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Abstract
Background—Alcohol use disorders are chronic disabling conditions for which existing
pharmacotherapies have only modest efficacy. In the present review, derived from the 2012
Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we
summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor
antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal
and stress-induced relapse to alcohol seeking.

Methods—We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in
animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol
addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including
pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311,
SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally,
we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy
for alcohol dependence.

Results—The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic
potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic
properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict
greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system
molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes
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(rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or
stress-induced CRF system activation.

Conclusions—Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly
severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists
in a personalized medicine approach to treat drug or alcohol dependence.

Keywords
corticotropin-releasing factor or hormone receptor antagonist; CRF or CRH; anxiety disorder;
major depression; alcohol or ethanol; drug addiction or alcoholism or alcohol dependence or
alcohol use disorder or binge drinking; acute or protracted withdrawal or abstinence; treatment or
clinical trial; stress-induced relapse or reinstatement or craving

1. INTRODUCTION
Each year, almost half of all American adults (47%) suffer from an addictive disorder
(Sussman et al., 2011). Alcohol misuse alone has an annual prevalence of 10% (Sussman et
al., 2011) and accounts for 10% of total disability in developed countries (Rehm et al.,
2009). Most of the disability and cost to society results from alcohol dependence, or
alcoholism, which has lifetime prevalence in the United States of more than 12% (Hasin et
al., 2007). Available pharmacotherapies for alcoholism have only modest long-term efficacy
and are underutilized (Heilig et al., 2011). Novel treatment options are needed. Here, we
review the current state of therapeutically targeting corticotropin-releasing factor (CRF)
systems to prevent alcohol dependence and relapse.

Brain and pituitary CRF1 receptors mediate many endocrine, behavioral, and autonomic
responses to stress (Heinrichs and Koob, 2004). Accordingly, the pharmaceutical industry
has sought to develop blood-brain barrier-penetrating CRF1 receptor antagonists for stress-
related psychiatric conditions, including anxiety disorders and major depression (Holsboer
and Ising, 2008; Koob and Zorrilla, 2012; Zorrilla and Koob, 2004, 2010). Indeed, the
search for CRF receptor antagonists began from the time that Vale and colleagues isolated
the stress-secreted CRF peptide in 1981 (Vale et al., 1981). In addition to CRF, the CRF/
urocortin (Ucn) system includes genes encoding three CRF paralogs (Ucn 1, Ucn 2, and Ucn
3) and two G-protein coupled receptors (CRF1, CRF2), with which the CRF/Ucn peptides
interact (Fekete and Zorrilla, 2007). Extensive, previously reviewed preclinical data support
the therapeutic potential of blood-brain barrier penetrating CRF1 receptor antagonists for
different facets of alcohol dependence (Breese et al., 2011; Ciccocioppo et al., 2009; Heilig
et al., 2010a, 2011; Heilig and Koob, 2007; Heilig et al., 2010b; Koob and Zorrilla, 2010,
2012; Le and Shaham, 2002; Logrip et al., 2011; Martin-Fardon et al., 2010; Shalev et al.,
2010; Zorrilla and Koob, 2010). Here, we will focus on (i) recent developments in the
medicinal chemistry of CRF1 receptor antagonists, (ii) the progress of specific small
molecule CRF1 receptor antagonists in clinical trials, and (iii) issues related to the potential
heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcoholism.
The review is derived from our 2012 Behavior, Biology and Chemistry “Translational
Research in Addiction” symposium in San Antonio, Texas.

2. BIOLOGY OF CRF/UROCORTIN RECEPTOR SYSTEMS
2.1 CRF/Urocortin system molecules

CRF1 and CRF2 receptors are class B1 (“secretin-like”) G-protein coupled receptors that
share ~70% sequence identity with one another. The CRF1 receptor exists in multiple
isoforms (e.g., CRF1a-CRF1h), with the CRF1(a) subtype being the major functional isoform.
In humans, the CRF2 receptor has three known membrane-associated functional subtypes --
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CRF2(a), CRF2(b), and CRF2(c). CRF peptide has preferential agonist activity for CRF1 vs.
CRF2 receptors. Ucn 1 is a high-affinity agonist at both receptors, but the type 2 urocortins
(Ucn 2 and Ucn 3) are much more selective agonists for CRF2 receptors. A CRF-binding
protein (CRF-BP) putatively sequesters CRF and Ucn 1 with equal or greater affinity than
do CRF receptors. Most CRF receptor antagonists do not bind the CRF-BP, because of the
different structural requirements for binding to CRF receptors vs. the CRF-BP (Fekete and
Zorrilla, 2007; Zorrilla and Koob, 2004).

