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Abstract

Vitamin D sufficiency is associated with protection against malignancy in a number of tissues
clinically, and a strong body of evidence from animal and cell culture studies supports this
protective role. Cancers in the skin differ, however, in that higher serum levels of 250HD are
associated with increased basal cell carcinomas (BCC), the most common form of epidermal
malignancy. This result may be interpreted as indicating the role of UVR (spectrum 280-320) in
producing vitamin D in the skin as well as causing those DNA mutations and proliferative changes
that lead to epidermal malignancies. Recent animal studies have shown that mice lacking the
vitamin D receptor (VDR) are predisposed to developing skin tumors either from chemical
carcinogens such as 7,12 dimethylbenzanthracene (DMBA) or chronic UVR exposure. Such
studies suggest that vitamin D production and subsequent signaling through the VDR in the skin
may have evolved in part as a protective mechanism against UVR induced epidermal cancer
formation. In this manuscript we provide evidence indicating that vitamin D signaling protects the
skin from cancer formation by controlling keratinocyte proliferation and differentiation,
facilitating DNA repair, and suppressing activation of the hedgehog (Hh) pathway following UVR
exposure.
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Vitamin D and skin cancer

Skin cancer is by far the most common malignancy. Numerous studies over the past 30
years have evaluated the potential of 1,25 Dihydroxyvitamin D3 [1,25(0OH),D4] for
anticancer activity [1]. Most malignant cells express VDR including basal cell (BCC) and
squamous cell (SCC) carcinomas [2, [3] as well as melanomas [4]. The generally accepted
potential for 1,25(0OH),D3 in the prevention and treatment of malignancy rests with its
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antiproliferative, prodifferentiating actions. Epidemiologic evidence linking adequate
vitamin D levels to colon cancer prevention is particularly strong, although the role of
vitamin D in the prevention of other cancers has also been implicated [5, [6, [7, [8, [9]. This
epidemiologic evidence is lacking for skin cancers, however [10, [11, [12], with several
studies suggesting a positive correlation between 250HD levels and BCC [13]. Most likely
the lack of epidemiologic evidence for a positive role for vitamin D in preventing skin
cancer is due to the dual effect of UVB radiation (UVR) in promoting vitamin D3 and
1,25(0OH),D3 synthesis in the skin and in increasing DNA damage leading to skin cancer
negating the benefit of UVB induced vitamin D production. However, a threshold of UVR
exposure may exist that would meet the nutritional requirements for vitamin D production
without increasing the risk for epidermal tumor formation.

Animal studies suggest that vitamin D plays a protective role in the skin with respect to
carcinogenesis. Zinser et al. [14] treated VDR null mice orally with the carcinogen 7,12
dimethylbenzanthracene (DMBA), attempting to induce breast cancers, but to their initial
surprise 85% of the VDR null mice developed skin tumors. The wildtype controls did not
develop tumors. Other groups have confirmed these results with the topical administration of
DMBAV/TPA [15]. Ellison et al. [16] extended these results by demonstrating that the VDR
null mice all developed tumors in response to UVR, with few tumors appearing in the
wildtype controls. We have confirmed these results with our own studies [17] (figure 1).
Surprisingly mice lacking the ability to produce 1,25(0OH),D (CYP27B1 null) did not show
increased susceptibility to tumor formation following either DMBA [16] or UVR [17].

We considered three mechanisms, not necessarily independent, underlying the protective
role of vitamin D in tumor formation. First, vitamin D signaling has a well established role
in inhibiting proliferation and promoting differentiation of keratinocytes [18]. Thus lack of
vitamin D signaling could lead to unchecked proliferation of poorly differentiated cells
especially after a proliferative stimulus such as UVR. Secondly, UVR induces characteristic
alterations in DNA (cyclobutane pyrimidine dimers [CPD] and 6,4 photoproducts [6,4 PP])
that if not repaired lead to mutations with the potential for initiating cancer. Studies from
several research groups including our own [19, 20] have shown that vitamin D signaling
enhances DNA repair. Finally, activation of hedgehog signaling is associated with
essentially all BCC [21] and many SCC [22]. We [17] have found that mice lacking the
VDR have constitutively active hedgehog signaling, and that 1,25(OH),D can suppress this
pathway in normal skin. Recent data from our laboratory supporting the role of these three
mechanisms form the basis of this report.

