiation, and treatment modality.

Results
Identification of survival-related clinical variables

We first used a stepwise selection process in a Cox regression model to screen potential
confounding clinical variables. For the discovery tumor tissue set, we found the survival
association with age, tumor grade, and treatment modality. For the normal tissue set, we
found the association with age and treatment modality. For the validation set 1, we observed
the association with age and stage (Supplementary Table 2). These variables were adjusted
in following data analysis. For validation set 2, age, gender, tumor stage and grade were
adjusted in following data analysis.

Identification of survival-related gene module
To identify the gene co-expression modules, we applied WGCNA methodology and
analyzed gene expression profiles derived from 82 lung adenocarcinoma tumor tissues. This
analysis identified eight gene modules ranging in size from 45 to 297 genes (Figure 1). We
found significant association of tumor grade with two module MEs (r= -0.29, P=0.009 in
pink module and r=0.38, P=0.0004 in red module). Interestingly, the red module was also
associated with overall survival. After adjusting for potential confounders, the association
between red module and survival was still significant (P=0.027, HR, 1.71; 95% CI,
1.06-2.74) (Table 2).

Enrichment of cell cycle genes in the survival-related module
To elucidate potential biological mechanisms of each gene module, we performed GO
enrichment analysis and found significant GO term enrichment in three of the eight modules
(Table 2). The most significant enrichments were the red module (PBonferroni = 2.1×10-53 for
cell cycle) and turquoise module (PBonferroni= 1.29×10-111 for olfactory receptor activity).
Because the cycle cell-related module was the only one showing association with overall
survival, we further examined the module genes for correlation between GS and gene
connectivity. Interestingly, the survival-related GS was significantly correlated with gene
connectivity (r=0.44, P=5.8×10-7) (Figure 2), indicating that the genes with more significant
survival association tended to be highly connected genes, thus the most important genes in
the module.

Validation of survival-associated gene module
To validate our initial finding, we examined an independent microarray gene expression
dataset including 442 lung adenocarcinoma patients (validation set 1) and identified six gene
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modules (Supplementary Figure 1). We found the same association: the cell cycle-
enriched module (red) was correlated with tumor grade (r=0.56, P =5×10-37) and overall
survival. After adjusting for potential confounders, the red module-survival association
remained significant (adjusted P=5×10-3; HR=1.26; 95% CI, 1.08-1.49) (Supplementary
Table 3). None of the other modules showed significant association with overall survival.
For the cell cycle module, survival- and grade-related GS were highly correlated with gene
connectivity (Supplementary Figure 2). Because the validation set 1 included 49 never
smokers, 256 former smokers and 31 current smokers, we stratified these patients by
smoking status and tested the module for the grade association and survival prediction. We
found significant association of the red module with tumor grade regardless of smoking
status (r=0.49, 0.51 and 0.61 for never, former and current smokers, respectively; all
P≤3.68×10-4). However, the module-survival association only remained significant in
former smokers (P=9.2×10-3; HR=1.33; 95% CI, 1.07-1.66). We did not observe significant
module-survival association in never smokers and current smokers although they showed the
same trend (Supplementary Table 3).

Cell cycle genes in survival-related module in normal lung tissues
To evaluate whether overall survival was associated with any gene module in normal lung
tissues, we performed the network analysis using normal lung tissues derived from 78 of the
82 lung adenocarcinoma patients. We identified six co-expression modules ranging in size
from 64 to 248 (Supplementary Figure 3). Among the six modules, one (red) showed
significant association with overall survival. After adjusting for potential confounders, the p
value remained significant (adjusted P=6×10-4, HR=1.91; 95% CI, 1.32-2.75)
(Supplementary Table 4). The red module was also significantly enriched with cell cycle-
related genes (P=4.1×10-41). The survival-related GS and gene connectivity were also highly
correlated in the normal tissue data set (Supplementary Figure 4).

Overall survival-related hub genes
Centralized genes (hub genes) are more likely to have a key role in a highly connected
network. We compared overall survival-related modules and found 30 genes that are shared
between the discovery and validation data sets. For the 30 genes, we first applied a paired t-
test for the 78 available normal-tumor pairs (discovery data set) for potential differential
expression. We observed significant difference in all 30 genes (range of p values from
6.58×10-6 to 5.89×10-14). All these 30 genes were up-regulated in adenocarcinoma tissues
compared to the matched normal lung tissues (Supplementary Table 5). Pathway analysis
mapped these 30 common genes to 12 biological pathways with a metaphase checkpoint (8
of the 30 genes) as the most significant pathway (P=7.69×10-16) (Supplementary Figure
5). Of the 30 genes, we further defined three genes (UBE2C, TPX2 and MELK) as hub
genes because of their high connectivity in the survival related modules (Supplementary
Table 6). Furthermore, the gene expression of each of the 3 hub genes was significantly
associated with overall survival in both discovery set and validation set 1 (Table 3). A
network map showing the interaction of 3 hub genes with other genes was constructed using
Metacore Genego pathway analysis (Supplementary Figure 6).

