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Abstract
T-cell receptors recognize peptides presented by the major histocompatibility complex (MHC) on
the surface of antigen-presenting cells (APC). The ability of the T-cell receptor (TCR) to
recognize more than one peptide-MHC structure defines cross-reactivity. Cross-reactivity is a
documented phenomenon of the immune system whose importance is still under investigation.
There are a number of rational arguments for cross-reactivity. These include the discrepancy
between the theoretical high number of pathogen-derived peptides and the lower diversity of the
T-cell repertoire, the need for recognition of escape variants, and the intrinsic low affinity of this
receptor–ligand pair. However, quantifying the phenomenon has been difficult, and its
immunological importance remains unknown. In this review, we examined the cases for and
against an important role for cross reactivity. We argue that it may be an essential feature of the
immune system from the point of view of biological robustness.
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I. INTRODUCTION
T-cell cross-reactivity is a phenomenon of the immune system defined as the recognition of
two or more peptide-MHC complexes (pMHCs) by the TCR. The recognition is based on
the ability of the TCR to bind sufficiently well to initiate a cellular response. There is an
expectation of T-cell cross-reactivity based on the large number of pathogen epitopes that
may be encountered and on the probability that low affinity interactions may favor multiple
pMHC complexes with sufficient affinity to bind a particular TCR. Yet, despite a number of
publications about cross-reactivity of T cells, the overall number of documented cases of
cross-reactions is low. This review describes cross-reactivity of T cells and its possible
importance in immune systems, with an emphasis on the structural aspects of the recognition
of pMHC by TCR. We discuss the basis and the necessity of cross-reactivity from a
systemic point of view, with a particular emphasis on survival in humans after thymic
involution. We start with some necessary background.

A. T-Cell Recognition of pMHC
The recognition by T cells of antigenic peptides bound to class I or class II MHC initiates an
adaptive immune response. Recognition occurs through the TCR, a heterodimeric cell-
surface receptor composed of an α- and a β-chain. Each chain is generated by a somatic
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rearrangement process occurring during thymic maturation in which one of a number of
variable (V) segments rearranges next to one of a number of joining (J) segments (α-chain)
or a diversity (D) and joining segment (β-chain). Recognition specificity is a function of the
variable regions, which contain three highly diverse loops, termed complementarity-
determining regions (CDRs) 1, 2, and 3, that make direct contact with the ligand. The CDR1
and CDR2 loops are encoded within the V gene segment, whereas CDR3 loops are
generated during rearrangement and span the VJ or VDJ junctions. CDR3 loops define the
TCR because the joining process is imprecise, with insertion of non-templated nucleotides
(N nucleotides) in the junction site, as well as 3′- and 5′-nucleotide deletion from segments
participating in the rearrangement. Thus, the resulting CDR3 has a unique nucleotide
sequence that is specific to that particular T cell and all its progeny; hence, the receptors
have a clonotypic nature of (reviewed in Davis and Bjorkman1). For this reason, CDR3
sequences have been the main focus in studies aimed at unveiling the mechanisms
responsible for the specific recognition by one T cell of multiple pMHC complexes. CDR1
and CDR2 sequences are the focus of investigations of germline TCR-MHC bias, which is
discussed below as part of thymic selection (see III.A. Thymic Selection and Cross-
reactivity).

The αβ TCR can recognize two major polymorphic classes of MHC molecules. MHC class I
(MHCI) is expressed on most cell types and presents internally generated peptides to CD8-
expressing T cells. MHC class II (MHCII) is expressed on the surface of professional APCs
of the immune system, such as dendritic cells, macrophages, and B cells. These APCs
present peptides generated from exogenous sources to CD4 T cells whose function is the
production of cytokines and in some cases cytotoxicity. Whereas both MHCI and MHCII
have relatively similar structures, MHCI-bound peptides are anchored at their ends and are
generally only nine amino acids long. Longer peptides maintain their end anchor points and
bulge in the middle. MHCII-bound peptides tend to be more exposed and are of different
lengths because the ends of the peptide binding groove are not closed.

B. Generation of TCR Diversity and Repertoire Restriction
The gene structure and rearrangement process leads to the generation of diversity of the
TCR. Combinatorial diversity represents the factoring of the number of possible V-J joins
with assumptions as to their probability based on their distance apart. To this is added the
junctional diversity generated by addition and removal of nucleotides. Finally, pairing of the
chains can increase the diversity. During thymic maturation, properly rearranged β-chains
are first selected (β-selection), and prior to α-chain rearrangement the thymocytes undergo
extensive division (reviewed in Starr et al.2), allowing for cells with the same β-chain but
different α-chains. The theoretical diversity based on both combinatorial and junctional
processes has been estimated to be approximately 1018 in humans and 1015 in mice.
However, individual repertoire diversity is much lower; it is estimated to be less than 108 in
humans3,4 and 106 in mice.5 These lower levels in the diversity of the TCR repertoire is in
part a result of the negative selections that occur during T-cell development in the thymus.
The process of negative selection eliminates T cells having too high an affinity for self-
MHC or self-pMHC, preventing autoimmune reactions. This central tolerance results in a
repertoire capable of recognizing self-MHC in a complex with foreign peptides but avoiding
self-peptide recognition. However, the elimination of T cells during negative selection
creates “holes” in the T-cell repertoire,6 which can lead to increased susceptibility or
emergence of escape variants that are similar to self-peptides. The lower levels of diversity
are also dictated by the carrying capacity of the organism because there is limited space for
T cells in the periphery.
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C. Peripheral Selection and Memory
After exiting the thymus, a naïve T cell has a limited lifetime that can be extended on the
basis of its participation in an immune response (effector function) with a portion of the cells
surviving as memory cells. Because the effector stage includes cell division, the clonotypic
lineage is preserved even if only a small percent of the effector cells in the lineage are set
aside as memory. Memory cells respond more rapidly and robustly upon a second exposure,
ensuring that subsequent exposures have less effect (morbidity). As might be expected, an
antigen-experienced (memory) T cell does not have the same signaling requirements as a
naïve cell.7–10

