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Abstract
A multiple-image method is proposed to approximate the reaction-field potential of a source
charge inside a finite length cylinder due to the electric polarization of the surrounding membrane
and bulk water. When applied to a hybrid ion-channel model, this method allows a fast and
accurate treatment of the electrostatic interactions of protein with membrane and solvent. To treat
the channel/membrane interface boundary conditions of the electric potential, an optimization
approach is used to derive image charges by fitting the reaction-field potential expressed in terms
of cylindric harmonics. Meanwhile, additional image charges are introduced to satisfy the
boundary conditions at the planar membrane interfaces. In the end, we convert the electrostatic
interaction problem in a complex inhomogeneous system of ion channel/membrane/water into one
in a homogeneous free space embedded with discrete charges (the source charge and image
charges). The accuracy of this method is then validated numerically in calculating the solvation
self-energy of a point charge.
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1 Introduction
Biological ion channels, which play a central role in controlling the appropriate electrostatic
properties across the cell membrane [10, 14], are of interest in many areas of research such
as neuroscience, cell biology, and biomedical science. To study the structural and functional
properties of ion channels by dynamics simulations at the atomic scale, it is important to
develop fast and accurate computational models [20, 30, 33] for treating long-ranged
electrostatic interactions, in particular, to reflect the influence of the solvent and membrane.

Models employing explicit lipid and solvent molecules are impractical in many cases for
large simulation systems. Implicit continuum methods (the Poisson-Boltzmann theory)
provide a reasonable approximation of the electrostatic polarization effect of solvent on the
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structures and interactions of biomolecules in solution. For instance, the approaches [17, 19,
32, 34] based on the generalized Born theory are widely adopted in practical simulations.
Hybrid explicit/implicit solvent models [28, 38] have attracted great attention for molecular
simulations in aqueous solutions, which seek to take advantage of both the accuracy of
explicit all-atom approaches [7, 9, 26] and the reduced cost of implicit ones [11, 15, 25, 35].
Typically, the hybrid models truncate the target system by a fixed volume which includes
the solute and some explicit solvent molecules, and treat the outside solvent as a continuum
medium. The benefits of such a treatment are several-fold. The primary benefit over explicit
methods is the greatly reduced system size with only a small number of explicit solvent
molecules to be simulated. Second, the artificial periodicity associated with most of explicit
methods is avoided. Further, as the number of explicit waters is flexible, the dielectric
boundary can be selected as of a regular shape, and thus analytical-based algorithms [3, 4,
36, 39] can be developed to speed up the calculations.

In the presence of a membrane, such as in the simulation of a protein ion channel embedded
in a membrane lipid bilayer, however, it is challenging to develop analytical-based
algorithms for the hybrid model due to the dielectric inhomogeneity of the medium. As
schematically shown in Fig. 1, a hybrid ion-channel model uses a cylindrical cavity as the
explicit region, which includes the protein, ions, waters, and a portion of membrane. Outside
the cavity, the membrane and bulk water are separated by two parallel planes, and
characterized by dielectric permittivities εm and εw, respectively. The exact solution of this
model is very difficult, and a fast and accurate approximation has to be developed. It is with
this purpose in mind, we will present in this paper an image charge method to calculate the
reaction field for a point charge within a finite length cylindrical cavity. Our novel technique
converts the potential problem in an inhomogeneous system to that in a homogeneous
system with a cluster of point charges, which in turn can be handled by techniques such as
Fast Multipole Methods (FMMs) [5, 13, 24, 41] for achieving linear-scaling computational
cost.

Image methods, which represent the reaction field of a point charge due to the surrounding
medium by some image charges, have been widely studied in the potential theory for various
shapes of dielectric or conducting materials [23, 31]. In molecular simulations, the single
image methods of Friedman [12], and Abagyan and Totrov [1] are often employed with
spherical cavities. More accurate methods include the multiple image methods [4, 8, 21, 39],
developed recently by representing the exact line image [22, 27, 42] by discrete charges
using numerical quadratures. However, the analytical derivation for image approximation in
a cylinder remains an open problem. In this paper, multiple images for the case of a finite
cylindrical cavity are constructed by solving an optimization problem. Specifically, the
charge strengths and locations of the images are obtained by minimizing the error of the
reaction-field potentials between the exact solution and the image-based representation. This
approach is an extension of the least-square image charge method for a three-layer sphere
model [29], though it is more complex for the cylinder case as the locations of image
charges are unknown, and thus the optimization problem becomes nonlinear.