Vitamin D regulation of proliferation and differentiation

The VDR null mouse shows increased proliferation and marked abnormalities in
differentiation especially in the latter stages of catagen [23]. These observations in vivo
were confirmed in vitro by knocking down the expression of VDR and the coactivator,
DRIP205, most associated with the action of VDR in the proliferating keratinocyte [24]. The
results are shown in figure 2 and demonstrate that lack of VDR and its coactivator DRIP205
increase proliferation, decrease apoptosis, and alter the morphology of the keratinocyte from
the normal cuboidal form with tight intercellular junctions to a loosely aggregated collection
of spindly shaped cells suggesting a change to a more primitive, less differentiated cell. The
loss of differentiation assessed morphologically was confirmed by decreased expression of
various differentiation dependent markers and functions [23, [24, [25]. When VDR null
mice were exposed to one dose of UVR they showed a greater stimulation of proliferation
than did their wildtype littermates (figure 3A), and proliferation continued to increase for at
least 48h, whereas that of the wildtype littermates reached a plateau at 24h. This resulted in
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an almost 3 fold increase in epidermal thickness in the VDR null mice compared to wildtype
littermates by 48h (figure 3B).

Vitamin D regulation of DNA damage repair

The ozone layer protects us from UV wavelengths shorter than 280nm (UVC). UV
wavelengths longer than 320nm (UVA) have been thought to have limited ability to induce
the characteristic mutations in DNA seen in epidermal cancers, although recent studies
indicate that UVA can cause oxidative DNA damage that is potentially mutagenic [26].
However, the major cause of skin cancer is attributed to UVB with a spectrum between 280-
320nm [27]. UVR induced DNA damage includes the formation of cyclobutane pyrimidine
dimers (CPD) and pyrimidine(6-4)pyrimidone photoproducts (6-4PP). If these lesions are
not repaired C to T or CC to TT mutations result, the UVR “signature” lesion [28]. These
mutations are often found in p53 in BCC, SCC [29, [30, [31, [32] and actinic keratoses, the
precursor lesion to SCC [33]. Preventing UVR induced DNA damage from producing DNA
mutations is the role of DNA damage repair (DDR) mechanisms. DDR coordinates the
response of the cell cycle to DNA damage through mechanisms involving damage
recognition, repair and signal transduction. These mechanisms include cell cycle
checkpoints to delay the cell cycle, providing time for repair or activating senescent and
apoptotic pathways. These mechanisms vary according to cell types, species, and damaging
agents. The accuracy and tight control of DDR in normal primary cells keeps the
spontaneous mutation rate very low [34, [35, [36]. However, with malignant transformation
control of DDR is lost, and mutation rates and copy number abnormalities increase
substantially [34, [35, [36, [37, [38].

Nucleotide excision repair (NER) is the principal means by which UVR damage is repaired.
By removing DNA damage before DNA replication begins NER can reduce the amount of
damage resulting in mutations that get incorporated into the DNA during replication [39,
40]. The two major processes [41] used by NER include transcription coupled repair (TCR)
involving the repair of genes undergoing active transcription [42, 43, [44, [45, [46] and
global genomic repair (GGR) for the non-transcribed regions of the genome [47]. Heritable
mutations in NER genes occur in several human diseases with increased susceptibility to
UVR induced epidermal malignancies such as xeroderma pigmentosum (XP) and Cockayne
syndrome (CS) [47]. Identification of the genes mutated in these diseases has assisted
substantially in identifying the genes and their protein products critical for DDR.