2.2 Hypothalamic vs. extrahypothalamic CRF systems
CRF initiates the hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine stress response
by binding CRF1 receptors in the anterior pituitary after release into portal blood. In
addition, CRF1 receptors are widely distributed in stress-responsive brain regions, including
the neocortex, central extended amygdala, medial septum, hippocampus, thalamus,
cerebellum, and autonomic midbrain and hindbrain nuclei (Grigoriadis et al., 1996; Primus
et al., 1997; Sanchez et al., 1999; Van Pett et al., 2000). The CRF1 receptor distribution
resembles the distribution of its natural ligands CRF and Ucn 1 and accounts for the
dissociable role of extrahypothalamic CRF1 systems (i.e., outside the HPA-axis) to mediate
behavioral and autonomic stress responses (Fekete and Zorrilla, 2007; Kozicz et al., 1998;
Swanson et al., 1983; Zorrilla and Koob, 2004).

3. CRF1 RECEPTOR ANTAGONISTS IN ANIMAL MODELS OF ANXIETY AND
DEPRESSION
3.1 CRF1 receptor antagonists in anxiety models

CRF1 receptor antagonists produce anxiolytic-like effects in animal models of anxiety. In
rodents, CRF1 receptor antagonists reduced acoustic startle responding (Chen et al., 1997;
Schulz et al., 1996), conditioned fear (Hikichi et al., 2000; Kikusui et al., 2000), shock-
induced freezing (Weninger et al., 1999), and defensive burying behavior (Heinrichs et al.,
2002; Richardson et al., 2008; Zhao et al., 2007a; Zorrilla et al., 2003). CRF1 receptor
antagonists also produced anxiolytic-like effects in exploration models of anxiety, but only
under high anxiety baseline conditions (Gilligan et al., 2000; Griebel et al., 2002; Lelas et
al., 2004; Okuyama et al., 1999; Zorrilla et al., 2002b). CRF1 receptor antagonists blunted
the anxiogenic-like effects of social stressors; they reduced ultrasonic vocalization responses
of rat pups to neonatal isolation (Griebel et al., 2002; Kehne et al., 2000) and reduced
anxiogenic-like responses of rodents (Millan et al., 2001; Overstreet and Griebel, 2004) and
non-human primates (Habib et al., 2000) to unfamiliar conspecifics. A CRF1 receptor
antagonist (R317573/JNJ19567470/CRA5626) also produced anxiolytic-like effects in a
rodent panic model (Shekhar et al., 2011).

3.2 Tolerance and side effect profile of CRF1 receptor antagonists
Little tolerance is seen to the anxiolytic-like actions of CRF1 receptor antagonists (Zorrilla
and Koob, 2004). Unlike benzodiazepines, CRF1 receptor antagonists did not have sedative
or ataxic effects or impair attention or spatial learning (Hogan et al., 2005; Zorrilla and
Koob, 2004; Zorrilla et al., 2002a). CRF1 receptor antagonists may have less addiction
liability than benzodiazepines; they did not promote formation of a conditioned place
preference (Sahuque et al., 2006; Stinus et al., 2005) or support intravenous self-
administration (Broadbear et al., 2002).

3.3 CRF1 receptor antagonists in models of antidepressant activity
The efficacy of CRF1 receptor antagonists in animal models of antidepressant activity is less
consistent. Antalarmin reduced forced swim immobility in CRF2 receptor null mutant mice
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(Bale and Vale, 2003), an antidepressant-like effect, as did antalarmin, SSR125543A,
LWH234, and CRA1000 in outbred rats (Griebel et al., 2002; Harro et al., 2001; Jutkiewicz
et al., 2005). Subchronic treatment with R121919 and DMP696 also reduced forced swim
immobility in mice (Nielsen et al., 2004) as did chronic SSR125543 treatment in Flinder
Sensitive Line rats (Overstreet and Griebel, 2004; Overstreet et al., 2004a). R278995
reduced hyperemotionality (Chaki et al., 2004) in the olfactory bulbectomy model of
depression (Song and Leonard, 2005). Finally, chronic treatment with antalarmin or
SSR125543A reversed negative effects of chronic mild stress on coat appearance and
hippocampal neurogenesis (Alonso et al., 2004; Ducottet et al., 2003; Griebel et al., 2002).

However, negative findings also are common. R121919, CP-154,526, and R278995 did not
reduce forced-swim immobility in rats (Chaki et al., 2004; Jutkiewicz et al., 2005);
antalarmin, CP-154,526, DMP904, R121919, and DMP696 did not reduce forced-swim
immobility in mice (Nielsen et al., 2004; Oshima et al., 2003; Yamano et al., 2000).
Antalarmin, CP-154,526, DMP904, R121919, DMP696, and R278995 did not produce
antidepressant-like effects in the mouse tail-suspension test (Chaki et al., 2004; Liu et al.,
2003; Nielsen et al., 2004). Although CP-154,526 Although CRF1 antagonist treatment was
initially reported to reverse “learned helplessness” (Mansbach et al., 1997), subsequent
studies with CP-154,526, DMP904, DMP696, R2789995, and CRA1000 failed to replicate
this finding (Chaki et al., 2004; Li et al., 2005; Takamori et al., 2001). Finally, R278995 did
not produce antidepressant-like effects in the rat differential-reinforcement-of-low-rate 72-s
model (Chaki et al., 2004).