Initial participation in a peripheral response is mediated by the level of inflammation and the
resulting signals from innate cells. The inflammatory state may regulate the activation of
threshold of the T cells entering the node or spleen, and this threshold setting may allow for
less avid T cells to participate. On the other hand regulatory T cells may increase the
threshold.11 The ability to reset thresholds can play a role in cross-reactivity if it allows T
cells with lower-avidity TCR to respond to a particular peptide.

II. MOLECULAR BASIS OF T-CELL CROSS-REACTIVITY
A. Structural Mechanisms

There have been a number of mechanisms proposed for the structural basis of TCR cross-
reactive recognition of pMHC. A number of these have been summarized in a recent review
by Yin & Mariuzza.12 TCR:pMHC interactions are driven by the relatively flat nature of the
complex interface, low number of H-bonds, the frequent lack of strong (ionic) interactions,
and reliance on van der Waals (VDW) interactions. The overall affinities are relatively
weak, especially in comparison to immunoglobulin-antigen (Ig:Ag) interactions.13 Peptide-
loaded MHC have to be multimerized to provide a mechanism for identifying specific T
cells, and even multimers often miss biologically relevant interactions for CD8 cells and
have a poor history of utilization for CD4 cells. The mechanics of cross-reactivity involves
changes in CDR loop conformation, altered TCR docking on the pMHC, flexible changes in
pMHC, and structural degeneracy.

1. Conformational Plasticity of CDR Loops—A number of studies have observed
structural rearrangements occurring during the TCR:pMHC interaction, mostly from
comparison of free vs. bound TCR structures or of the same TCR with two different
pMHC.14–23 The range of motion is between 0.3 and 11.4 Å overall, averaging 2.6 ± 1.5 Å
across loops. In general, CDR3 loops undergo the largest shifts.20–23 Interestingly, the loops
do not fold during the engagement with the ligand. Rather, the shifts are “rigid-body” like,
followed by occasional remodeling.

Three structures are resolved for the BM3.3 TCR bound to different pMHC complexes:
VSV8:H-2Kb, pBM1:H-2Kb, and pBM8:H-2Kbm8.24 The bound peptides are considerably
different in their chemistry. The BM3.3 binds the three ligands in the same orientation. The
CDR3α varies significantly via loop remodeling and hinge bending between the three
complexes. The conformation of the CDR3β is maintained between pBM1 and VSV8
structures, but is shifted by 4.4 Å in the pBM8 structure due to a large wrinkle in the center
of the loop. Among the germline loops, only the CDR2α shifts by approximately 2 Å. The
affinity of the BM3.3 for pBM1 is greater than for pBM8, probably for the different
reorganization of CDR3β and displacement of CDR2α, but also for the different interactions
present at the interface.

Of special interest is the analysis of the A6 TCR, which has been resolved in complex with
five different pHLA-A2 ligands: the wild-type Tax peptide and four single-substituted
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variants.25,26 The mutations applied to three of the four peptides dramatically alter the
binding interface. The CDR3β undergoes the most significant variation among structures,
shifting by an amount that correlates with the modification in the binding plane. Also in the
case of the A6 TCR, the greater the conformational change in CDR3β, the weaker the
affinity. However, discriminating between the effect of the interactions established at the
interface and the effect of loop conformational rearrangements on the differences in affinity
is not straightforward.

2. Altered TCR:pMHC Docking Geometry—All the TCRs assume a docking
orientation that is diagonal with respect to the peptide backbone direction of the pMHC. In
general, the TCR variable domains bind roughly at a 35° angle across the complex major
axis in complexes involving MHCI and at a 50° angle in the case of MHCII. An exception to
the former is class I HLA-A2 in complex with the xenoreactive AHIII 12.2 TCR, which
shows an angle of 67°. The Vα domain is centered over the α helical portion of the MHCI
α1 domain or of the MHCIIβ domain. The Vβ domain mainly contacts the α–helix of the
MHCI α2 domain or of the MHCIIβ domain. In some structures, the TCR axis appears to be
nearly orthogonal with respect to the pMHC main axis.27 Thus, it appears that TCR docking,
although being conserved in terms of overall geometry, features a certain degree of
variability. It is conceivable that this very variability may allow the same TCR to engage
different pMHC ligands. The 2C TCR binding to different pMHC is an example of such
changes.28

3. Flexibility of the Peptide and MHC—As the TCR engages the pMHC complex,
conformational shifts in both the peptide and the MHC have been shown to take place along
with the structural rearrangements of the TCR itself. These shifts in the ligand are usually
small in magnitude and have been interpreted as “induced-fit” type conformational
rearrangement with little or no contribution to the final binding. However, a recent work
from Baker and colleagues has shown evidence that peptide-dependent “tuning” of
molecular motion distributed throughout the TCR binding surface of the pMHC can
contribute to TCR recognition and facilitate cross-reactivity.29

Indeed, in this study the human αβ TCR A6 recognizes the HTLV-1 Tax peptide presented
by HLA-A2, as well as the Saccharomyces cerevisiae peptide Tel1p bound to the same
MHC. Cross-reactivity between Tax and Tel1p is not unexpected given the similarities in
the peptides. However, the interface formed by A6 with Tel1p-HLA-A2 is substantially
different from the interface formed with Tax-HLA-A2, although the Tel1p-HLA-A2
complex is an ideal structural mimic of the Tax ligand. Strikingly, the conformational
differences involve not only the peptide and the TCR CDR3 β loop but also the HLA-A2 α2
helix.