The organization of this paper is as follows. For an infinite cylinder, the exact series solution
in terms of cylindrical harmonics was recently derived [6]. We start with an overview of this
solution in Section 2. In Section 3, we develop a method to approximate the exact solution
by image point charges, and then extend it to solve the hybrid ion-channel model. In Section
4, numerical tests are performed to show the accuracy of image charge approximations. In
Section 5, concluding remarks are made.
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2 Cylindrical harmonic expansion
Let us first consider a point charge, q, located at position rs inside an infinite cylinder of
radius a, surrounded by a continuum dielectric. The cylindrical surface Γ separates the space
into two regions Ωi and Ωm, characterized by dielectric permittivities εi and εm, respectively.
The electrostatic potential Φ for the system satisfies the Poisson equation, which can be
written in the cylindrical coordinate system r = (ρ, φ,z) as:

(2.1)

and boundary conditions at the interface Γ from the continuities of the potential and the
normal component of the dielectric displacement:

(2.2)

The potential Φi inside the cylinder can be rewritten as a sum of a Coulombic contribution
Φcoul(r) = q/εi|r−rs| and a reaction potential Φrf which is a harmonic function. The
Coulombic potential can be expanded in terms of cylindrical harmonics [18], for ρ > ρs,

(2.3)

where δm0 is the Kronecker delta function, Im and Km are the modified Bessel functions of
the first and second kind [2]. Also, because the reaction potential Φrf and the potential in
region Ωm, Φm, satisfy a Laplace equation, their solutions can be written as series of
cylindrical harmonics,

(2.4a)

(2.4b)

respectively, where Am(k) and Bm(k) are unknowns to be determined by the boundary
conditions. By using the orthogonality of the cylindrical harmonics, the boundary conditions
(2.2) lead us to a linear system of two equations for each order m,

(2.5a)

(2.5b)

where ε=εi/εm and cm=(4−2δm0)q/πεi are constants. Solving these linear systems yields

(2.6a)

Xu et al. Page 3

Commun Comput Phys. Author manuscript; available in PMC 2013 March 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2.6b)

and the corresponding reaction field inside the cylinder reads [6]

(2.7)

3 Image charge methods
3.1 Multiple-image representation for the infinite cylinder

The image charge method is a promising way to speed up the calculation of electrostatic
interactions in dielectric or conducting objects, in comparison with directly truncating the
exact series solution. For spherical geometries, numerical evidence [4] illustrated that the
pairwise sum of the image method is dozens of times faster than the direct series expansion
method for the same level of accuracy. The exact solution for the cylindrical geometry is
even more expensive because Eq. (2.7) includes not only an infinite series, but also an
infinite domain integral. The so-called image charge method is to find some image point
charges outside the cylinder such that their electrostatic contributions approximate the exact
reaction field Φrf(r),

(3.1)

where unknown fm and xm are the strength and location of the m-th image charge. Once we
obtain these unknowns for each source charge located at rs, the potential can be calculated
by a pairwise sum of Coulombic interactions, which becomes feasible to take advantage of
fast techniques [21], such as FMMs [5, 13, 41].

We compute the locations and charge strengths by minimizing the following sum of the
squares of the errors of the approximate reaction field using the images

(3.2)

where rn is the location of the n-th monitoring point. The minimization problem is nonlinear
and most optimization algorithms can only find a local minimum, and thus it is necessary to
give suitable initial values for iterations (the results with fewer monitoring points are used to
estimate the initial data). Naturally, we can search the minimum on the plane z=zs as the
reaction potential has only one extremum along the z-axis, and thus the m-th image location
can be defined by xm = (ρm, φs+φm,zs). Each image is represented by three unknowns, fm,
ρm and φm, which depend only on the radius, ρs, of the source charge.