3.3 Conditions under which CRF1 receptor antagonists are effective
A possible reconciliation of these contradictory findings is that CRF1 receptor antagonists
may differentially show antidepressant-like activity in dysfunction models that involve
genetic (e.g., CRF2 null mutant mice) or environmental factors (e.g., chronic mild stress)
that amplify or disinhibit CRF1 receptor signaling. Alternatively, perhaps CRF1 receptor
antagonists are more effective against dynamic, active responses to acute stressors as
compared to chronic, sustained stressors (Koob and Zorrilla, 2012). CRF1 receptor
antagonists consistently reduce anxiety-like behavior in genetic, environmental and
pharmacologically-induced models of high anxiety, but not low anxiety, conditions (Zorrilla
and Koob, 2004).

4. RATIONALE FOR TARGETING CRF1 RECEPTORS TO TREAT ALCOHOL
DEPENDENCE AND PREVENT RELAPSE
4.1 CRF1 receptor antagonists in withdrawal/negative affect models of alcohol dependence

The reviewed preclinical data suggest that extrahypothalamic CRF1 systems subserve some
negative emotional states. Activation of CRF systems may therefore contribute to the
withdrawal/negative affect stage of the addiction cycle. Individuals with high levels of
innate anxiety or depression may be more likely to consume alcohol for its anxiolytic or
dysphoria-relieving effects (Pohorecky, 1991). By reducing dysphoria, CRF1 receptor
antagonists may help treat individuals who “self-medicate” antecedent anxiety or depression
with alcohol. Consistent with this idea, small molecule CRF1 receptor antagonists reduce
alcohol drinking in rodent models with high innate anxiety (Ciccocioppo et al., 2006;
Hansson et al., 2007, 2006; Heilig and Koob, 2007; Lodge and Lawrence, 2003; Sommer et
al., 2008), at doses that do not alter intake of normal, outbred rodents.

Chronic alcohol use itself, even if initiated for its rewarding effects, can lead to negative
emotional symptoms and negatively reinforced alcohol use. An extension of the opponent
process theory of affective regulation (Solomon and Corbit, 1974), this hypothesis of
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addiction proposes that alcohol initially engages brain structures that subserve positive
emotional states (e.g., pleasure, contentment). To restore emotional homeostasis, however, a
counterregulatory, opponent-process then decrements mood and increases vigilance/tension
via downregulation of brain reward circuitry and recruitment of brain stress circuitry (Breese
et al., 2011; Heilig et al., 2010a, 2011; Heilig and Koob, 2007; Heilig et al., 2010b; Koob
and Zorrilla, 2010, 2012; Logrip et al., 2011). With repeated cycles of intoxication/
withdrawal, the opponent-process allostatically predominates over the rewarding primary
process. Consequently, progressively more alcohol is required to maintain euthymia. In the
absence of alcohol, negative affective signs emerge (i.e., acute withdrawal: anxiety,
dysphoria, irritability). With a sufficient alcohol use history, dysphoria can episodically and
spontaneously resurge and heightened responses to otherwise innocuous stressors can be
seen despite sustained abstinence (i.e., protracted withdrawal). Accordingly, fMRI activation
responses to negative affective pictures are sensitized in detoxified alcoholics (Gilman and
Hommer, 2008). Under this conceptualization, alcohol use escalates and relapse occurs
because alcohol prevents and relieves the intrinsically-determined negative emotional
symptoms of acute and protracted withdrawal (Heilig and Koob, 2007; Koob and Zorrilla,
2010).

The opponent process putatively involves activation of otherwise quiescent brain CRF1
receptor stress systems. Accordingly, cerebrospinal CRF levels are elevated in recently
withdrawn alcoholics (Adinoff et al., 1996). In animal models, acute alcohol withdrawal
activates CRF systems in the central nucleus of the amygdala (Funk et al., 2006; Merlo Pich
et al., 1995; Roberto et al., 2010; Zorrilla et al., 2001) and bed nucleus of the stria terminalis
(Olive et al., 2002), components of the central extended amygdala. Alcohol exposure also
activates the HPA-axis via neuroendocrine CRF-dependent release of ACTH and
glucocorticoids (Allen et al., 2011; Ogilvie et al., 1998; Rivier, 1996; Rivier and Plotsky,
1986),

Supporting a functional role for central extended amygdala CRF1 receptor activation in the
negative affect/withdrawal stage, site-specific injections of CRF receptor antagonists into
the central amygdala reduce anxiety-like behavior, motivational deficits for other
reinforcers, and excessive self-administration of addictive substances during acute
withdrawal (Heilig and Koob, 2007; Heilig et al., 2010b; Koob and Zorrilla, 2010; Logrip et
al., 2011; Parylak et al., 2011). CRF1-dependent activation of the HPA-axis is also
implicated because glucocorticoid receptor antagonists reduce the development and
expression of excessive alcohol self-administration that results from repeated, intermittent
intoxication (Vendruscolo et al., 2012). Consistent with both sets of findings, systemic
injections of small molecule CRF1 receptor antagonists reduce the heightened anxiety-like
behavior (Breese et al., 2005a, 2005b; Gehlert et al., 2007; Knapp et al., 2004; Overstreet et
al., 2004b; Sommer et al., 2008) and escalated alcohol self-administration of dependent
rodents acutely withdrawn from alcohol (Chu et al., 2007; Funk et al., 2007; Gehlert et al.,
2007; Gilpin et al., 2008; Richardson et al., 2008; Sabino et al., 2006) at doses that do not
alter intake of non-dependent animals.