4. Structural Degeneracy—This mechanism has parallels to the “hydrophobic
interactions” used to describe some forms of non-covalent binding. These are not necessarily
strong interactions and can easily slip. Some TCR:pMHC interactions are predominantly
driven by VDW interactions, and usually the complexes have low affinity. However,
complexes whose formation seems to rely on structural degeneracy have been the subject of
mutational analyses that generate more tightly binding complexes. The 3A6 TCR, which
recognizes myelin basic protein (MBP) 89–101 peptide bound to HLA-DR2, is an example
of this mechanism.30 The crystal structure was composed of four asymmetric units, none of
which showed identical interfaces. Interactions between TCR and peptide are mainly
restricted to VDW contacts, with limited juxtaposition of hydrophobic surfaces. The paucity
of interactions between 3A6 and MBP offers ample opportunity for optimizing the
TCR:pMHC interface through variations of the peptide. Indeed, combinatorial libraries

Petrova et al. Page 4

Crit Rev Immunol. Author manuscript; available in PMC 2013 March 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



identified peptides with multiple substitutions at TCR contact positions that stimulate 3A6 T
cells far more efficiently than MBP itself.31

B. Molecular Mimicry
Molecular mimicry has been considered a cross-reactive mechanism. It originally defined a
situation in which a pathogen expresses an epitope that shares antigenic structures with host
tissue-derived protein or peptide,32 and was originally used for both B- and T-cell responses.
In the context of a T-cell response, pathogen-derived peptides when presented by MHC may
activate potentially self-reactive T cells. As a consequence, tolerance/ignorance is broken,
and the pathogen-specific immune response cross-reacts with host-derived epitopes, which
can cause tissue damage and disease. Molecular mimicry per se is not a structural definition
but rather a functional description. The mimicry may result from one or a combination of the
mechanisms described above. However, there can be very restricted mechanistic version of
molecular mimicry in which the two epitopes have identical structures. The differences may
lie in buried side chains that do not affect the overall structure. Here, we use the term in its
original context.

A well-studied example of molecular mimicry is cross-reactivity between an Epstein-Barr
virus (EBV) epitope and MBP.33

Molecular mimicry has been extended to alloreactive responses that can be important in
transplant settings. One of the first reported examples of this was the 2C TCR, which
recognized a self-peptide presented by H2-Kb as well as the foreign QL9 peptide bound to
the H2-Ld alloantigen.28 A recent publication34 showed that the LC13 TCR, which
recognizes a viral peptide presented by self-HLA-B*0801, and also recognizes B44
allotypes (HLA-B*4402 and HLA-B*4405), bound to two different allopeptides.

C. Thermodynamic Analysis of the TCR:pMHC Interaction and Cross-Reactivity
Thermodynamic analysis of the various TCR:pMHC complexes has enhanced our
understanding of the determinants of TCR binding and their involvement in cross-reactivity.
For example, the possibility that the TCR CDR loops are flexible and undergo
conformational rearrangements as they interact with the pMHC ligand was initially
hypothesized on the basis of kinetic analysis35 and the subsequent crystallographic
studies.14,15 However, a confirmation of the flexibility of the CDRs in the unbound state
was found on the basis of the thermodynamic analysis of the human JM2236,37 and the
murine F537 systems, which measured in both cases a negative entropic contribution to the
free energy decrease of binding to their respective pMHC ligand.

These initial observations were corroborated by another work focused on the 2B4 TCR
interacting with the MCC/I-Ek complex.38 Indeed, the loss of entropy and the restraining of
conformational mobility observed in this latter system were interpreted as the evidence that
the TCR CDR loops sample multiple conformations, allowing a TCR repertoire with limited
variety to interact with a much larger repertoire of pMHC complexes.

This thermodynamic model of TCR recognition would be challenged just few years later,
with the discovery of a number of entropically favored TCR:pMHC complexes.16,39–41

Because it was apparent that the TCR/pMHC interaction is not characterized by a specific
structure, the question as to whether thermodynamic data could provide insight into the
mechanisms of T-cell activation was raised.

By comparing the data of the interactions for which a thermodynamic study has been carried
out, it appears that the values of ΔG are very similar, whereas the values of enthalpic and
entropic contributions span a wide range. Moreover, the changes in entropy and enthalpy
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follow a linear trend, suggesting the likelihood of the presence of a compensatory
mechanism between the entropic and enthalpic contributions.42 On this basis, it was argued
that as far as enthalpy and entropy are concerned, it does not matter how you form the
TCR:pMHC complex, just that you do. A similar conclusion obviously leaves room to that
permissiveness of recognition that is at the basis of cross-reactivity.

III. IMMUNOLOGY OF T CELL CROSS-REACTIVITY
A. Thymic Selection and Cross-Reactivity

Thymic maturation has a positive selection phase mediated by selection on self-MHC loaded
with self-peptides. This selection on MHC-loaded with self-peptide could formally make
any T cell peripherally selected in response to a pathogen inherently cross-reactive.
However, cross-reactivity in thymic selection has had an MHC-focus.43 The MHC-focus at
this stage is thought to be predominantly mediated by CDR1 and CDR2 interactions with the
MHC.44 Thus, recognition of self-pMHC during positive selection is usually ignored when
thinking about cross-reactivity, even though the peptide is part of the complex being
recognized. If the role of the peptide is to assure surface expression of the MHC and not to
interfere with the recognition of the MHC, then positive selection does not formally meet the
definition of cross-reactivity.

