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Tumours evolve several mechanisms to evade apoptosis, yet many
resected carcinomas show significantly elevated caspase activity.
Moreover, caspase activity is positively correlated with tumour
aggression and adverse patient outcome. These observations
indicate that caspases might have a functional role in promoting
tumour invasion and metastasis. Using a Drosophila model of
invasion, we show that precise effector caspase activity drives
cell invasion without initiating apoptosis. Affected cells express
the matrix metalloproteinase Mmp1 and invade by activating Jnk.
Our results link Jnk and effector caspase signalling during the
invasive process and suggest that tumours under apoptotic
stresses from treatment, immune surveillance or intrinsic signals
might be induced further along the metastatic cascade.
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INTRODUCTION
Evasion of apoptosis is a hallmark of cancer [1,2]. During
apoptosis, executioner proteases known as effector caspases
cleave thousands of cellular substrates to promote orderly cell
disassembly [3,4]. To avoid this, tumours use a variety of
mechanisms to deflect programmed cell death signals. Many
of these, such as mutated P53 and BCL-2 overexpression, involve
blocking the signals that lead to caspase activation [5]. Others,
such as overexpression of XIAP, block active caspases themselves [6].
Yet tumour cell lines and resected patient breast, pancreatic
and colonic tumours show high levels of effector caspase activity
without undergoing apoptosis [7]. Thus, tumours survive with
effector caspase cleavage without undergoing cell death. Further,
clinical data indicate that effector caspase levels increase in
parallel with breast tumour invasiveness as well as adverse patient
prognosis [8,9]. Previous studies in cancer cell lines also
demonstrate that apoptotic and invasion signals can show
crosstalk [10]. These studies suggest that caspases have a
functional role during tumour invasion and metastasis.

In this study, we examine the potential for a functional role of
in situ caspase activation during invasion. Using Drosophila
melanogaster, we show that sub-apoptotic caspase activation
leads to matrix metalloproteinase (MMP) expression and cell
invasion. This signalling axis requires the effector caspase Drice
(Drosophila caspase 3) and the Jnk signal transduction pathway.

RESULTS AND DISCUSSION
Moderate caspase activity leads to cell invasion
High expression levels of Hid activate initiator caspases by
sequestering the IAP family member Diap1 [11]. Controlled
activation of caspases frequently leads to non-apoptotic
phenotypes [12–14]. To investigate whether caspase activation
in the absence of apoptosis leads to migratory behaviour, we
co-expressed hid with p35, a baculovirus-derived suicide substrate
that specifically inhibits effector caspase activity but not the
initiator caspase Dronc (Drosophila caspase 9 [15]). Transgenes,
including green fluorescent protein (GFP), were expressed in
the ptc domain, which includes a stripe of epithelial cells at the
anterior/posterior boundary of the larval wing disc (Fig 1A). We
previously used this pattern to study invasion mediated by
knockdown of the Src-negative regulator carboxy-terminal Src
Kinase (Csk; [16]).

ptc4p35,hid (p35-hid) discs contained many fully detached
GFP cells in the posterior compartment away from the ptc
domain (Fig 1D). p35-hid invasion was qualitatively different from
the one reported by Martin et al [17] in which irradiated p35-
expressing cells failed to detach from the expression domain.
p35-hid invading cells were found exclusively in basal planes of
the tissue; they had cleanly detached and migrated several cell
diameters away from the posterior edge of the ptc expression
domain. They displayed a robust, rounded morphology indicative
of healthy cells. The p35-hid invasion phenotype was similar in
character to but weaker than Csk-deficient invasion, consistent
with Src potentiating many downstream effectors of invasion,
including caspase-independent targets.

Consistent with previous work [16], expression of hid alone led
to extensive apoptotic cell death but no invasion (Fig 1C),
indicating that simply inducing cell death is not sufficient to
cause ‘migration’. Wing discs expressing p35 alone showed no
invasion (Fig 1B) but contained occasional cells with processes
extended towards the posterior compartment (Fig 2B;
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supplementary Fig S1 online; P-values: p35-hid¼ 1E� 15 hid¼ 0.7
p35¼ 1), presumably reflecting a block in the normal stochastic
activation of apoptosis during development.

