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Abstract
Functional aspects of network integration in the cerebellar cortex have been studied
experimentally and modeled in much detail ever since the early work by theoreticians such as
Marr, Albus and Braitenberg more than 40 years ago. In contrast, much less is known about
cerebellar processing at the output stage, namely in the cerebellar nuclei (CN). Here, input from
Purkinje cells converges to control CN neuron spiking via GABAergic inhibition, before the
output from the CN reaches cerebellar targets such as the brainstem and the motor thalamus. In
this article we review modeling studies that address how the CN may integrate cerebellar cortical
inputs, and what kind of signals may be transmitted. Specific hypotheses in the literature contrast
rate coding and temporal coding of information in the spiking output from the CN. One popular
hypothesis states that postinhibitory rebound spiking may be an important mechanism by which
Purkinje cell inhibition is turned into CN output spiking, but this hypothesis remains controversial.
Rate coding clearly does take place, but in what way it may be augmented by temporal codes
remains to be more clearly established. Several candidate mechanisms distinct from rebound
spiking are discussed, such as the significance of spike time correlations between Purkinje cell
pools to determine CN spike timing, irregularity of Purkinje cell spiking as a determinant of CN
firing rate, and shared brief pauses between Purkinje cell pools that may trigger individual CN
spikes precisely.
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1. Introduction
Many experimental and theoretical studies have addressed the question how neuronal
activity is processed in cerebellar cortex, but there is still no unified view about the
computational role of the cerebellum as a whole. One of the main reasons for this lack of
understanding of cerebellar function is that we still know very little about the processing of
incoming signals and the generation of output by the cerebellar nuclei (CN). This is an
important topic, as almost the entire output from the cerebellar cortex through Purkinje cell
(PC) axons ends as GABAergic inhibition in the CN (Figure 1), with an additional small
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specialized component going to the vestibular nuclei. Thus, cerebellar function cannot be
determined without considering processing at the level of CN, where inputs from PCs are
integrated with signals from the excitatory mossy fibers and climbing fibers that also drive
cerebellar cortical processing (Figure 1).

Neural coding can be broadly categorized as rate based, where the number or rate of spikes
in a particular time window is the carrier of information, or as temporal coding, where
information is represented by the timing of individual spikes or bursts of spikes. Both
temporal and rate coding have been observed to take place in the cerebellum and are likely
to serve important functions (De Zeeuw, et al., 2011; Walter & Khodakhah, 2009). With
respect to rate coding, linear response mechanisms of CN neurons can sum the combination
of input rates from PCs, which themselves can exhibit a linear spike rate code of external
events such as smooth eye movements (Medina & Lisberger, 2009). Potentially important
mechanisms serving temporal coding are given by synchronized PC complex spiking, and
by the ability of CN neurons to fire rebound spike bursts following strong inhibition (De
Zeeuw, et al., 2011). In this review, we summarize the existing field of modeling studies by
others and by ourselves that have tried to elucidate how CN neurons could use different
forms of neural coding to transmit signals from the cerebellar cortex to the rest of the brain.
Moreover, we relate these results to the involvement of the CN in simple computational
tasks, and we discuss computer simulations of pathological responses in CN neurons that are
associated with motor dysfunction.

2. Simple models of CN neurons and temporal coding
A central question of simulation studies that have included computational models of CN
neurons has been how the cerebellum could use temporal coding to generate appropriately
timed output signals. A simple behavioral paradigm that requires the generation of such a
well-timed output signal by the cerebellar circuitry is delay eye-blink conditioning. When an
animal is trained during eye-blink conditioning, a conditioned stimulus (CS, such as a tone)
is paired repeatedly with an unconditioned stimulus (US, for example periorbital electrical
stimulation). In delay conditioning, the CS and US co-terminate, and the onset of the US
follows the CS onset by an inter-stimulus interval (ISI), which is typically between 100 ms
and 1 s. The animal then learns to respond to presentations of the CS alone with eye-blink
conditioned responses (CRs) that are timed adaptively so that the peak of the CR occurs at
the time of the US presentations during training.