Neuroadaptations in amygdala CRF1 systems still can be observed several weeks following
detoxification from repeated cycles of intoxication/withdrawal in animal models (Sommer et
al., 2008; Zorrilla et al., 2001). Accordingly, CRF1 receptor antagonists reduce the
potentiated anxiogenic-like and ethanol intake behavior responses to otherwise ineffectual
stressors seen during protracted withdrawal (Rimondini et al., 2002; Sommer et al., 2008;
Valdez et al., 2002, 2003). CRF1 antagonists also attenuate the increased spontaneous
anxiety-like behavior (Breese et al., 2005a, 2005b; Overstreet et al., 2002; Sommer et al.,
2008; Valdez et al., 2002; Zhao et al., 2007b) and alcohol intake that can be seen in post-
dependent rats even under low exteroceptive stress conditions (Rimondini et al., 2002;
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Sommer et al., 2008; Valdez et al., 2002). Both sets of findings are critical, because the
resurgence of negative emotional states during protracted withdrawal, whether in the
presence or absence of external stressors, is a major predictor of relapse in alcoholics
(Mossberg et al., 1985; Pickens et al., 1985).

4.2 CRF1 receptor antagonists in relapse models of alcohol-seeking
CRF1 receptors also have been implicated in stress-induced reinstatement of alcohol seeking
(Le and Shaham, 2002; Shalev et al., 2010). In the reinstatement model of relapse, animals
are trained to self-administer drugs and are then subjected to extinction training during
which lever presses are not reinforced. Reinstatement of extinguished lever responding (the
operational measure of drug seeking) is determined after exposure to drug priming
injections, drug-associated cues, or different stressors (Shaham et al., 2003; Stewart and de
Wit, 1987), such as intermittent footshock (Le et al., 2000; Liu and Weiss, 2002) or the
pharmacological stressor yohimbine (Le et al., 2012; Marinelli et al., 2007). Systemic
injection of yohimbine, an alpha-2 adrenoceptor antagonist, induces stress- and anxiety-like
responses in humans and laboratory animals (Bremner et al., 1996a, b). Furthermore,
yohimbine reinstates drug seeking in rats (Feltenstein et al., 2012; Shepard et al., 2004) and
monkeys (Lee et al., 2004) and palatable food seeking in rats via a CRF1 receptor-mediated
mechanism (Ghitza et al., 2006). Yohimbine injections also induce alcohol and heroin
craving in human drug addicts (Stine et al., 2002; Umhau et al., 2011).

In an initial study, Le et al. (2000) demonstrated that systemic injections of CP154,526
attenuate footshock-induced reinstatement of alcohol seeking in non-dependent rats.
Subsequently, Hansson et al (2006) and Gehlert et al. (2007) reported that antalarmin and
MTIP also attenuate footshock-induced reinstatement of alcohol seeking and additionally
found that the CRF1 receptor antagonists were more effective in alcohol dependent rats or in
genetically selected, Marchigian Sardinian alcohol-preferring rats. In the latter rat line, the
Crhr1 transcript is innately upregulated in several brain areas, including the amygdala
(Hansson et al., 2006). Finally, Marinelli et al. (2007) showed that antalarmin attenuates
yohimbine-induced reinstatement of alcohol seeking.

The ability of CRF1 receptor antagonists to reduce stress-induced reinstatement is mediated
by extrahypothalamic sites. Intermittent fooshock-induced reinstatement was not affected by
adrenalectomy (Le et al., 2000), and antalarmin had no effect on yohimbine-induced
corticosterone secretion (Marinelli et al., 2007). Furthermore, blockade of CRF receptors in
the median raphe nucleus (Le et al., 2012, 2002) was sufficient to attenuate footshock- and
yohimbine-induced reinstatement of alcohol seeking. The results agree with reports that
stress-induced reinstatement of cocaine and heroin seeking is mediated by stress-induced
activation of extrahypothalamic CRF sites (Blacktop et al., 2011; Erb et al., 1998; Shaham et
al., 1997; Wang et al., 2005, 2006).

Taken together, results from the studies described above have established a critical role of
CRF1 receptors in three main alcohol addiction-related behaviors in animal models:
escalation of alcohol intake by the induction of alcohol dependence, acute and protracted
aversive psychological withdrawal symptoms that can occur even in the absence of
exteroceptive stress, and stress-induced relapse to alcohol seeking.