A program based on Mathematica 7 is developed to calculate the locations and strengths of
images for a given set of dielectric parameters, in which the “FindMinimum” subroutine
[37] is used to solve the minimization problem. In order to show the feasibility and the
performance of the code, we consider the case of εi=1 and εm=2. Here εi=1 represents a
vacuum phase inside the cylinder, which is usually used as the dielectric constant of the
explicit region. A relative small εm is selected to represent the dielectric constant of the
membrane, such that the model can be used to study ion channels in the future. In all the
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calculations, we take N=640 monitoring points uniformly distributed in four circular disks
inside the cylinder. To show the results, we take M=4, and due to the symmetry of the
reaction field, the four charges can be denoted as (fm, ρm, φm)=(f1, ρ1, ±φ1) and (f2, ρ2, ±φ2).
So we have 6 unknowns for the minimization problem. It should be noted that the strengths,
and azimuths of the images only depend on the ratio, p=ρs/a, and the radial coordinates of
the images are linear functions of a. The six minimized unknowns are further fitted by fifth
order polynomials of variable p. These polynomials are expressed in the matrix form as

(3.3)

Fig. 2 illustrates the relative L2 errors

(3.4)

of both the original minimized data and the fitted data. The error curve shows that the
polynomial fitting is in agreement with the minimized data. Overall, the relative errors to the
cylindrical expansion solution are less than 2%, demonstrating the high accuracy of the
multiple-image method using only 4 images. It is also evident that the method of images is
less accurate for a source at the cylindrical axis than near the interface, while the opposite is
observed for the image method in a sphere [4]. This difference can be explained as follows.
When the source is at the center of the cylinder, the image can be considered as a plane
integral where the integrand is symmetric in φ, and thus many points are required to
accurately discretize this integral. However, as the source approaches the surface, the
surface can be approximated as a wall for which only one image will represent the reaction
field exactly.

It should be stressed that, the fitted polynomials are independent of the cylindrical radius,
and therefore they can be readily used for any other cylindrical geometry. But they do
depend on the dielectric ratio εm/εi. For each ratio, new polynomials have to be regenerated.
The Mathematica program is available (upon request) for generating such polynomials.

3.2 Multiple images for the ion-channel model
For the infinite cylinder, we have represented the reaction field (due to the source charge at
rs) by four image charges,

(3.5)

where M=4 and xm=(ρm,φs+φm,zs), and ρm and φm are functions of p=ρs/a, given by Eq.
(3.3).

We extend this result to solve the ion-channel model illustrated in Fig. 1. In this model, the
explicit region, composed of embedded biomolecules, some water molecules, ions, and a
portion of membrane, is a finite cylinder surrounded on the side by the rest of membrane.
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Beyond the cylindrical cavity and membrane is the bulk water. These three regions are
characterized by dielectric constants εi, εm, and εw, respectively.

Suppose the two infinite boundaries of the bulk water are the parallel planes z =0 and z=b
with b being their distance, and the origin is located on the bottom plane. We assume the
medium between the two planes is homogeneous with dielectric εi, namely, we assume that
εm =εi. Then for a source charge q at rs =(xs,ys,zs) with 0 < zs < b, the reaction potential due
to the two boundary planes can be described by a sum of infinite images [40]:

(3.6)

where

Outside the two planes, a simple calculation with the boundary conditions (2.2) gives the
electric potential,

(3.7)

which is an infinite sum of images in the opposite half space.

In practice, the infinite summation needs to be truncated at a finite term l =L, so an estimate
of the truncation error of Eq. (3.6) is necessary. We consider the self energy of a point q
inside the domain between the two planes, V(rs)=qΦrf(rs)/2, then the error can be expressed
as

(3.8)

Thus, when L=2N, the error can be rewritten as

Clearly, each term in the above sum is negative for zs ∊[0,b], and the maximum error is
reached at two ends zs=0 and b, given by

(3.9)

Similarly, we have
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in which, each term is positive. The maximum error is obtained at zs=b/2, which yields

(3.10)

As γ≈−1, the convergence rate of the infinite series is on order 1/N2.