Several lines of evidence indicate an involvement of the CN in the execution of these timed
responses. Electrical stimulation of the interpositus nucleus can elicit eye-blinks, and
interpositus neurons show an increase in activity that precedes and resembles eye-blink CRs
(McCormick & Thompson, 1984). Based on these experimental results, computational
studies of cerebellum-dependent eye-blink conditioning have assumed that the output of CN
neurons predicts the amplitude and timing of conditioned eye-blink responses (Medina,
Garcia, Nores, Taylor, & Mauk, 2000; Wetmore, Mukamel, & Schnitzer, 2008). An example
of such a computational study is the cerebellar network model by Medina et al. (2000). In
the model by Medina and collaborators, the neural network model of cerebellar cortex by
Buonomano and Mauk (1994) has been extended to include six CN neurons that provide the
output from the model, generating spike responses with temporal profiles that replicate
experimentally measured eye-blink responses. Each of these CN neuron models receives
inhibitory input from 15 PCs and excitatory input from 100 mossy fibers; the CN neurons
are implemented as leaky integrate-and-fire models and provide a simple readout
mechanism for the combined excitatory and inhibitory input. The Medina model generates
appropriately timed responses based on long-term depression (LTD) at parallel fiber – PC
synapses that are active at the same time as the US, and it suppresses responses at incorrect
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times based on long-term potentiation (LTP) at these synapses when they are activated
without a coincident US. Moreover, LTP at mossy fiber – CN neuron synapses is included to
be able to replicate the short-latency responses that are observed after lesions to the
cerebellar cortex.

Apart from adjusting synaptic parameters based on available electrophysiological data, the
Medina model does not make any specific assumptions about the physiological
characteristics of the different cerebellar neurons. A hallmark behavior of CN neurons is the
generation of rebound spike responses at the offset of inhibitory synaptic inputs and
hyperpolarizing current injections (Figure 2). The rebound responses that follow
hyperpolarizing current injections are well characterized, and they are formed by varying
combinations of fast rebound spike bursts, and prolonged periods of accelerated spiking
(Llinas & Muhlethaler, 1988; Sangrey & Jaeger, 2010) (Figure 2). Rebound responses can
also follow strong bursts of inhibitory synaptic inputs, but these have been studied to a lesser
extent and their relevance for cerebellum dependent behaviors and their contribution to
cerebellar computation and neural coding are unresolved questions (Alvina, Walter, Kohn,
Ellis-Davies, & Khodakhah, 2008; Bengtsson, Ekerot, & Jorntell, 2011a; Tadayonnejad, et
al., 2010; Tadayonnejad, Mehaffey, Anderson, & Turner, 2009).

Rebound bursts are a prime candidate mechanism for temporal coding in that they create a
well-timed spike burst following a specific input event. In their computational study of
cerebellar learning, Wetmore and colleagues (2008) suggest that the rebound spike
responses that can follow inhibitory input to CN neurons are crucial for the recall of
memories and the generation of appropriately timed output from the cerebellar circuitry.
According to their “lock-and-key” hypothesis, the induction of LTD and LTP at parallel
fiber – PC synapses is necessary, but not sufficient, to generate a desired cerebellar output.
In addition, cerebellar cortical synaptic plasticity has to result in temporal patterns of PC
activity that can elicit rebound responses in CN neurons (Figure 2). Rebounds will only be
triggered by temporal input spike patterns that comprise an increase followed by a decrease
in the PC spike rate. Thus, Wetmore et al. consider these temporal spike patterns a “key”,
and the temporal filtering properties of CN neurons that determine whether or not a rebound
response occurs a “lock”. They demonstrate the potential contribution of rebound responses
to retrieving correct and suppressing unwanted memories using three different conductance-
based models of CN neurons with different degrees of complexity. Their Model 1 has a
single compartment with a leak conductance and a low-voltage activated (LVA, T-type)
calcium conductance. When this model is presented with a temporal pattern of PC input
often assumed to result from standard delay conditioning, that is increased PC spiking early
during the CS followed by decreased PC spiking late during the CS (but see Steuber, et al.,
2007), the resulting de-inactivation of the T-type calcium channels together with the
decreased inhibitory input late during the CS leads to T-type calcium spike rebounds just
prior to the time of the US onset during training. However, when a backward conditioning
paradigm is simulated so that the onsets of the short US and longer CS coincide, the
resulting biphasic PC activity provides an early decrease in inhibition followed by a late
increase in inhibition to the CN neuron, and no rebound responses are observed. Wetmore
and collaborators then add other components to their simple model to study how the T-type
rebounds could be translated into output from the CN. Their Model 2 is a modification of
Model 1 that includes a high-voltage activated (HVA) calcium conductance, and their Model
3 is a two-compartmental model comprised of weakly coupled somatic and dendritic
compartments, with additional SK-type calcium dependent potassium conductances in both
compartments, and fast sodium and delayed rectifier potassium conductances in the somatic
compartment. Both models receive synaptic inputs with Poisson statistics and generate non-
deterministic all-or-none rebound responses; these are HVA calcium spikes in Model 2 and
sodium spike bursts in Model 3. In both models, the curve describing the probability of
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rebound responses as a function of the CS – US ISI resembles the dependence of the
reliability of conditioned eye-blink responses on the CS – US ISI in eye-blink conditioning
experiments in rabbits, with diminished response probabilities for ISIs < 100 ms, and no
responses for backward conditioning with negative ISIs.