It has been suggested that in normal humans and WT mice, different thymocytes encounter
different numbers of self-pMHCs; thus, the level of cross-reactivity of the selected T cells
can vary.45

B. Cross-Reactivity in Peripheral Selection and Autoimmunity
Peripheral selection can involve recently matured naïve T cells in cases of the relatively
young (antigen inexperienced); it can involve a mix of naïve and previously experienced T
cells; or, in older individuals, it can involve primarily experienced T cells. An experienced
cell is in the process of developing a memory phenotype. If it participates in a second
response, owing to sufficient avidity with the new epitope, it will be cross-reactive. It is very
likely that the probability of such an occurrence is driven not only by avidity but by other
signals that set the response threshold.

In the case of a pathogen that is inducing a large inflammatory response, the cellular
response thresholds is undoubtedly set lower to encourage a T-cell response. While the
ability to set response thresholds has survival benefit, the unintended consequence could be
cross-reactivity on self. Typically, this is minor and can be dealt with by peripheral tolerance
mechanisms. However, some examples, such as reactive arthritis, can lead to autoimmune
disease at non-negligible frequencies.46,47 In the case of most autoimmune diseases, an
infection is thought to be the trigger,48–50 and cross-reactivity could play an important role.

1. Examples of Cross-Reactivity between Pathogens—There are a number of
examples of cross-reactivity between both related and unrelated pathogens.

Examples of cross-reactivity between related pathogens include different serotypes of the
Dengue virus that differ in MHCI presenting epitopes,51,52 different strains of the influenza
A virus,53–57 hepatitis C virus (HCV) escape variants,58 and human immunodeficiency virus
(HIV) common variant epitopes from different clades.59,60 Cross-reactivity can also be
observed between different epitopes derived from the same virus. These examples include
EBV61 and HIV.62 A majority of these cross-reactive peptides have structural similarity and
differ in one or two amino acids.
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Cross-reactivity has also been examined between a known peptide antigen and either peptide
variants (or mutant viruses) generated by amino acid substitutions,63–67 or by scanning
combinatorial peptide libraries to find structurally and/or biochemically similar
peptides.6,68–72

Cross-reactive peptides from unrelated pathogens often demonstrate a lower level of
structural homology. Examples of such cross-reactivity include HIV and human
cytomegalovirus (CMV),73 HIV and Influenza A,74 Influenza A and EBV,75,76 Influenza A
and HCV,77–79 and HCV and human herpes virus (HHV1).80

Scanning combinatorial peptide libraries has also been used to identify structurally and/or
biochemically unrelated peptides.6,68–72

All these studies demonstrate “true” cross-reactivity, when a particular clone is tested
against a set of peptides and recognize more than one. Polyclonal cytotoxic T-cell lines
(CTLs) generated against the peptide in question that can recognize different peptide(s) also
show true cross-reactivity for that subset that recognizes both the original and the different
peptide(s). In the case when multiple peptides are recognized, it is not known whether the
same TCR (clone or clonotype) recognizes two or more peptides, or different subset of
established CTL able to recognize at least one additional peptide.

Activation of CD8 T cells specific for EBV, CMV, and Influenza A has been observed
during HIV infection.81 Cross-reactivity might explain these observations, but other
explanations could include possible bystander activation of pre-existing memory T cells
specific for other epitopes.

2. Cross-reactivity in Autoimmunity—As a general rule, most autoimmune disorders
are thought to result from cross-reactivity based on an initial reaction to a pathogen. This
idea gave rise to the term molecular mimicry. It is known that pathogenic peptides can
activate autoreactive T cells due to structural similarity between pathogenic and self-
peptides and cause autoimmune diseases30,34,72,82–88 or accelerate a previously initiated
autoimmune process.89

When considering cross-reactivity, the most-studied examples of autoimmune diseases that
might be triggered by pathogens include multiple sclerosis (MS) and diabetes mellitus. MS
immunopathology is contributed by recognition of MBP by autoreactive TCRs.90 Thus, the
autoimmune 3A6 CD4 clone recognizes the N-terminal portion of MBP in complex with
MHCII molecule HLA-DR2a.30 Using a panel of superagonists with substitution at a TCR
contact position, it had been shown that 3A6 recognizes the antigen through the structural
degeneracy mechanism. Type 1 diabetes is characterized by killing of pancreatic B cells by
autoreactive CTLs that target preproinsulin signal peptide-derived epitopes.91 The 1E6 CD8
T-cell clone that recognizes one of the preproinsulin-derived peptides can also recognize up
to 106 different peptides from a decamer peptide combinatorial library.72 This high level of
cross-reactivity could involve most of the mechanisms described in section II.A. Thus, the
TCRs involved have inherent cross-reactive potential; however, the pathogen epitope that
may drive the initial response has not been identified.

This link between peripheral selection and autoimmunity defined the phenomenon of
molecular mimicry. However, it is likely that all the mechanisms described in section II.A
could play some role in this phenomenon.
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C. Frequency of T-Cell Cross-Reactivity
The number of peptides that can be presented by self-MHC is estimated to be greater than
1015;72,92 at the same time, the number of T-cell clonotypes in humans is less than108 3,4

and even less in mice.5 Thus, it has been hypothesized that for effective immune response, T
cells need to recognize more than 106 epitopes (peptides).93 Therefore, one would expect a
large number of examples of cross-reactive T cells. The question has been how to estimate
the rate of this phenomenon.