5. NONPEPTIDE CRF1-SELECTIVE RECEPTOR ANTAGONISTS
5.1 Pharmacophore and selectivity of nonpeptide CRF1 receptor antagonists

Almost all disclosed nonpeptide CRF1 receptor antagonists conform to a single
pharmacophore. Prototypical compounds (Figure 1) share one or two aliphatic top units that
occupy a hydrophobic pocket of the receptor, a central mono-, bi-, or tricyclic ring core, and
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an orthogonal, conformation-stabilizing, di- or -tri-substituted aromatic bottom group. Each
ring core contains a putative proton-accepting ring nitrogen separated from the pendant
aromatic by a one- or, more commonly, two-atom spacer. The core ring is typically
methylated on the opposite position adjacent to the bonding nitrogen. Small molecules of
this pharmacophore are potent and selective CRF1 receptor antagonists in relation to their
interactions with regions of the third (His-199) and fifth (Met-276) transmembrane CRF1
receptor domains, residues not shared by the CRF2 receptor (Zorrilla and Koob, 2004,
2010).

Rare exceptions to this pharmacophore include oxo-7H-benzo[e]pyrimidine-4-carboxylic
acid derivatives (subtype nonselective CRF receptor antagonists discovered by Alanex), CC
2064460 (a moderately potent arylamidrazone CRF1 receptor antagonist that lacks a central
ring core with the customary hydrogen-bond accepting nitrogen), and stereospecific N-
phenylphenylglycines (which also lack a ring core but were identified through
computational screening based on a classic pharmacophore training set; Zorrilla and Koob,
2004, 2010).

5.2 Identification of “drug-like” CRF1 receptor antagonists
Early CRF1 receptor antagonist leads did not have drug-like physiochemical and
pharmacokinetic properties. They violated Lipinski s “Rule of 5” heuristic for clinical drug
candidates (e.g., excessively lipophilic and water insoluble with LogP>5) and
correspondingly showed poor oral bioavailability (F% < 20%) and undesirably high volumes
of distribution at steady state (VD > 10 L/kg) and/or plasma clearance (Clplasma > 45 ml/min/
kg; Chen, 2006; Zorrilla and Koob, 2004, 2010). As shown in Table 1, however, concerted
medicinal chemistry efforts have procured compounds with more favorable properties. Each
of these compounds is active in vivo at minimum effective systemic doses of 2–10 mg/kg in
preclinical behavioral or endocrine animal models that are sensitive to CRF1 receptor
signaling. Notably, for MTIP and MPZP, these in vivo activities include published positive
findings in animal models of alcohol dependence and relapse (Table 1).

Selected CRF1 receptor antagonists that are currently in clinical trials are discussed below
(see also Table 1 and Figure 1). GlaxoSmithKline developed moderately potent (IC50 = 32–
100 nM) substituted tetrahydrotetraazaacenaphthylenes and diydropyrrolo[2,3-d]pyrimidines
with excellent oral bioavailability (52–86%), distribution/clearance balance, and central
accumulation (B/P = 2.3–3.7). These include verucerfont (NBI-77860/GSK561679; (Tellew
et al., 2010) and emicerfont (GW876008; (Di Fabio et al., 2008). In addition, pexacerfont
(Gilligan et al., 2009a), the potent (IC50 = 6.1 nM) lead candidate from Bristol Myers
Squibb, is a substituted pyrazolo[1,5-a]-1,3,5-triazine that showed good pharmacokinetics in
rat, dog, and nonhuman primate models, no evidence of gastrointestinal or respiratory
toxicity, and mild renal effects at doses ~1 order greater than those needed to substantially
occupy brain CRF receptors (Gilligan et al., 2009a; Zhou et al., 2012). Supporting its
therapeutic potential, pexacerfont was more potent than MTIP in reversing acute alcohol
withdrawal-induced anxiety-like behavior of rats in the elevated plus-maze. (Thorsell,
Heilig, unpublished results).

5.3 Clinical trials for CRF1 receptor antagonists
5.3.1 Completed trials for psychiatric indications—Clinical anticipation for CRF1
receptor antagonists for stress-related psychiatric disorders has been high since an early,
open-label Phase IIa trial found that increasing doses of R121919 normalized sleep EEG and
reduced depressive and anxious symptoms in depressed patients with few side effects (Held
et al., 2004; Kunzel et al., 2005, 2003; Zobel et al., 2000). Unfortunately, to date, no CRF1
receptor antagonist has successfully completed a Phase III trial for any stress-related
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psychiatric illness. Development programs for R121919 (Neurocrine Press Release April 5,
2000; Zobel et al., 2000) and PF-00572778 (NCT00580190) were discontinued due to liver
enzyme elevations. ONO-2333Ms (NCT00514865; (Ono Pharmaceutical Co Ltd, 2008),
verucerfont (GSK561679; GlaxoSmithKline Results Summary for CRS106139, 2010) and
CP-316,311 (Binneman et al., 2008) all lacked efficacy in controlled trials for major
depression. Pexacerfont (BMS-562086) did not relieve generalized anxiety disorder
symptoms (Coric et al., 2010), suicidal ideation in anxious patients (Coric et al., 2009), or
diarrhea-predominant irritable bowel syndrome (Sweetser et al., 2009). Emicerfont
(GW876008) also lacked efficacy in a Phase II trial for irritable bowel syndrome
(GlaxoSmithKline Results Summary for CRI105626, 2008). Trials of verucerfont and
emicerfont for social anxiety disorder were completed with undisclosed results
(NCT00555139), as were trials of pexacerfont (NCT00135421) and SSR125543
(NCT01034995) for major depression. Finally, verucerfont is still being evaluated for
efficacy to reduce post-traumatic stress disorder in women (NCT01059227).