A more general functional role for rebound responses in CN neurons has been suggested by
Kistler and colleagues (Kistler & De Zeeuw, 2003; Kistler & Van Hemmen, 1999; Kistler,
van Hemmen, & De Zeeuw, 2000). Kistler and collaborators model CN neurons by adapting
a single-compartmental conductance-based model of a thalamo-cortical relay neuron
(McCormick & Huguenard, 1992); their adaptations include a two-fold reduction in model
size and changes to the T-type calcium conductance and hyperpolarization-activated cyclic
nucleotide-gated (HCN) conductance. In their model, post-inhibitory rebounds translate
inhibitory PC inputs into a delayed excitatory CN output, with a delay of approximately 100
ms that is independent of the strength or temporal synchronization of the simulated PC input
(but see Steuber, Schultheiss, Silver, De Schutter, & Jaeger, 2011). This feature of the CN
neuron response is then incorporated into simulations of a cerebellar network using spike
response models, and it is shown that, under some specific assumptions about cerebellar
anatomy and physiology, the rebound responses in the CN can contribute to the generation
of reverberatory loops and form the basis of the storage and recall of spatio-temporal
activity patterns.

3. Rebound responses in morphologically realistic CN neuron models
The previous section has described two computational studies that have implicated rebound
responses in CN neurons in temporal coding in the cerebellum and assume that they
contribute an essential mechanism to cerebellar function. However, the conditions required
for the generation of robust rebound responses in CN neurons in vivo are under active
debate (Alvina, et al., 2008; Bengtsson, et al., 2011a; Tadayonnejad, et al., 2010;
Tadayonnejad, et al., 2009). In cerebellar slices, rebound responses can be elicited more
effectively by stimulation of PC inputs than by injection of a hyperpolarizing current into
the soma that results in the same level of somatic hyperpolarization as elicited synaptically
(Aizenman & Linden, 1999). Given that T-type LVA calcium channels are present at
particularly high densities in CN neuron dendrites (Gauck, Thomann, Jaeger, & Borst, 2001;
Pugh & Raman, 2006), this suggests that rebound responses are mediated to some extent by
dendritic T-type channels. However, a further enhancement of rebounds by mGluR
activation when synapses are stimulated electrically has also been observed (Zheng &
Raman, 2011). A recent modeling study by the authors used a morphologically realistic
model of a CN neuron to explore how different conductance densities of T-type calcium
channels and other voltage-gated ion channels can shape the heterogeneous pattern of
rebound responses observed in in vitro recordings (Steuber, et al., 2011). The model is based
on a morphological reconstruction of a CN neuron with a large soma (diameter 22 μm,
Steuber et al., 2004) and has a total membrane capacitance of 203 pF when measured with
somatic current injection, which is in good agreement with the capacitance of glutamatergic
projection neurons in the CN (Uusisaari, Obata, & Knopfel, 2007). The 517 compartments
of the model are divided into four groups: soma, axon, proximal dendritic and distal
dendritic, with a specific set of ion channels for each of these divisions. Whole cell slice
recordings from 129 CN neurons (including recordings from Gauck & Jaeger, 2000) were
used as a target for model behavior during tuning of the active conductances. Eight
Hodgkin-Huxley type ion channels are distributed differentially over the different regions of
the model: a fast sodium current (NaF), a mixture of fast Kv3 (fKdr) and slow Kv2 (sKdr)
delayed rectifiers, which together form a TEA sensitive Kdr current, an SK-type calcium-
gated potassium current, an HCN current, an HVA calcium current, a Cav3.1 type LVA
calcium (CaT) current and a persistent sodium (NaP) current. Moreover, the model contains
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a tonic non-specific cation (TNC) current that provides inward current to drive membrane
repolarization during spikes, resulting in rhythmic pacemaking activity in the absence of
synaptic input (Raman, Gustafson, & Padgett, 2000). The SK current is activated purely by
intracellular calcium, which is modelled as an exponentially decaying pool with inflow from
the HVA, but not the LVA, calcium current. The selective coupling of SK current to HVA
calcium current was an early prediction of the model that has been verified by an
independent experimental study (Alvina, et al., 2008).