To estimate the survival prediction using these three hub genes, we built an expression-
based prediction model. In the discovery tumor set , patients with a high-risk gene signature
have a 3.85 fold higher risk (95% CI, 1.34-11.05, Table 3) of death than patients with a low-
risk gene signature. In the validation set 1, this high-risk gene signature remained significant
in predicting 5-year survival (HR 1.72; 95%CI, 1.21-2.46). When compared to the clinical
variables-only model, although adding the 3-gene signatures in the discovery set slightly
improved the survival prediction accuracy from 0.70 to 0.72 (Figure 3A), incorporation of
the 3-gene signature in the validation set increased the prediction accuracy from 0.69 to 0.72
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(Figure 3C). When 78 normal lung tissues were evaluated, the 3-gene signature showed a
predictive value with a HR of 3.35 (95%CI, 1.08-10.4); adding this signature to the
conventional prediction model increased the prediction accuracy from 0.74 to 0.76 (Figure
3E). We also analyzed the survival prediction three hub genes using only stage I patients,
and found that the prognostic results on stage I tumors were consistent the results from all
stages in discovery tumor set and validation set 1 (Supplementary Table 7, 9, and
Supplementary Figure 7). For the normal lung tissue set, the 3-gene signature showed a
predictive value with a HR of 2.73 (95%CI, 0.64-11.7); adding this signature to the
conventional prediction model increased the prediction accuracy from 0.84 to 0.85
(Supplementary Table 8 and Supplementary Figure 7 E), showing no statistic
significance.

To further validate the prognostic result of these 3 genes (UBE2C, TPX2 and MELK), we
analyzed the association of 3 top genes and 3-gene risk index with overall survival for all
tumor stages and stage I in validation set 2. Patients with a high-risk gene signature have a
1.52 fold higher risk (95% CI, 1.02–2.24, Supplementary Table 10) of death than patients
with a low-risk gene signature. Stage I patients with a high-risk gene signature have a 2.4
fold higher risk (95% CI, 1.16-4.96, Supplementary Table 11) of death than patients with a
low-risk gene signature. With addition of the 3 gene signature, survival prediction for stage I
patients was improved from 0.67 to 0.72 (Supplementary Figure 8).

Discussion
In this study, we applied a systems biology approach and examined gene co-expression
patterns in lung adenocarcinoma and matched normal tissues. We identified a gene module
enriched with cell cycle-related genes. Expression signatures of the module were
significantly correlated with tumor grade and overall survival in both tumor and matched
normal tissues. Importantly, the module-based expression signature improved survival
prediction when combined with clinical variables. The results were validated in two
independent data sets, which demonstrated the robustness of our findings.

We observed significant association of the cell cycle-related gene module with patients’
overall survival in tumor as well as normal lung tissues, indicating that the germline-
determined molecular signatures may also predict overall survival of lung cancer patients.
This further reinforces the important role of cycle cell-related gene network in determining
disease progression and patients’ survival. Although normal lung tissue was taken form the
farthest distance to the tumor in the resected lung, we could not completely rule out the
possibility of tumor field effect on the expression signature.

We adopted a systems biology approach by focusing on a handful of modules rather than
tens of thousands of individual genes. The benefit of the network-based approach is its
ability to reveal complex biological mechanisms responsible for the phenotype of interest
and alleviate multiple testing problems inherent in microarray data analysis. Our analysis
identified 30 genes that are shared between the discovery and validation set 1. All these 30
genes were up-regulated in adenocarcinoma tissues compared to the matched normal lung
tissues, although differential expression of most of these genes are lower than the most
commonly used threshold fold change of 2. These 30 genes need to be validated through
further studies in independent sets of patients. Of these genes, three hub genes (UBE2C,
TPX2 and MELK) demonstrated significant association with overall survival. UBE2C and
TPX2 have been reported as gene signatures for human lung cancer prognosis in vitro lung
carcinogenesis system [18]. MELK was identified as a key regulator of the proliferation of
malignant brain tumors and aggressiveness in human astrocytomas [19, 20], and was also
associated with breast cancer prognosis [21].
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It is well known that adenocarcinoma exhibits distinct molecular pathways in smokers and
nonsmokers [22-25]. However, little is known about the different effects of gene expression
on the overall survival between smokers and never smokers. In this three-phase study, we
analyzed never smokers in discovery data set, and both smokers and non-smokers in
validation data set. To further elucidate the smoking effect, we stratified these patients by
smoking status and found the significant association of module expression signatures with
overall survival in the subgroup of former smokers. Although the expression signature was
not significantly associated with overall survival in the subgroups of never smokers and
current smokers (possibly due to the small sample sizes), the trends of the HRs were the
same as the one in former smokers. Furthermore, the survival predicting of these 3 genes
was further validated using validation set 2 consisted of both smoker and never smoker
patients. Overall, our results suggest that alterations in cell cycle genes and pathways are
associated with tumor grade and contribute to the patient survival regardless smoking status.