5.3.2 Receptor residence rate and clinical efficacy—Recent pharmacological
findings may provide an explanation for the discrepancy between the early positive findings
obtained with R121919 and the negative findings more recently obtained with
ONO-2333Ms, CP-316,311, and pexacerfont. Specifically, the nominal binding affinities
shown in Table 1 that were attributed to each small molecule during compound screening
and development were based on room temperature, standard competition assays. Such non-
equilibrium single-point measurements do not capture the actual kinetics by which the small
molecule binds to and, most importantly, subsequently resides on the human CRF1 receptor
in vivo (Fleck et al., 2012; Ramsey et al., 2011). Greater receptor antagonist efficacy is
putatively associated with greater residence time on the receptor (Brinkerhoff et al., 2008;
Fleck et al., 2012; Tummino and Copeland, 2008; Vauquelin et al., 2006; Vauquelin and
Van Liefde, 2006), as exemplified in the greater efficacy and duration of action of
candesartan, a slowly dissociating angiotensin II AT1 receptor antagonist (Lacourciere and
Asmar, 1999; Verheijen et al., 2004), versus the more rapidly dissociating antagonist
losartan (Hansson, 2001). Kinetic analysis of receptor association and dissociation rates at
physiological temperatures demonstrated that R121919, with which positive preliminary
clinical findings were obtained, exhibits a “kinetic” Ki of ~0.36 nM, a potency
underestimated by binding constants for it of 3–4 nM in standard competition assays (Fleck
et al., 2012). In contrast, ONO-2333Ms, CP-316,311 and pexacerfont, for which negative
clinical findings have been obtained, exhibit “kinetic” Kis of 1–2 orders poorer potency than
R121919 (15, 12 and 19 nM, respectively), indicating that their nominal affinities (~2, 2 and
8 nM) may have overestimated their actual kinetic potencies (Fleck et al., 2012). Another
way to conceptualize the kinetics of the antagonists is with respect to their residence time on
the receptor, as reflected in the receptor dissociation rate. R121919 exhibits a slow off-rate
(dissociation t1/2) of 130 min, an order longer than those for ONO-2333Ms, CP316,311 and
pexacerfont (17, 4 and 14 min, respectively). SSR125543A, for which clinical results have
not yet been reported, exhibits very favorable receptor residence kinetics (dissociation t1/2 =
430 min, kinetic Ki = 0.049 nM); results with SSR125543A may therefore provide
discriminative information as to the importance of CRF1 receptor kinetics for clinical
efficacy (Fleck et al., 2012).

5.3.3 Recent positive experimental results with CRF1 receptor antagonists in
humans—Against the disappointing clinical outcomes to date, a few recent positive results
may be instructive. As compared to placebo, oral emicerfont administration reduced blood
oxygen level-dependent (BOLD) fMRI signal reductions in the hypothalamus, amygdala,
hippocampus, insula, anterior cingulate, and orbitomedial prefrontal cortices during
anticipation of pain in patients with irritable bowel syndrome (Hubbard et al., 2011). The
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inhibitory effects of emicerfont on hypothalamic activation were specific to patients who
were experiencing (anticipatory) state anxiety. Furthermore, R317573/JNJ19567470/
CRA5626 decreased regional glucose utilization in the amygdala of 12 healthy adults
(Schmidt et al., 2010) and also decreased anxiety responses to 7.5% acute CO2 inhalation in
a double-blind, placebo-controlled trial with healthy men (Bailey et al., 2011). The
collective clinical findings are compatible with the revisionist hypothesis that CRF1 receptor
antagonists may be differentially effective for conditions that involve dynamic, active
responses to acute stressors, as opposed to low stress or chronic, sustained negative
emotional states (Koob and Zorrilla, 2012).