1. Examples of Cross-Reactivity Measurements—A majority of the reported
examples mentioned above include cross-reactivity between two or more
peptides. 63,67,70,73,74,77,78 Estimates of cross-reactivity of known clones can be up to 106

different peptides.6,72 At the same time, several reports have indicated an extremely low
frequency of cross-reactions between unrelated peptides.71,94,95 Ishizuka and colleagues71

examined approximately 30,000 TCR-pMHC interactions using 18 murine or human CD8
T-cell clones and polyclonal CD8 T cells raised to viral and autoantigens, and they identified
only one single cross-reaction. Oseroff et al.94 screened vaccinia virus (VV) for CTL
epitopes. They tested peripheral blood mononuclear cells (PBMCs) from healthy donors
before and after vaccination. Of 91 peptide pools tested, they identified four positive peptide
pool responses in postimmunization PBMCs and none in preimmunization PBMCs.
Similarly, a low frequency of cross-reactive responses to CMV-derived peptides was
detected in healthy seronegative donors, while seropositive subjects demonstrated CMV-
specific T-cell responses.95 Thus, despite a number of reported examples of cross-reactivity,
the frequency of observations does not meet the higher estimations.

2. Why is Extensive Cross-Reactivity not Observed on a Regular Basis?—
There are several possible answers to this question. The approaches for detection of cross-
reactivity are different. Testing ex vivo PBMC for cross-reactivity with unknown peptides
might yield a low number of observations or no observations at all due to a very low
frequency of cross-reactive T cells and limitations of the methods of detection, such as
tetramer staining, ELISPOT, intracellular cytokine staining, spectratype analysis, etc.
Expansion of antigen-specific T cells in vitro in short-term cell culture with a peptide or
mutant virus allows an increase in the number of these T cells but might not be equivalent to
an in situ environment. In vivo infection generates a complex immune response whose
intensity can be related to the damage caused by infection. Using an in vitro system
simplifies response but might change observed level of cross-reactivity.

Cross-reactive T cells can have a low affinity/avidity to most peptides. It has been reported
that cross-reactivity of T cells can be CD8 dependent.78,96 Wooldridge et al.96 used a panel
of HLA-A2 molecules exhibiting a range pMHC:CD8 binding affinities and showed that the
stronger the pMHC:CD8 interaction, the higher the number of peptides recognized.
However, analogous to the earlier discussion of positive selection driven by MHC, if the
MHC:CD8 reaction drives the response irrespective of peptide, then we do not consider this
true cross-reactivity. It should be pointed out that a TCR:pMHCI:CD8 or
TCR:pMHCII:CD4 interaction is complicated, and examples in which one of the component
interactions is the main binding energy source could represent an extreme event in the
spectrum.

We would like to propose that discrepancies might arise from the systems analyzed. PBMCs
from humans represent a rich history of exposures to pathogens and vaccines, yielding a
complex T-cell repertoire. This complexity could increase the chance for deriving a T-cell
clone that will respond to previously unencountered or self-peptides. Our own studies into
the allowable recognition of similar peptides has taken advantage of the complex memory
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response to influenza.67 In the laboratory mouse, with its ease of manipulation and
controlled genetics, the problem is that no peripheral T-cell system of equal complexity has
been set up to properly ask the same questions.

D. Cross-Reactivity and Signaling Thresholds
The requirement of adjuvants to break peripheral tolerance in most murine epitope-driven
autoimmune models indicates the need for additional signals in the T-cell recognition
process. In terms of cross-reactivity, by resetting signaling thresholds, the inflammatory
context is most likely very important to overcome situations where epitopes are recognized
with lower affinity. Changes promoting higher avidity could also overcome lower-affinity
interactions. It has been shown recently that Tregs may suppress expansion of low-avidity
antigen-specific CD8 T cells by inhibiting the production of chemokine ligands CCL2/3/4/5
(CC chemokine ligands 2/3/4/5) that stabilize the interaction between antigen-presenting
dendritic cells and low-avidity T cells.11 Insight into the signaling threshold process can be
gained by examining the effect on signaling of identified cross-reactive epitopes.

Altered peptides that are partial agonists can induce a signal of a different strength than the
original epitope. It has been shown that weak ligands alter TCR downstream signaling
events such as CDR3 zeta chain phosphorylation and activity of Zap70 kinase,97,98

phosphorylation of ERK ½99 and other kinases,100 and triggering recruitment of SHP-1 with
following inactivation of Lck kinase.99,101 Escape variants can suppress CD8 T-cell
response by activation of SHP-1.102

The concept of tunable thresholds has been put forth as an explanation for general immune
responses.103,104 Immunization of mice with modified myelin proteolipid protein,
PLP139-151, where tryptophan (W) at position144 was substituted for glutamine (Q)
(W144Q), and following expansion of PLP-specific T cells with the suboptimal cross-
reactive self-antigen PLP139-151, lowers the activation threshold to the immunizing
peptide, causing heteroclitic response as measured by cytokines production.105 Changes in
activation threshold by cross-reactive self-peptides can have implications in autoimmunity.

A certain level of signal threshold is required for polyfunctional effector response. It has
been shown that phosphorylation of ERK ½ correlates with degranulation and tumor
necrosis factor α (TNF-α) and interferon γ (IFN-γ) production;52 at the same time,
production of MIP-1β (CCL4) can be upregulated in response to short-lived epitope-specific
TCR-mediated signal in the absence of detectable ERK1/2 phosphorylation. It has been
hypothesized that MIP-1 β production may stimulate production of TNF-α and IFN-γ by
activated T cells specific for other viral epitopes and that such an increase of these cytokines
level may contribute to immunopathology.52

Reports have been published describing computational models that may be used to study
different aspects of T-cell activation and T-cell antigen discrimination.106–108 However,
which accessory signals might compensate for lower inherent affinity and allow an immune
response under sub-optimal conditions has not yet been well elucidated.