Keratinocytes in the epidermis of mice lacking a VDR show markedly retarded DDR [20].
This is demonstrated by a reduced rate of clearing CPDs and 6,4PPs following UVR
whether administered in vivo (figure 4A) or in vitro in epidermal sheets from VDR null
mice (figure 4B), and is associated with decreased survival after UVR exposure. The
decreased clearance of CPDs in the VDR null epidermis represents a failure of global DNA
repair rather than transcription coupled repair in that hydroxyurea (to block DNA synthesis)
did not have a significant effect on the results in these experiments (P=0.3) (figure 4B). The
Mason laboratory [48, [49] and others [50] demonstrated that 1,25(0OH),D3 topically applied
protected the skin from UVR induced photodamage including increased clearance of CPDs,
decreased apoptosis, increased survival, and increased expression of p53. Moll et al. [51]
observed an upregulation of two genes important for DDR: XPC (xeroderma pigmentosum
complementation group C) and DDB2 (damage-specific DNA binding protein 2 also known
as XPE) following 1,25(0OH),D3 treatment. These actions of vitamin D signaling on DDR
are likely to account for part of the reduced susceptibility of normal skin to UVR induced
tumor formation.
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Vitamin D regulation of hedgehog signaling

Mutations in patched 1 (Ptchl), a key component of the hedgehog signaling pathway, were
discovered as the main cause of the basal cell nevus syndrome (BCNS) (Gorlin Syndrome),
with its high susceptibility to the development of BCCs [21, 52]. Moreover, most sporadic
BCCs have mutations in Ptch 1 or other alterations in Hh signaling [53]. The Ptch1+/-
(Gorlin) mouse was then developed as the first practical model of murine BCCs [53], and
they are quite susceptible to the development of BCC and SCC following UVR or ionizing
radiation [53]. Ptch 1 is the membrane receptor for sonic hedgehog (Shh) which in the basal
state inhibits the function of smoothened (Smoh), also in the membrane. In the presence of
Shh this inhibition of Smoh is lost resulting in the activation of a family of transcription
factors Glil, Gli2, and Gli3. These Gli factors in the basal state are maintained in the
cytoplasm bound to Suppressor of fused (Sufu), but with the activation of Smoh these
factors are released from Sufu, enter the nucleus, and promote Hh signaling [54, [55].
Mutations in Sufu have not been found in cases of BCC but are associated with
medulloblastomas, an additional feature of the Gorlin syndrome [56]. Glil1 and 2
overexpression in keratinocytes increase the expression of components of the Hh pathway,
the anti apoptotic factor bcl2, cyclins D1 and D2, E2F1, cdc45 while suppressing genes
associated with keratinocyte differentiation including VDR [57, [58, [59, [60, [61].
Moreover mice overexpressing Glil, Gli2, or Shh in their basal keratinocytes or in human
skin grafts [60, [61, [62, [63] develop BCC like lesions, and. BCC overexpress these Hh
pathway components [64, [65, [66].

The appearance of BCC in VDR null mice following DMBA or UVR was at first surprising
since UVR, ionizing radiation, or chemical carcinogens generally induce SCC not BCC [29].
However, we [17] (figure 5A) found that elements of the Hh signaling pathway are
overexpressed in the epidermis and epidermal portion (utricles) of the hair follicles of adult
VDR null animals. Thus we postulated that loss of 1,25(0OH),D3 and/or VDR regulation of
Hh signaling is one of the causes of the increased susceptibility of the epidermis to
malignant transformation. Examination of the tumors following either DMBA or UVR
treatment (figure 5B) revealed overexpression of elements of the Hh signaling pathway
compared to adjacent normal skin [17]. These observations raised the question whether
vitamin D signaling in the skin regulates Hh signaling, and if so whether the loss of such
regulation predisposes animals lacking VDR to skin cancer. Indeed, we found that in
epidermal sheets and full thickness explants of skin 1,25(0OH),Ds inhibits the expression of
all elements of the Hh pathway (figure 6A), and this suppression requires the VDR (figure
6B). Although our results indicate that suppression of the Hh pathway occurs via the
genomic actions of 1,25(0OH),D3 acting through its receptor, other studies have shown that
vitamin D itself as well as its precursor 7-dehydrocholesterol can bind to and inhibit the
actions of Smoh directly [67, 68]. However, there remains uncertainty about the relative role
of this mechanism vs that of the genomic suppression of the Hh pathway by 1,25(0OH),D
and the VDR.