5.3.4 Ongoing clinical trials of CRF1 receptor antagonists in addiction—In that
context, and relevant to the reviewed stress-induced reinstatement preclinical literature,
GlaxoSmithKline and NIH are collaboratively evaluating verucerfont for its ability to reduce
stress-induced alcohol craving in anxious, stress-reactive alcoholic women (NCT01187511).
Similarly, a comprehensive collaboration of Bristol Myers Squibb and NIH is currently
testing oral daily pexacerfont for its efficacy to prevent: 1) stress-induced craving for
palatable food in dieters (NCT01656577), 2) stress-induced craving for tobacco in smokers
attempting to quit (NCT01557556), and 3) stress- or alcohol cue-induced craving in anxious,
alcoholic women (NCT01227980). Even in the absence of a history of dependence or
withdrawal state, CRF1 antagonism is effective to suppress alcohol self-administration in
rats that show high innate levels of anxiety-like behavior (Hansson et al., 2006). Selecting
for alcohol-dependent patients with high trait anxiety therefore may offer a strategy to enrich
for subjects sensitive to CRF1 antagonism. This is critical for the ability of early human
studies to detect a drug effect signal. Unselected populations of alcoholics diagnosed
according to DSM-IV are heterogeneous, with many patients falling in an externalizing –
impulsive cluster. Such patients are not necessarily expected to be sensitive to an anti-stress
medication, and may therefore dilute a drug signal. Clinical assessments that distinguish trait
from state anxiety are well validated and have successfully been used in prior studies that
applied this type of enrichment strategy (George et al., 2008).

The inpatient study in anxious alcoholics involves a randomized, double-blind, placebo-
controlled, parallel group design. Alcohol detoxification and associated withdrawal
treatment is completed prior to inclusion in the experimental protocol. Participants are then
randomized to 3 weeks of treatment (pexacerfont vs. placebo) in a 1:1 ratio. The oral dose in
the pexacerfont trials involves a daily 300 mg/kg loading dose for 7 days, which results in
≥90% of subjects attaining a target circulating concentration of 0.5 μM within 5 days,
followed by a 100 mg/day maintenance dose for 2 weeks. Co-primary outcomes include
cravings induced by personalized, auditory scripts of stressful or alcohol-related guided
imagery as compared to neutral imagery, as well as fMRI blood oxygenation level
dependent (BOLD) responses to negative emotional stimuli. The stressful and alcohol-cue
imagery used in the trial both induce alcohol craving, but only the stressful imagery also
elevates state anxiety. This allows for testing the hypothesis that CRF1 antagonists have the
potential to selectively target pathways to alcohol relapse that are associated with stressful
triggers.

By using surrogate efficacy markers such as craving and fMRI BOLD responses, this
experimental medicine based approach offers a high level of safety, and may accelerate
development because it can go forward in the absence of drug – alcohol interaction data. If
positive, it will provide a compelling rationale for such interaction data to be obtained and
for full scale, outpatient relapse prevention studies to be carried out. While the predictive
validity of animal models is frequently debated, less attention has been devoted to whether
surrogate outcomes in human experimental models, such as stress-induced craving or brain
responses to aversive stimuli, can predict clinical efficacy. This important issue is by no
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means settled, but some early observations give reason for measured optimism. Thus, both
in alcohol and cocaine addiction, cravings in response to an experimental stressor in the
laboratory have been shown to predict relapse during outpatient follow-up over three months
(Sinha et al., 2011, 2006).

6. HETEROGENEITY OF ALCOHOLISM: A NEED FOR PERSONALIZED
MEDICINE?
6.1 Heterogeneity of alcohol use disorders between and within individuals

The effectiveness of medications for alcohol use disorders may vary both across individuals
and also within individuals at different times (Heilig et al., 2011, 2010b; Koob and Zorrilla,
2010; Logrip et al., 2011, 2012). For example, treatments may be differentially effective for
different diagnoses because of the different underlying biological and psychological
mechanisms, and, for similar reasons, during different stages of the addiction cycle. Based
on the evidence described, CRF1 receptor antagonists may be more effective for alcoholism
treatment after use has transitioned to primarily negatively-reinforced drinking (withdrawal/
negative affect) or to protect against stress-induced relapse (stress-related craving). They
may be less effective in preventing alcohol craving that is not related to negative emotional
states or stressor precipitants, such as alcohol cue-induced relapse (Liu and Weiss, 2002).
CRF1 receptor antagonists also may less effectively reduce reward-motivated, recreational
binge drinking earlier in the addiction process (Heilig and Koob, 2007).

6.2 CRF system genetic variants and alcohol drinking phenotypes
6.2.1. Polymorphisms in animal models—The effectiveness of CRF1 receptor
antagonists, as for other medicines, also may depend on genetic factors (Heilig et al., 2011;
Sinha et al., 2011). Alcohol dependence has an estimated heritability of 50 – 60% (Goldman
et al., 2005), with many susceptibility loci contributing individually to a small degree
(Treutlein et al., 2009). Animal models support the hypothesis that variants in the genes that
encode CRF system molecules, by altering CRF system activation under basal conditions or
in response to stressful life events, may promote negatively-reinforced alcohol intake. For
example, msP alcohol-preferring rats show two G-to-A polymorphisms in allelic identity
with one another in the distal promoter of the Crhr1 gene, mutations that are not seen in
other alcohol-preferring lines or outbred rats (Hansson et al., 2006); Logrip, Ciccocioppo,
Walker, Koob and Zorrilla, unpublished observations). Perhaps as a result, the msP line
exhibits increased CRF1 receptor expression in several stress-related brain regions, increased
anxiety-like behavior and alcohol preference ratios, and increased sensitivity to the ability of
CRF1 receptor antagonists to reduce alcohol self-administration and stress-induced
reinstatement of alcohol seeking (Ciccocioppo et al., 2006; Gehlert et al., 2007; Hansson et
al., 2006); Logrip, Ciccocioppo, Walker, Koob and Zorrilla, unpublished observations).
Similarly, rhesus monkeys that carry a C-to-T single nucleotide polymorphism in the
promoter of the Crh gene exhibit CRF peptide expression that is unrestrained by
glucocorticoid feed-back inhibition. While without effect on voluntary alcohol intake in
individuals with a normal life history, this is associated with a doubling in consumption in
monkeys exposed to early life stress (Barr et al., 2009).