The model was tuned to replicate characteristics of excitatory projection neurons that were
present in the recordings and have been reported previously (Uusisaari, et al., 2007), such as
spontaneous activity and a spike waveform with a narrow width and discernible fast and
slow after-hyperpolarizations (AHPs) that are separated by an after-depolarization (ADP). In
the model, this ADP results from a push-pull interaction between soma and dendrites.
During the action potential, current flows from the soma into the dendrites, followed by a
large current flowing back into the soma that generates the ADP. Thus, the model predicts
that removal or reduction of the size of the dendrites for example in dissociated neurons
should remove or greatly reduce the ADP. Another modeling prediction is that the intrinsic
currents during the inter-spike interval (ISI) are much smaller than the synaptic currents,
resulting in a temporal spike pattern and firing rate that are very sensitive to modulation by
synaptic input.

In the recordings that were used as a target for model tuning, hyperpolarizing current
injections were followed by heterogeneous rebound spike responses comprising different
extents of fast rebound bursts and slower and prolonged increases in spike rate (Steuber, et
al., 2011) (Figure 2). A similar heterogeneity of rebound responses has been described
elsewhere (Engbers, et al., 2011; Molineux, et al., 2006; Molineux, et al., 2008;
Tadayonnejad, et al., 2010), although the slow and prolonged responses have not been
studied in as much detail as the fast rebound bursts. The range of rebound responses that
were observed experimentally could be reproduced in the model by adjusting the
conductance densities of the CaT, HCN and NaP currents (Figure 2). As expected from the
faster activation and inactivation kinetics of the CaT conductance compared to the NaP
conductance, the fast rebound bursts in the model are mostly driven by the CaT current,
while the slow and prolonged rebound responses can be attributed to the NaP current (Llinas
& Muhlethaler, 1988; Sangrey & Jaeger, 2010). However, the effects of the different
rebound conductances are interdependent, and in particular the predicted contribution of the
HCN current is complex, given that high HCN conductance densities result in decreased
hyperpolarizations and therefore diminished de-inactivation of the NaP and CaT
conductances. When the reduction of the NaP and CaT conductance de-inactivation by the
HCN current is eliminated by replacing the hyperpolarizing current injection with transient
voltage clamp pulses to −90 mV, the main effects of the HCN current are a decrease in
latency of the fast rebound burst, and the elimination of a pause between the fast rebound
bursts and the prolonged rebound period. The effect of the HCN current in response to
hyperpolarizing current injections depends on the duration of the current injection, with long
current injections resulting in rebound latencies that are governed by the extent of activation
of HCN conductance, and short current injections leading to rebound latencies that are
determined by the depth of the preceding hyperpolarization. As a consequence, increasing
the level of hyperpolarizing current decreases the rebound latency for long current injections
(≥ 250 ms), while increasing the rebound latency for short current injections (≤ 125 ms). The
predicted modulation of rebound latencies by inhibitory input is different from the study by
Kistler and collaborators, where constant rebound delays in response to variable inhibitory
stimuli form the basis of spatio-temporal pattern learning (Kistler & De Zeeuw, 2003;
Kistler & Van Hemmen, 1999; Kistler, et al., 2000)
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Although rebound responses at the offset of hyperpolarizing current injections are a
hallmark behavior of CN neurons, the ability of CN neurons to generate rebound responses
in vivo, and the conditions that favor rebound responses in vivo, have not been clearly
established (Alvina, et al., 2008; Bengtsson, et al., 2011a; Tadayonnejad, et al., 2010;
Tadayonnejad, et al., 2009). Rebound responses in vivo may be impeded by shunting due to
the increase in membrane conductance by background synaptic input (Destexhe, Rudolph, &
Pare, 2003; Stern, Jaeger, & Wilson, 1998), and synaptic inhibition from PCs can only lead
to hyperpolarizations down to the chloride reversal potential (ECl), which may not be
enough to result in sufficient de-inactivation of the CaT and NaP conductances and
activation of the HCN conductance. To explore the conditions required for the expression of
rebounds in response to bursts of inhibitory synaptic inputs, simulations were performed for
a range of synaptic background rates and different values of ECl. These simulations show
that the rebound responses in the model are robust against shunting by background synaptic
input, but that the value of ECl has to be −75 mV or lower for inhibitory synaptic input to be
able to trigger rebound responses. However, the predicted dependence of rebound responses
on the value of ECl is based on the half-inactivation voltages of the CaT and NaP
conductance and the half-activation voltage of the HCN conductance, which are set to −80
mV in the model. These values are variable and can be modulated (Jagodic, et al., 2007;
Pape, 1996), and small changes to these parameters are expected to have a strong effect on
the expression of rebound responses in vivo.