In summary, this study used a systems biology-based network approach and identified a
group of highly correlated genes that showed significant association with clinical outcome in
patients with lung adenocarcinoma. From a survival-related gene module, we further defined
3 hub genes whose expression signatures provide a moderate yet consistently improved
survival prediction for adenocarcinoma beyond conventional predictors. However, further
studies are needed to evaluate possible application of the molecular signatures for survival
prediction and to functionally characterize the key genes for potential therapeutic targets.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Clustering dendrogram of genes from discovery set of 82 lung adenocarcinoma tumors. The
dendrogram is displayed together with color assignment: the grey color represents genes
outside of all modules (all other colors). In the dendrogram, each leaf, that is a short vertical
line, corresponds to a gene. Branches are expression modules consisting of densely
interconnected and highly co-expressed genes.
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Figure 2.
Scatter plots of gene significance for overall survival and gene connectivity in the cell cycle-
related module (red module) from discovery set of 82 lung adenocarcinoma tumors. Each
cycle represents a gene whose location is mapped according to its connectivity (number of
connected genes in the module) and significance for survival. Significant correlation
between connectivity and gene significance indicates that highly connected genes tend to be
associated with overall survival. cor= Pearson correlation coefficient.
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Figure 3.
Survival prediction of 3 top gene signatures (UBE2C, TPX2 and MELK). (A) Area under
the curve (AUC) for 82 lung adenocarcinoma tumors from the discovery set. With addition
of the 3 gene signature, survival prediction was improved from 0.70 to 0.72. (B) Kaplan-
Meier curves for 82 lung adenocarcinoma tumors from discovery dataset. (C) AUC for 442
lung adenocarcinoma tumors from the validation dataset. With addition of the 3 gene
signature, survival prediction was improved from 0.69 to 0.72. (D) Kaplan-Meier curves for
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442 lung adenocarcinoma tumors from the validation dataset. (E) AUC for 78 lung normal
tissues from the discovery dataset. With addition of the 3 gene signature, survival prediction
was improved from 0.74 to 0.76. (F) Kaplan-Meier curves for 78 lung normal tissues from
the discovery dataset.
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Table 1

Descriptive characteristics of the patients with lung adenocarcinoma

Mayo Clinc discovery set Validation set 1

Patient characteristics Tumor N=82 Normal N=78 Tumor N=442

Alive/death 56/26(68.3/31.7) 56/22(71.8/28.2) 206/236(46.6/53.4)

Survival time (years)

        Median (range) 4.2(0.4-9.1) 4.5(0.4-10.1) 3.7(0.0-14.6)

        Mean(SD) 4.5(2.2) 4.6(2.2) 4.2(3.0)

Age at diagnosis (years)

        Mean(SD) 67.6(13.0) 67.4(12.9) 64.4(10.1)

Men/women (%) 15/67(18.3/81.7) 14/64(18.0/82.1) 222/220(50.2/49.8)

Race

        Caucasian 73(89.0) 72(92.3) 294(66.5)

        Non-Caucasian 9(11.0) 6(7.7) 19(4.3)

        Unknown – – 129(29.2)

Smoking history at diagnosis (%)

        Never 82(100.0) 78(100.0) 49(11.1)

        Ever 0 0 299(67.6)

        Unknown – – 94(21.3)

Tumor stage

        I 57(69.5) 55(70.5) 276(62.4)

        II 5(6.1) 5(6.4) 94(21.3)

        III 17(20.7) 17(21.8) 69(15.6)

        IV 3(3.7) 1(1.3) 0

        Unknown – – 3(0.7)

Tumor grade

    Poorly/undifferentiated 7(8.5) 7(9.0) 167(37.8)

    Moderately differentiated 33(40.2) 28(35.9) 208(47.1)

    Well-differentiated 42(51.2) 43(55.1) 60(13.6)

    Unknown – – 7(1.6)

Performance score

    Up to 2.0 80(97.6) 76(97.4) –

    Above 2.0 2(2.4) 2(2.6) –

Comorbidity diseases

    Pulmonary diseases (%)

            Yes 17(20.7) 13(16.7) –

            No 65(79.3) 65(83.3) –

    Non-pulmonary diseases (%)

            Yes 59(72.0) 53(67.9) –

            No 23(28.1) 25(32.1) –

    Other cancers
a
 (%)

            Yes 27(32.9) 24(30.8) –
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Mayo Clinc discovery set Validation set 1

Patient characteristics Tumor N=82 Normal N=78 Tumor N=442

            No 55(67.1) 54(69.2) –

Lung cancer recurrence/progression/new primary

            Yes (%) 37(45.1) 34(43.6) 205(46.4)

            No (%) 45(54.9) 44(56.4) 156(35.3)

            Unknown – – 81(18.3)

Treatment modality

    Surgery only (%) 56(68.3) 52(66.7) 330(74.7)

    Surgery with chemotherapy or radiation (%) 26(31.7) 26(33.3) 109(24.7)

    Unknown – – 3(0.7)

–, not available

a
Excludes non-melanoma skin cancer.
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