E. Heterologous Immunity
The phenomenon of heterologous immunity is well known and has been widely studied. A
number of reviews have been dedicated to heterologous immunity in both murine models
and humans.109,110 Heterologous immunity is defined as an “immunity that can develop to
one pathogen after exposure to non-identical pathogens”.110 Heterologous immunity can be
the result of cross-reactivity, a shared epitope, and/or bystander activation of T cells.76,81 If
the cross-reactivity is a result of specific recognition epitopes from the different pathogens
by the TCR, bystander activation usually is non-specific and can be caused by TCR-
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independent activation by released cytokines111 or by low-affinity recognition of self-
pMHC.88

Heterologous immunity has been well described in mice. Immunity to lymphocytic
choriomeningitis virus (LCMV) has been shown to provide partial protection after challenge
with either Pichinde virus (PV), VV, or murine cytomegalovirus (MCMV).112–115 This
immunity was reciprocal for LCMV and PV, MCMV and PV, and LCMV and MCMV
viruses as measured by virus titer level in at least one of the following organs: spleen, liver,
and fat pads. Immunity to LCMV, PV, MCMV, or Influenza A provides some level of
protection against VV, but immunity to VV did not protect against infections with any of
these viruses. Immunity to Influenza A protected against VV but not LCMV or MCMV.116

Mice immune to Influenza A demonstrated an increased viral titer in lungs and signs of lung
immunopathology when compared with control naïve mice after challenge with MCMV or
LCMV. This immunopathology in part can be explained by activation of cross-reactive T
cells by low-avidity cross-reactive epitopes that results in altered cytokine levels and
contributes to the observed immunopathology as discussed in the previous paragraph. One
study has reported the protective role of Bacillus Calmette–Guérin (BCG) vaccination
against a subsequent VV challenge; however, cross-reactive epitopes were not identified.117

The role of cross-reactivity and identification of cross-reactive epitopes has been determined
in two cases: LCMV and PV,113 and LCMV and VV.61,118 LCMV NP205-212 and PV
NP205-212 peptides demonstrate a high degree of amino acid similarity and differ only by
two amino acids at positions 5 and 8 that were identified as anchor residues.119 Crystal
structures of corresponding pMHC complexes indicate conformational similarities between
peptides;119 nevertheless, the BV composition of responding TCR repertoires was different,
with a dominance of VB16 in responses to LCMV and codominance of VB16 and VB5.1 in
responses to PV infection.120

Challenge of LCMV immune mice with VV reactivates a subset of LCMV-specific memory
T cells that can recognize VV-derived epitopes and protect against a lethal dose of VV.114

Identification of VV-specific epitopes that mediate protection against VV infection and
cross-react with known LCMV epitopes revealed a subdominant VV-a11r198-205 peptide.118

An intracellular cytokine staining assay indicated that VV-specific T cell lines from LCMV
immune mice stimulated with VV-a11r198-205 peptide recognized up to three LCMV-
derived epitopes: NP205-212, GP118-125, and GP34-41.61 The VV-a11r198-205 peptide shared
only 3–4 amino acid sequence similarities with any of the LCMV-derived peptides. The lack
of a detailed clonotype analysis left open the question of the extent of cross-reactivity (one,
two, or three additional peptides recognized). We assume that the observed cross-reactivity
is due to the structural degeneracy mechanism.

There is no doubt that the phenomenon of heterologous immunity applies to humans. There
are examples of immunopathology associated with T-cell cross-reactivity.52,73,75,79

Questions remain about how heterologous immunity shapes the responding repertoire. The
history of pathogen exposure in humans is unknown; thus, it is unknown whether the cross-
reactive T cells participating in the known responses can also respond to other pathogens.

H. Heteroclitic Immunity and Cross-Reactivity
Heteroclitic immunity is defined by the observation that stimulation with an antigen results
in T cells that are even more responsive to another antigen.121 This can be considered the
counterbalance to the partial agonist studies described above. A classic example is the
pigeon cytochrome C system, in which most T cells raised to this antigen respond even
better to moth cytochrome C.122,123 Other examples include identification of heteroclitic
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peptides in cancer immunotherapy. Modification of self-peptides expressed by malignant
cells can result in enhanced immunogenicity of an antigen and generation of CTL
recognizing both modified and original self peptides, which can be used in antigen-specific
immunotherapy and tumor vaccine development.124-131 The peptide changes result in
generation higher stability pMHC complexes, which are linked to generation a more diverse
TCR repertoire with range of affinities.132 Heteroclitic peptides can also originate from
pathogens. It has been shown that MPHF2 peptide derived from Mycoplasma penetrans
HF-2 permease protein stimulate CD4 T cells, exhibiting a higher functional avidity for
melanoma antigen MAGE-A6 than MAGE-A6-specific CD4 T cell lines.133 HIV-1 protease
76-84 is considered to be a heteroclitic variant of (IFN-γ)-inducible protein 30 signal
peptide.134

Identification of heteroclitic peptides can also be useful in generating highly cross-reactive
CTL to prevent escape variants and predict autoimmunity and immunopathology.134–137

Heteroclitic immunity is mostly related to the degeneracy mechanism.