Recent recordings of CN neurons in slices have shown that hyperpolarizations down to −72
mV make small proportions of the CaT and HCN conductances available, and that they are
sufficient to generate reliable rebound responses (Engbers, et al., 2011). These experimental
results are complemented by simulations of two-compartmental models of CN neurons with
a soma compartment that contains NaF, Kdr and HCN conductances and a dendrite
compartment with CaT and slow potassium conductances. The results of these simulations
agree with the prediction of the multi-compartmental model that the HCN current mediates a
hyperpolarization-induced reduction in the rebound latency for sufficiently long
hyperpolarizations. Moreover, they predict that the HCN current increases the precision of
the timing of the first rebound spike, and that the HCN and CaT currents act synergistically
to increase the rate of fast rebound bursts (Engbers, et al., 2011). Notably, the half-
inactivation voltages of the CaT conductance and the half-activation voltage of the HCN
conductance in the model by Engbers et al. (2011) are set to −64 mV and −92 mV,
respectively, and are therefore quite different from the values in the model by Steuber et al.
(2011). Clearly, an understanding of synaptic integration and rebound responses in CN
neurons would benefit from a more thorough characterization of intrinsic conductances at
physiological temperature. In general, it is important to realize that a computational model is
always work in progress, presenting a working hypothesis that reflects current knowledge as
well as currently missing data, and that it needs to be updated continuously as new
experimental data become available. In fact, there is now a family of CN neuron models that
are derived from the original implementation of the morphologically realistic CN neuron
model (Steuber, et al., 2011), different versions have been implemented in the GENESIS
(Bower & Beeman, 1997) and NEURON (Hines & Carnevale, 1997) simulators, and a six-
compartmental version of the model has been developed with the goal of using this model
for network simulations (unpublished). The original GENESIS version (Steuber, et al.,
2011) and the NEURON version of the model (Luthman, et al., 2011) are available through
the Model DB repository (senselab.med.yale.edu/modeldb/, accession numbers 136175 and
144523, respectively).

A CN rebound in vivo would depend on strong PC input transients to a given CN neuron
followed by a pause in PC activity that allows a rebound to develop. One candidate
mechanism for such input patterns is given by the climbing fiber activation of PCs, which
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occurs synchronously with millisecond precision across parasagittal bands of cerebellar
cortex (Bengtsson, Ekerot, & Jorntell, 2011b; Blenkinsop & Lang, 2011; Hoebeek, Witter,
Ruigrok, & De Zeeuw, 2010; Ozden, Sullivan, Lee, & Wang, 2009; Schultz, Kitamura, Post-
Uiterweer, Krupic, & Hausser, 2009; Welsh, Lang, Suglhara, & Llinas, 1995). The ensuing
synchronous complex spikes that are usually followed by PC spike pauses (Davie, Clark, &
Hausser, 2008; Sato, Miura, Fushiki, & Kawasaki, 1992) are likely to converge onto CN
neurons, which receive input from parasagittal bands of PCs (Apps & Garwicz, 2000;
Garwicz & Ekerot, 1994). Different mechanisms of generating patterns of PC activation and
pauses converging onto CN neurons that not depend on CF inputs are also plausible,
however. PC simple spike trains have been found to be comprised of patterns of regular
activity that are interspersed by pauses (Shin, et al., 2007). Moreover, computer simulations
and experiments have shown that the duration of simple spike pauses can be modulated by
synaptic plasticity at parallel fiber synapses (Steuber, et al., 2007), and the timing and
duration of these pauses, when shared by populations of PCs, could determine the timing
and duration of rebound responses in CN neurons (De Schutter & Steuber, 2009). In
addition to the potential temporal code that is based on the timing of pauses in PC activity
and the resulting CN rebounds, information could also be carried by the rate of spikes in the
rebound burst, given that the rate of PC simple spikes before a pause will determine the
depth of CN hyperpolarization and thus regulate the strength of rebound current activation
(De Schutter & Steuber, 2009). This would constitute a form of rate coding within rebound
bursts, which could operate in parallel to the more common forms of rate coding proposed to
underlie cerebellar function that are reviewed below.