In contrast with P35, Diap1 acts as a broad inhibitor of caspase
activity [11,18–20]. When hid was co-expressed with its
physiological antagonist diap1, no indicative effect on invasion
was observed (supplementary Fig S1A–C online), suggesting that
caspase activation is required for invasion. Overall, these results
indicate the existence of a non-apoptotic caspase pathway leading
to invasion and that caspase activation alone should not be used
as an indicator of cell death.

p35-hid cells activate caspases but not apoptosis
We next monitored activation of apoptosis using an antibody
against human cleaved Caspase 3, which measures the activity of
the initiator caspase Dronc in Drosophila [21]. In control and p35
discs, cells within the ptc domain showed low Dronc activity
(Fig 1E,F). By contrast, most hid-expressing cells exhibited high
levels of Dronc activity (Fig 1G). Activity was observed primarily
in the basal region of the ptc domain but also at intermediate
confocal planes, suggesting that cells actively undergoing
basal extrusion are at an intermediate stage of cell death.
Confirming apoptosis, most hid cells were marked positive by
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Fig 1 | Characterization of Caspase-directed invasion. (A–D) Wing discs of indicated genotypes demonstrating the invasion phenotype; cells are labelled

by GFP expression under control of the ptc driver. Arrow in panel D indicates a group of cells that have migrated from the ptc domain. (E–H0) Wing

discs of indicated genotypes probed with an antibody to cleaved Caspase-3 (pseudocoloured red in panels E–H, grey in panels E0–H0). (I–L0) Caspase

activity in p35-hid wing discs is not accompanied by apoptosis, as demonstrated by TUNEL staining (red). Anterior in all panels is to the left. GFP,

green fluorescent protein; TUNEL, TdT-mediated dUTP nick end labelling.
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TdT-mediated dUTP nick end labelling (TUNEL) in contrast to
control and p35 cells (Fig 1L–K).

p35-hid cells also showed elevated Dronc activity, including
those migrating from the ptc domain (Fig 1H). In contrast to hid
discs, however, p35-hid discs showed a concentration of TUNEL
staining indistinguishable from controls (Fig 1L). In particular,
invading cells rarely marked with TUNEL, indicating that they
have the characteristics of previously described ‘undead’
cells [17,22]. We found occasional caspase- and TUNEL-marked,
GFP-negative cells in the posterior compartment. Lineage tracing

experiments [23] indicated that these cells were not undead cells
that lost ptc or GFP expression (data not shown); rather they are
likely wild-type cells that activated apoptosis as part of their
normal developmental programme.

Undead cells activate Jnk, express Mmp1
Invading tumour cells express MMPs to degrade the extracellular
matrix and basement membrane [24]. Control and hid discs
displayed undetectable levels of Mmp1 (Fig 2A,C). In contrast,
p35-hid discs demonstrated high Mmp1 expression levels
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Fig 2 | p35-hid invading cells activate the Jnk pathway. (A–D) Mmp1 expression in wing discs with indicated genotypes (A0–D0: MMP1 channel only of

images shown in A–D). Inset in panel B shows P35-dependent cell extensions; unlike p35-hid, p35 cells rarely detach completely from the ptc domain.

(E–H0) phospho-JNK staining (red) in wing discs of indicated genotypes (E0–H0: pJNK channel only of images shown in E–H) (I) JnkDN blocks

p35-hid-dependent cell migration. Anterior in all panels is to the left. (J) Quantification of invasion phenotype. Bonferroni-corrected significance