I. Prediction of Cross-Reactivity
Prediction of cross-reactivity is important for vaccine design in two ways. It would be useful
to predict protection against a pathogen and escape variants or multiple pathogens with
similar epitopes if this is found to increase efficiency. It is also useful to predict possible
autoimmune reactions from cross-reactivity on self.

There are a number of practical approaches to predicting cross-reactivity. These include the
generation of a panel of mutant peptides with single and/or multiple amino acid substitutions
in known epitopes and testing the impact of these substitutions on T-cell effector
functions.63–67 Another approach involves scanning combinatorial peptide libraries to find
cross-reactive peptides for clones with known antigen specificities6,69,72,96,138–140 as well as
specifying antigens for clones of unknown specificities.141 Scanning of a pathogen proteome
to reveal unknown epitopes might help in detection of cross-reactive peptides as
well.94,95,142

We are currently not in a position to perform ab initio prediction based on structural
considerations and mechanisms. A better understanding of the thermodynamics of
TCR:pMHC interactions should be able to supply rules that specify the probability of cross-
reactivity.

J. Complexity of T-Cell Repertoires and Cross-Reactivity
Peptide antigens can generate oligo- or polyclonal T-cell repertoires. Polyclonality, which
would correspond to the abundance of distinct TCR species, can be used as an
approximation for diversity. Limited TCR diversity of T-cell responses is associated with
CTL escape.143–145 Polyclonal T-cell repertoires are more likely to contain high-avidity T-
cell clones that result in better epitope recognition and control of the pathogen.54,146–148

Such repertoires can contain cross-reactive T-cell clones that are able to recognize escape
variants and new epitopes. Such functional overlap would avoid loss of immune recognition
and maintain responses to the pathogen.

One of the examples of such a diverse repertoire is the CD8 T-cell response to HLA-A2
restricted influenza A–derived M158-66 peptide. The clonotype distribution in the M158-66
repertoire is characterized by an extensive low-frequency tail, which could be indicative of a
power law-like distribution.149 To facilitate additional analysis, the repertoire can be
graphed on the basis of rank frequencies. In such a graph, the number of clonotypes present
once, twice, etc. would be counted and plotted as rank one, two etc. In a power law
distribution, a log-log plot of the rank vs. frequency would give a line with a slope that is
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equal to the exponent of the distribution.150–152 We refer to repertoires with power law-like
clonotype distributions as complex. Complex repertoires have also been reported for mouse
CD8 T-cell responses to influenza A153 and for Treg populations.154 Recent analyses of ex
vivo repertoires of total CD4 or CD8 cells or subsets thereof155,156 show that these
repertoires exhibit the power law distribution.

Two questions arise about complex repertoires. The first is how the complexity arises. The
second is whether the complexity affects cross-reactivity. A complex repertoire may be the
result of a random distribution of TCR affinities for the pMHC. There would be many ways
to generate low-affinity interactions but fewer and fewer to generate high-affinity
interactions. If affinity is related to proliferation then there would be a few high-affinity,
high-frequency clonotypes and many low-frequency, low-affinity clonotypes in the
repertoire. It could be expected that cross-reactive clonotypes may be most frequent in the
low-affinity subset of the repertoire, as these would have a higher probability of having
higher affinity toward a different peptide.

We examined the distribution of cross-reactive clonotypes from the M158-66 repertoire,
which can form a fully connected cross-reactive network.67 Plotting the total repertoire on
the basis of rank frequency yields a line. Plotting the subset of clonotypes that are cross-
reactive also gives a line that extends out to the high-rank clonotypes (Figure 1).

If cross-reactivity is a side-effect of a TCR affinity toward different pMHC complexes, then
cross-reactive clonotypes should be found only in the low-frequency tail of the repertoire
(Figure 1, ranks 1–3) as we have suggested above. However, cross-reactive clonotypes are
distributed through the all ranks, which indicates power law-like distribution. This
distribution indicates a selection of cross-reactive clonotypes that is similar to the total
repertoire. Selection is an indication of an important role in the immune response.

When imagining an immune system in which cross-reactivity plays an important role,
repertoire complexity is expected. In spite of an early tendency to look for relatively
monoclonal results in the peripheral selection process, complex repertoires appear to be the
normal phenomenon and cross-reactivity may be playing a role in the selection of such
repertoires.

IV. POTENTIAL SIGNIFICANCE OF CROSS-REACTIVITY
A. Cross-Coverage

The potential of cross-coverage has been developed in terms of heterologous immunity. The
PV–LCMV experiments of Welsh and colleagues112,113,115 point the way and supply a
possible probability argument for cross-reactivity, with a virus that generates many stably
recognized epitopes providing better protection against a smaller virus, whereas in the
opposite direction the effect is less pronounced. However, the nature of the pathogen itself
may dictate the extent to which cross-reactivity may be important, because VV infection
provided poor protection against subsequent LCMV or PV challenges.

With human immunology, the system becomes much more complicated due to the large and
varied number of pathogens encountered. The concept of heterologous immunity may have
to be extended to include different pathogen classes. For mouse models, this would mean
virologists collaborating with bacteriologists, mycologists, and parasitologists.

Where cross-reactivity may play an especially important role is in the period after thymic
involution. After production of naïve T cells has fallen by 2 to 3 orders of magnitude, good
outcomes to exposure to novel pathogens in middle-age may rely heavily on cross-reactivity
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providing sufficient numbers of T cells that can be involved in the response. The ability to
recognize a novel pathogen would be an indicator of a robust system.