6.2.2 Polymorphisms in humans—Supporting the translational relevance of the genetic
results in rats and monkeys, polymorphisms in human CRF system molecules also have
been associated with alcohol use phenotypes. For example, variant Crhr1 haplotypes in
adolescents predict binge drinking and lifetime prevalence of intoxication and alcohol
dependence (Treutlein et al., 2006). Crhr1 single nucleotide polymorphisms (SNPs) also
predicted greater alcohol consumption in already dependent individuals (Treutlein et al.,
2006) and were associated with reduced P300 amplitude, an endophenotype seen in

Zorrilla et al. Page 10

Drug Alcohol Depend. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



alcoholics (Chen et al., 2010). Adolescents homozygous for the C allele of the rs1876831
SNP of the Crhr1 gene exhibited greater future drinking (Blomeyer et al., 2008; Schmid et
al., 2010) and an earlier onset of drinking in an interactive relation to stress history (Schmid
et al., 2010). Conversely, adolescents homozygous for the H2 haplotype that contains the
minor allele of rs1876831 are protected against early child abuse-associated increases in
alcohol consumption and dependence (Nelson et al., 2010). Adolescent carriers of the A
allele of the rs242938 Crhr1 SNP also reported greater alcohol drinking when exposed to
stress in some (Schmid et al., 2010), but not other (Blomeyer et al., 2008), studies.

Genetic associations of CRF system polymorphisms to human alcohol phenotypes also have
been seen for the CRF-binding protein (CRF-BP), which moderates the ability of CRF to
interact with its receptors. For example, certain Crhbp gene SNPs are associated with
decreased EEG alpha wave power, an endophenotype of alcoholism, and are more prevalent
in alcohol use disorders (Enoch et al., 2008), including in alcoholics with comorbid anxiety
disorders (Enoch et al., 1999). A Crhbp polymorphism (rs10055255) also has been
associated with severity of stress imagery-induced alcohol craving and dysphoria (Ray,
2011). Recently, Crhbp (rs3811939) and Crhr1 SNPs (the widely-studied rs110402
polymorphism) were found to jointly predict comorbid alcohol use disorder in patients with
schizophrenia (Ribbe et al., 2011). Elevated levels of CRF1 receptor mRNA relative to CRF-
BP mRNA were seen in mononuclear blood cells from individuals carrying the dual
polymorphism (Ribbe et al., 2011), supporting the hypothesis that that CRF-CRF1 receptor
interactions predominate over CRF-CRF-BP interactions in those at risk for alcohol use
disorders. Altogether, the human genetic findings further support the hypothesis that CRF1
receptor activation may contribute to the pathophysiology of alcohol use disorders.
Furthermore, these findings suggest that pharmacogenomic profiling could identify
genetically-vulnerable patients for whom CRF1 receptor antagonist pharmacotherapy may
be especially useful to prevent alcohol relapse (Sinha et al., 2011).

7. CONCLUDING REMARKS
We briefly reviewed basic pharmacological and behavioral properties of small-molecule
CRF1 receptor antagonists as well as their clinical trial status for psychiatric disorders. We
discussed their potent effect in three main alcohol addiction-related behaviors in animal
models: dependence-induced escalation of alcohol intake, negative emotional symptoms of
acute and protracted withdrawal, and stress-induced relapse to alcohol seeking. These data
provide a strong rationale for — translating these basic research findings to assess the
efficacy of CRF1 receptor antagonists for the treatment of alcohol dependence and relapse.
The future also holds great promise for discovering ways to individualize medications to suit
the genetic profile of the individual. Genetic factors are likely to influence both the
individual’s form of alcoholism and the pharmacokinetic and pharmacodynamic response to
medications. In particular, CRF-related genes play an important role in alcohol dependence
and relapse in humans. The outcome of clinical trials may depend on targeting the CRF1
receptor antagonists to a selected set of alcoholics for whom, due to experiential or genetic
reasons, stress and negative reinforcement play a major role in the disease process.
Personalized treatment, while holding promise for the long-term, poses a challenge for
clinical development, because it requires studies to predict, identify and enrich for subjects
likely to be responsive.
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Figure 1.
Prototypical CRF1 receptor antagonists that have been tested in humans.
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