Summary and Conclusions

Although clinical data regarding the protective role of vitamin D signaling in skin cancer
formation remain ambiguous, the role of the VDR and its ligand in this protective function
in mice is not. Lack of VDR predisposes to epidermal tumor formation. Surprisingly
deletion of CYP27B1 (the 1-hydroxylase) does not by itself predispose to tumor formation
with the conditions employed (DMBA, UVR in a tumor resistant mouse strain), but
1,25(0OH),D does protect against tumor formation when applied topically, and it enhances
VDR regulation of proliferation, differentiation, and Hh signaling. We have explored 3
mechanisms by which vitamin D signaling might be protective against tumor formation.
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First we discussed the well established ability of 1,25(OH),D and VDR to regulate
keratinocyte proliferation and differentiation, noting that loss of VDR increased the
proliferative response of the epidermis to UVR. Second we examined the role of vitamin D
signaling in DNA damage repair (DDR), and demonstrated that lack of VDR impaired this
process most likely by limiting the expression of various genes involved in DDR. Third we
examined the control of Hh signaling in keratinocytes by 1,25(0OH),D and VDR. Activation
of Hh signaling is essentially universal in BCC formation and in most SCCs. Lack of VDR
increases Hh signaling, and 1,25(0OH),D suppresses the genes involved. Thus 3 mechanisms
regulated by vitamin D signaling have been investigated, and in combination are expected to
provide protection in the skin against the carcinogenic actions of UVR, enabling the
beneficial actions of UVR on vitamin D production to proceed with reduced risk.
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Figure 1. Tumorsinduced by UVR in VDR null mice

A. Representative sections of skin from 8 months old VDR null mice without UVB
exposure, wild-type mice after 40 weeks of UVB exposure and CYP27B1 null mice after 40
weeks of UVB exposure. B. Tumors from VDR null mice exposed to 40 weeks of UVB
irradiation were collected and classified into papillomas, squamous cell carcinomas (SCC),
keratoacanthomas and basal cell carcinomas (BCC). Adapted from Teichert et al. J Invest
Dermatol 131.:2289-2297, 2011 with permission.
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Figure 2. Regulation of keratinocyte proliferation and differentiation by VDR and its
coactivators

Epidermal keratinocytes were transfected with non-targeted siRNA for control (sicontrol),
VDR (siVDR), and DRIP205 (siDRIP). VDR and DRIP expression was reduced as shown
by gRTPCR (a) and western analysis (b). Cells were maintained in low calcium (0.03mM)
to keep them proliferative. Cell proliferation was assessed by BrdU incorporation (c, e
BrdU) and XTT assay (d XTT). The BrdU incorporated cells (brown) were counted using
Bioquant and expressed as % total cells (blue counter staining) (c, €). Keratinocyte apoptosis
was evaluated by measuring DNA fragmentation using Apoptaq In situ apoptosis peroxidase
detection kit (Chemicon) (c,f TUNEL staining). The brown DNA fragmented cell nuclei
(black arrows) per total cells (blue counter staining) were counted. Over 5000 cells were
counted in three batches of keratinocytes to make these calculations (f, apoptosis). The
hyperproliferation and decreased apoptosis were accompanied by morphologic changes from
normal cuboidal epithelial cells tightly aggregated to loosely aggregated spindle shaped cells
(red arrows).
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Figure 3. Hyperpraliferativeresponse to UVR in VDR null epidermis