Now, we can obtain the image representation of the ion-channel model by combining the
cylindrical images (3.5) and the planar images (3.6). Suppose the origin is the intersection
between the bottom plane and the cylindrical axis. Obviously, the source charge and the M
image charges are bounded by the two membrane boundaries. For convenience, denote the
position of the source by rs =x0 =(ρ0,φs+φ0,zs) and let f0 =1. The total reaction field due to
the source charge inside the cylinder can be expressed by

(3.11)

where

The major assumption of using Eq. (3.6) to construct images of the ion-channel model is the
homogeneity of the medium between the two planes by disregarding the dielectric difference
between the membrane and the interior of the cylinder, which is reasonable because both εi
and εm are very small in comparison to the water dielectric, εw, roughly, the error is
bounded by |εi–εm|/εw. As the boundary condition on the cylindrical surface remains correct
when using the formula (3.11), the inhomogeneity only introduces an error in satisfying the
planar boundary condition. However, the region of interest is the explicit pore, and we use εi
as the dielectric of the region between the two planes. It turns out that the formula (3.11)
represents a reaction potential which precisely matches the boundary conditions on the
surface of the explicit pore-the region of interest. The mathematical error analysis would be
a difficult issue, therefore we will demonstrate the error performance by numerical
experiments.

4 Numerical results
The image solution (3.11) for the ion-channel model is tested by calculating the self energy
V(rs)=qΦrf(rs)/2 of a unit point charge located within a finite cylinder. The cylinder is of
radius 4Å, and height 12Å. In the calculations, we set the source charge at (x,0,z) where x
takes two values, 0 and 2Å, and z varies from 2 to 10Å. To compare the results, the Poisson-
Boltzmann equation is numerically solved by a 3D finite difference (FD) method in [16]
with grid size h=0.5Å.

The infinite sum in Eq. (3.11) is truncated at l≤L=±15, say, the images with  are all
included, and therefore, it is accurate enough to approximate the infinite sum. Figs. 3(a) and
(b) give the comparative results between the image-based and finite difference self energies
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for the case of εm=2. It can be seen from Fig. 3(b) that the relative errors are all less than
1.1%. As is known, Eq. (3.6) is only an approximation by assuming the region between two
planes is homogeneous. The main reason for this high accuracy is because the membrane
permittivity is close to 1 of the explicit region in comparison to the water dielectric constant,
and the boundary conditions on the two ends of the cylinder are precisely satisfied. To see
the accuracy of the formula (3.11) for higher membrane dielectrics, the image-based and FD
solutions are also calculated for εm=4 for which the fitted polynomials of image parameters
are given in Appendix A. The self-energy results and the relative errors are again plotted in
Figs. 3(c) and (d). It is seen that the maximum error is 2.3% relative to the FD solution. This
result is not surprising as the dielectric ratio of membrane and water is doubled, the error is
expected to increase. In order to investigate the error performance of the self energy near the
boundary, Fig. 4 plots the results for the charges located at 1 Å distance to the bottom plane.
The average error is below 1%, while for charges close to the radial boundary the error
increases to 1.5%, which shows the method of images is accurate for charges close to the
planar boundary.

One natural concern with fast calculation of the reaction field is the correct truncation terms
l ≤ L for the infinite sum of Eq. (3.11), for which we expect to take the smallest L for a
desired accuracy. In Fig. 5, we have calculated the maximum relative errors of the sampling
points by comparing with the FD solutions, where the source charge is on the cylindrical
axis (0,0,z) for z varying from 2 to 10Å. The membrane dielectrics take two values εm=2
and 4. The results indicate that when εm=2 the error rapidly converges to a level of 1% in
comparison to the reference solution if using an odd L, while the error when using even
number of terms remains about 0.7% larger than the odd case with the increase of L. This
differential converging behavior does not agree with the error analysis shown in Eqs. (3.8)
and (3.10). However, noticing that the reference solutions are also numerically obtained, and
it could be an error cancelation between the finite difference solver and the method of
images for odd L. As E2N+1(rs) and E2N(rs) are opposite in sign, the error cancelation for
odd images implies an error accumulation for even ones. This saw-like error phenomenon
also appears in the case of εm =4, whereas, the errors keep about 2.3% because of the higher
dielectric ratio between membrane and water.