(a¼ 0.05) is indicated with asterisks. MMP, matrix metalloproteinase.
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localized to discrete regions within the ptc domain (Fig 2D),
zones of local invasion containing lines of cells migrating away.
Many of the migrating cells also retained lower Mmp1
levels (supplementary Fig S1D,E online). Expression of tissue inhibitor
of metalloproteinase in p35-hid discs partially suppressed invasion
(Fig 2J), indicating a functional requirement for MMP expression in
p35-hid-mediated invasion. Intriguingly, Mmp1 expression was
also elevated in p35 discs (Fig 2B). These Mmp1-rich regions
frequently associated with attached cells possessing elongated cell
processes (Fig 2B) and also showed high Dronc activity
(supplementary Fig S2A online), suggesting that apoptosis
activated as part of the normal developmental programme in
these cells is blocked by p35 expression. Consistent with this
view, Mmp1 expression was strongly suppressed in p35 discs that
were null for the effector caspase drice (supplementary Fig S2B
online). In summary, while Mmp1 expression in both p35 and
p35-hid discs corresponded with caspase activation but not
apoptosis, absence of invasion despite MMP1 expression in p35
discs suggests that endogenous level of caspase activation in these
cells is not high enough to initiate the entire invasion programme.

The Jnk pathway is a conserved regulator of MMP expression,
and is required for invasion downstream of many oncogenes,
including Src [25–27]. In Drosophila, Jnk has been reported to lie
both upstream and downstream of Hid [28]. To assess the activity
of the unique Drosophila ortholog bsk/jnk, we used an antibody
specific to the activated Jnk isoform pJnk. pJnk staining localized
to discrete patches in p35 discs (Fig 2E,F), consistent with the
Mmp1 expression pattern, while staining in hid discs was
extremely weak (Fig 2G). By contrast, p35-hid discs showed clear
evidence of Jnk activation within the ptc domain compared
with control (Fig 2H).

We confirmed these results with the Jnk pathway transcriptional
reporter msn-LacZ in p35 and p35-hid discs, whereas msn-LacZ
levels were undetectable in hid discs, consistent with very low
pJNK levels in these discs (supplementary Fig S2C–F online). In
addition to reporting Jnk activity, the ‘msn-lacZ’ transgene
interrupts the msn locus[29], reducing the msn gene dosage by
half. We observed a complete suppression of the p35-hid invasion
phenotype in the presence of msn-lacZ (supplementary Fig S2F
online) indicating a dependence on Jnk activity. Consistent with
this view, co-expression of a dominant-negative Jnk transgene also
led to complete suppression of the invasion phenotype
(P-value¼ 1E� 12, Fig 2I,J).

JNK has previously been shown to exhibit positive feedback
with caspases during apoptosis [28] and here we suggest that this
loop contributes to tumour invasion. That is, the same
mechanisms that direct the multistep apoptosis process—
including Actin remodelling, removal from the epithelium,
interaction with macrophages, and so on—are co-opted for
tumour invasion (for example, van Ham et al [30]).

The effector caspase Drice is required for migration
Which caspases are responsible for Jnk activation and subsequent
invasion? The initiator caspase Nc/Dronc and the effector Ice/
Drice mediate virtually all apoptotic processes in Drosophila; they
follow an activation pattern conserved with mammals [31–35].
Knockdown of Dronc with a short hairpin completely suppressed
invasion in p35-hid cells (P-value¼ 2.7E� 5, Fig 3A,G),
suggesting that Dronc mediates the signal leading to invasion.

Previous work has demonstrated that Dronc activation cleaves
and activates the pro-Drice dimer, permitting Drice to cleave a
variety of cellular substrates [35]. Interestingly, in p35-hid wing
discs, reducing Drice levels also led to suppression of invasion
(P-value¼ 2.3E� 14; Fig 3B,C,G). The suppression of migration
indicates that when apoptosis is blocked, precise levels of Drice
activity are required to promote invasion. To test this prediction,
we asked whether reducing Dronc or Drice levels in otherwise
apoptotic hid cells would be sufficient to induce migration in the
absence of p35. We found that while hid-droncRNAi cells failed
to migrate (P-value¼ 0.55, supplementary Fig S3A,C online),
hid-driceRNAi discs showed an intermediate migration phenotype
(P-value¼ 2.6E� 5, supplementary Fig S3B,C online). In summary,
Hid-induced caspase activity can be reduced to a level that
suppresses apoptosis but is still sufficient to direct migration by
either blocking Drice activity (p35-hid) or by reducing total Drice
levels (hid-driceRNAi). Reducing Drice levels plus inhibiting
Drice function (p35-hid-driceRNAi) brings Drice activity to a level
too low to induce invasion. Overall, these experiments indicate that
caspase activation must be precisely controlled to promote invasion.