Wild-type mice exposed to 1 dose of UVB (477 mJ/cm?2) showed increased proliferation (A,
PCNA staining) and epidermal hyperplasia (B, H&E staining) up to 24h after treatment with
no further increase at 48h. VDR null mice exposed to the same dose of UVB showed
significantly more pronounced proliferation (A) and epidermal hyperplasia (B) that
continued to increase at 48h. Adapted from Teichert et al. J Invest Dermatol 131:2289-2297,
2011 with permission.
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Figure 4. Defective DNA Damage Repair in VDR null mouse epider misfollowing UVR

A. Wildtype and VDR null mice were exposed to 1 dose of UVB (400mJ/cm?) and the skin
evaluated for the presence of CPDs over the subsequent 48hrs by immunohistochemistry
(anti CPD from Cosmo Biosciences). CPDs were completely cleared by 24hr in the wildtype
mouse epidermis, but persisted through 48hrs in the VDR null mouse epidermis. B. The
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epidermis from 2d old wildtype and VDR null mice was exposed to 35.4mJ/cm?2 UVB, and
CPDs and 6,4PPs (detected by immunoblots) measured immediately after irradiation and
after 46hrs. In the experiment measuring CPDs, half of the epidermal explants were treated
with hydroxyurea (HU) to block DNA synthesis prior to and following irradiation.
Clearance of CPDs and 6,4PPs was markedly impaired in the VDR null epidermal explants
consistent with the in vivo results in A. Adapted from Oh et al. J Invest Dermatol (in press,
2012).
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Figure 5. Overexpression of the Hh pathway in VDR null mouse skin and tumors

A. Shh, Ptch1, Smoh, Glil and Gli2 proteins as shown by the brown signal were
overexpressed in the epidermis and hair follicles of VDR null mice compared to their wild-
type littermates at 11 weeks after birth by immunocytochemistry. Slides were counterstained
with hematoxylin (blue stain). The bar denotes 50 mm. The protein levels were quantified
by western blot. The numerical value represents the average ratio of VDR null band
intensity versus wild-type band intensity from three mice per group. * p<0.05. B. Shh,
Ptchl, Smoh, Glil and Gli2 proteins as detected by immunohistochemistry in a papilloma
from a VDR null mouse treated with DMBA and in a BCC from a VDR null mouse treated
with UVB. Slides were counterstained with hematoxylin (blue stain). The bar denotes 50
mm. Shh, Ptchl, Smoh, Glil and Gli2 protein levels were also measured by western blot in
skin tumors and tumor free tissue from DMBA treated VDR null mice. The numerical value
represents the mean ratio of the tumor band intensity versus tumor free tissue band intensity
from three mice. * p<0.05 Adapted from Teichert et al. J Invest Dermatol 131.2289-2297,
2011 with permission.
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Figure 6. Suppression of Hh pathway in mouse skin by 1,25(0OH)»D acting through the VDR

A. Treatment of epidermal preparations from wild-type mice in culture with 1,25(0OH),D3
1078M or EtOH for 24h induced Cyp24 expression and repressed Shh, Glil, Gli2and Pichl
expression. B. Epidermal preparations from wild-type and VDR null mice in culture were
treated with 1,25(0OH),D3 1078M or EtOH for 24h. Absence of VDR expression was
verified in VDR null mice, and their epidermis failed to respond to 1,25(0OH),D3 induction
of Cyp24 expression unlike that in wild-type mice. 1,25(0OH),D3 treatment repressed S,
Gli1, Gli2zand Ptchi expression only in wild-type preparations. * p<0.05. Adapted from
Teichert et al. J Invest Dermatol 131:2289-2297, 2011 with permission.
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