For the purpose of comparison, we also perform the calculations for the following two
limiting cases: i) the conductor limit of the water dielectric (∊w→∞) with the membrane
dielectric εm=2, for which the infinite images for planes are exact; and ii) the finite cylinder
immersed in the bulk water (both the membrane and water dielectrics are set to 80). The
position of the source charge varies along the cylindrical axis. Fig. 6 displays the results of
these two cases. We see the image result agrees well with the finite difference result for a
large εw, which is theoretically exact in the conductor limit. As is shown, due to the high
dielectric property of the solvent, the conductor limit is a good approximation to the reaction
potential. For the second case with a large εm, the image approximation breaks down with
the maximum error being 1.73 kcal/mol (4.77% in relative error), which highlights the
proper treatment of membrane environment is essential in the ion-channel model.

5 Concluding remarks
In conclusion, we have developed a multiple-image method to approximate the reaction field
due to a point charge in a hybrid ion-channel model, which uses a cylindrical cavity of a
finite height as the explicit region and everything outside as a continuum characterized by
two dielectric constants. The main challenge for simulation of an ion channel is that the
simulation system is made up of not only protein itself, but also the lipid bilayer, water and
ions, and thus computer resources are usually limited to treat such an inhomogeneous
system. The implicit approaches based on the Poisson-Boltzmann theory can treat this
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system more efficiently, but are still very slow for dynamics simulations. The image charge
approximation can successfully treat an inhomogeneous system by representing the
polarization effects with multiple image charges, leading to a homogeneous system with the
source charges and their corresponding images, thus many existing fast algorithms can be
used to accelerate the pairwise Coulombic interactions.

Many issues remain to be addressed, such as how to take into account of ionic effects in
solution, and to assess the performance in force calculations. The incorporation of the
developed method into practical molecular simulations is currently under way.
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Appendix

A Fitting polynomials for membrane dielectric=4
For membrane dielectric εm = 4, the fitting polynomials are given by

(A.

1)

B Images for force calculations
In this Appendix, we consider how to find force images. The expression based on
minimizing the reaction potential error could be simply used. However, more accurate
image approximation can be derived by minimizing the force error. For a test point charge
of unit strength at field point r, its force, due to the source charge q, is expressed as

(B.1)

Similar to the setting of free energy calculations, we solve the following minimization
problem by comparing the forces along the radial and axial directions,

(B.

2)

Again, for the case of four images, we suppose the four charges have parameters (fm, ρm,
φm) = (f1, ρ1, ± φ1) and (f2, ρ2, ± φ2), i.e., we have 6 unknowns. These polynomial fitting
functions read
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(B.

3)
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Figure 1.
Schematic illustration of an ion-channel model. The molecules inside the cylindrical pore
are treated explicitly at the atomic scale, while outside the pore the membrane and water are
treated as homogeneous media, characterized by dielectric constants εm and εw,
respectively.
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Figure 2.
Relative L2 errors (3.4) of the approximate reaction field of the infinite cylinder with four
image charges as a function of p = ρs/a. The diamonds represent the minimization results
and the solid lines are results with the fifth order polynomial fittings.
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Figure 3.
Self energy of a unit charge located at (x,0,z) within the ion channel. The membrane
dielectric takes (a)(b) εm = 2, and (c)(d) εm = 4.
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Figure 4.
Self energy of a unit charge located at (x,0,1) near the interface between the cylinder and
water for x varying from −3.5 to 3.5 Å. The membrane dielectric takes εm = 2.
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Figure 5.
Maximum relative error of the self energy vs. different truncation terms. The membrane
dielectric takes εm = 2 and 4. The unit charge is located at the cylindrical axis. The error
takes the maximum of the relative error for z varying from 2 to 10Å.
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Figure 6.
Two limiting cases. (a) εw = ∞, where the result with εw = 80 is also plotted; (b) the finite
cylinder immersed in the bulk solvent, say, εm = εw = 80.
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