To further test this model, we generated ‘undead cells’ by
expressing the activated Dronc isoform DN-dronc3, which lacks its
amino-terminal domain; this alteration frees DN-dronc3 from
Diap1 inhibition to direct apoptosis in vivo [36–38]. We found
that DN-dronc3 alone did not promote migration (P-value¼ 1,
Fig 3D). However, co-expression of DN-dronc3 with p35 led
to an aggressive invasion phenotype (P-value¼ 3.9E� 9) with
extensive lamellipodia-like cellular processes (Fig 3E,F); cells were
observed at a significant distance from the ptc domain. These
results were confirmed using a second transgenic insertion
(P-value¼ 2.6E� 13, Fig 3G).

Overall, these results indicate that effector caspase activity
below levels sufficient to direct cell death might be optimal for
migration of transformed cells (Fig 3H). This signalling promotes
migration through Jnk, consistent with previous studies showing
that Jnk lies downstream of Dronc [39]. Caspase activation of Jnk
frequently leads to compensatory proliferation, a homeostatic
programme of cell replacement after apoptosis. Compensatory
proliferation studies of ‘undead cells’ have come to opposite
conclusions concerning the role of Drice [40,41]. Our work is
consistent with the mammalian literature placing the JNK pathway
as a caspase target.

Effector caspases are active in tumours in situ and are associated
with metastasis; our results indicate that cells with moderate
caspase activity that are protected from apoptosis are prone to
migration. In this view, therapeutic interventions proposed
to increase tumour apoptosis might paradoxically exacerbate
malignancy, as has been previously suggested [42,43].
Tumour inflammation has also been suggested to promote
metastasis [44] and might do so via stimulation of the extrinsic
apoptosis pathway. Tumour cells commonly contain high levels of
XIAP, which blocks caspases’ active site in a manner similar to
P35 [45–49]. This might provide an important mechanism
directing tumours to metastasize, though our experiments (for
example, supplementary Fig 1 online) emphasize the importance
of precise caspase activity. A better understanding of caspases’
role in tumour progression might enhance our ability to predict a
tumour’s progression and the impact of treatments designed to
promote the apoptosis process.
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METHODS
Fly genetics. Experimental genotypes were generated by standard
crossing and were cultured at 18 1C on Bloomington Semi-defined
Media except for crosses involving droncD.3a/DN-dronc3 (25 1C).
Immunohistochemistry. Antibodies targeted Mmp1 (mouse, 1:50,
DSHB), cleaved Caspase-3 (rabbit, 1:200, Cell Signaling Technol-
ogy), b-galactosidase (mouse, 1:100, DSHB), and phospho-SAPK/
JNK (G9; mouse, 1:100, Cell Signaling), Alexa Fluor 568- or
Cy5-conjugated secondary antibodies (1:100, Invitrogen,
Jackson). TUNEL assay was performed using the In Situ Cell
Death Detection Kit, TMR Red (Roche).
Statistical procedures. More than 20 wing discs were dissected
for each genotype. Each disc was binned to one of the following
phenotypic categories based on the number of migrating cells
within the posterior compartment: weak: 1–5 cells; moderate:
6–15 cells; and strong: 415 cells. To establish suppressor and
enhancer genotypes, the categories were defined to be centred
around the ‘moderate’ class. This procedure was performed at
least twice and results pooled. The Wilcoxon rank sum test was

used to compute P-values with respect to controls and deemed
significant on the basis of an a¼ 0.05 threshold (R Language:
wilcox.test function). We report Bonferroni-adjusted P-values—
with the comparison genotype noted when unclear—on the basis
of several statistical comparisons made with each genotype.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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