B. Robustness
The presence of complex T-cell repertoires poses the question of why such repertoires are
maintained. Power law–like distributions have been linked to system robustness. Robustness
has been defined as an ability of a system to maintain “some desired characteristics despite
fluctuations in the behavior of its component parts or its environment”,157 which in the case
of immune response means the ability of a T-cell repertoire to recognize most of the
pathogens and escape variants while minimizing the chance of inducing autoimmune
reactions.

What does biological, or in this particular case immunological, robustness mean? An
acceptable definition is that robustness is the ability of a complex biological system to
respond to environmental and genetic perturbations and maintain an ability to evolve.158

Robustness gives the system flexibility against environmental perturbations by allowing
changes in structure and components and, thus, maintaining specific functions. By this
definition the immune system is the epitome of a robust system, with the innate system
responding at a programmed lower level of responses and the adaptive immune system
harnessing genetic instability and real-time selection to provide a truly adaptive evolving
response. Several mechanisms have been proposed as indicative of robust systems:158 1)
system control, 2) “fail-safe” mechanisms, which includes redundancy and diversity, 3)
modularity, and 4) decoupling, which buffers high-level functionalities from low-level
variation, to which we add adaptation. All of these mechanisms apply to the immune system.

In terms of the contribution of cross-reactivity to this definition of robustness, redundancy
(cross-coverage) is obvious. Buffering high-level functionality from low-level variation
applies to protection from epitope drift/escape. If we deal with the similar shape-space of
pMHC defined by our network of conservative M158-66 substitutions, the 45–58% of cross-
reactivity is relatively high. If we generalize these observations, we picture the map of
repertoire to epitope:MHC shape (Figure 2, x-y plane) as consisting of many T cells that
recognize only the epitope structure (rose cone) with decreasing numbers of cross-reactive
(X-R) clonotypes that can probe into the shape–space neighborhood. If a virus mutates the
epitope and is still within the X-R shape–space (Figure 2A), we assume that these X-R
clonotypes are activated and increase their frequency. Other low-frequency X-R clonotypes
that recognize the mutant peptide then increase to the point that they become observable,
generating a new polyclonal peak recognizing the new epitope (Figure 2B). Other mutant
epitopes may stray into self-shape–space (Figure 2C) that is not recognized by any T cells
due to ignorance or central tolerance, resulting in pathogen escape (Figure 2D). Some
mutant epitopes may move into the shape–space neighborhood of another epitope for which
X-R clonotypes exist (Figure 2E). This possibility would also result in a response to the new
epitope (Figure 2F). If the shape–space difference between the original and mutant epitope it
sufficiently large, it is unlikely that any of these X-R clonotypes would recognize the
original epitope. This model has similarities to epitope spread as first defined for
autoimmunity.159,160

A cross-reactive T cell recognizing a mutated epitope may not respond as readily to
presentation of that epitope as it would to the original epitope. However, such a memory cell
would be more adapted to responding, and it would probably take fewer semiotic signals161

to involve it fully. Involvement of memory in novel epitopes can be seen in B-cell responses
in middle-aged individuals where, in spite of new B-cell production in the marrow, a large
portion of circulating Ab secreting cells have undergone previous somatic mutagenesis and
tune their receptors to the new antigen.162 Arguing by analogy, memory T cells with
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potentially cross-reactive TCR, may be more amenable to being repositioned into the
responding repertoire of a new pathogen by retuning their response threshold. This effect
may be increased if they are selected on more than one epitope prior to the next encounter.

V. CONCLUSIONS
T-cell cross-reactivity based on recognition of more than one peptide by a TCR can be a
very important facet of immune responses. Networks of cross-reactive T cells might
generate a robust system that can deal with most novel pathogens in the absence of large-
scale de novo production of naïve T cells, as is found in human post-thymic involution.

ABBREVIATIONS

APCs antigen-presenting cells

BCG Bacillus Calmette–Guérin

CDR complementarity-determining region

CMV cytomegalovirus

CTL cytotoxic T-cell line

EBV Epstein-Barr virus

IFN-γ interferon γ

Ig:Ag immunoglobulin-antigen

HCV hepatitis C virus

HIV human immunodeficiency virus

HHV1 human herpes virus 1

HLA human leukocyte antigen

LCMV lymphocytic choriomeningitis virus

MBP myelin basic protein

MCMV murine cytomegalovirus

MHC major histocompatibility complex

MHCI MHC class I

MHCII MHC class II

MS multiple sclerosis

PBMCs peripheral blood mononuclear cells

PLP myelin proteolipid protein

pMHC peptide-MHC complex

PV Pichinde virus

TCR T-cell receptor

TNF-α tumor necrosis factor alpha

VDW van der Waals interactions
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Figure 1.
The power law–like distribution of frequencies of overall (Total, blue circles) and cross-
reactive (X-R, red squares) clonotypes in M158-66 repertoire. Logn-transformed values are fit
to a linear regression line. The equation y=mx+b describes the regression line, where m is a
slope and b is the intercept with the y axis. The distribution of cross-reactive clonotypes
indicates self-similarity to the overall (total) repertoire.
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FIGURE 2.
Buffering immune responses against epitope perturbations in middle-aged individuals.
Diagram of pMHC-shape–space (x–y plane) showing a mature repertoire against a particular
epitope (rose). Height reflects number of T cells, and spread in the x–y plane represents
cross-reactivity to adjacent (similar) pMHC-shape. A. The epitope mutates within the cross-
reactive (X-R) zone. B. X-R clonotypes expand and are added. C. The epitope moves into a
repertoire hole resulting from ignorance or negative selection. D. Epitope escapes detection.
E. Epitope mutates into a shape in the X-R neighborhood of a different epitope (blue). F. X-
R clonotypes from second repertoire expand to counteract perturbation.
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