4. CN spike rate and spike time precision as a function of input rates and
input correlations

A large number of studies have shown that PC spike rates are modulated by sensory stimuli
as well as during movement, and such rate modulation has been deemed sufficient to encode
information transmission to the CN (Walter & Khodakhah, 2006, 2009). Using the detailed
compartmental CN model described above, it can indeed be confirmed that the biophysics of
a CN neuron capable of strong rebounds equally supports a rate code, such that increases in
excitatory mossy fiber input rate or decreases in inhibitory PC input rates are translated into
smooth increases of CN spike rates (Steuber, et al., 2011). Moreover, increasing the rate of
PC inhibition shifts the curves of CN output rate against mossy fiber input rate to the right
and performs a purely additive operation on the excitatory input. Although many types of
neural computations require multiplicative rather than additive operations (for review, see
Silver, 2010), additive operations have also been implicated in cerebellar functions such as
vestibulo-ocular reflex adaptation (Medina & Lisberger, 2009).

Dynamic clamp studies undertaken in the lab of one of the authors (Gauck & Jaeger, 2000;
Gauck & Jaeger, 2003) demonstrate, however, that CN firing rates are not only determined
by the rate of PC and mossy fiber inputs, but strongly depend on the amount of
synchronization present in the population of inputs. In these studies, CN neurons in brain
slice recordings were subjected to controlled excitatory and inhibitory input patterns which
were applied as synaptic conductances through the recording pipette as dynamic clamp
stimuli. Dynamic clamping is a real-time feedback technique (Robinson & Kawai, 1993;
Sharp, Oneil, Abbott, & Marder, 1993), in which the synaptic input current equation Isyn =
Gex (Vm − Eex) + Gin (Vm − Ein) is updated at a rate of at least 10 KHz, and synaptic current
(Isyn) is injected into the recorded neuron as a function of excitatory (Gex) and inhibitory
(Gin) conductances and their driving forces. These experiments showed that application of
random independent inputs through a population of 400 synapses results in much lower CN
spike rates than the application of highly correlated PC input patterns converging on a CN
neuron with the same total number of synaptic input events per second. Therefore,
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synchronization of PCs presents a powerful signal that can control CN output. Such
synchronization may for example be achieved through aligned short pauses or regular spike
patterns as described above, but many other network mechanisms based on the architecture
of cerebellar cortical connections or mossy fiber input correlations could also result in PC
synchronization. Interestingly, our dynamic clamp studies also showed that the strong
NMDA component of the excitatory input that is found in CN neurons (Anchisi, Scelfo, &
Tempia, 2001) creates a smoothing function such that the precise temporal structure of the
excitatory input is much less effective in determining CN spiking than the temporal structure
of the inhibitory PC input. Therefore, the NMDA conductance in CN neurons may enable a
predominant control of CN processing by the fine temporal structure of PC inputs. More
recently, the estimates for the number of PCs converging onto a single CN neuron have been
revised downwards to 50, but nevertheless, synchronization within this smaller than
previously envisioned input population still plays a large role in controlling CN spike rates,
as well as generating the potential for a synchrony based temporal code (Person & Raman,
2012).

Besides rebound timing and rate coding, another possible code is given by synchronization
of CN output spikes that would be decoded by the postsynaptic targets of the CN. While
such coding is entirely speculative for the cerebellum, several theories of cerebral cortical
function depend on precise spike times aligned in pulse packets to support synfire chains
(Abeles, Hayon, & Lehmann, 2004; Aertsen, Diesmann, & Gewaltig, 1996) or
polychronization (Izhikevich, 2006; Izhikevich & Edelman, 2008; Izhikevich &
Hoppensteadt, 2009). The dynamic clamp studies cited above also examined the degree of
spike time precision that CN neurons are capable of, given their potential unreliability
through current noise and stochastic channel properties. Again, it was found that the degree
of synchronicity of the PC inputs was key to determining the precision of spike timing in the
CN. For high degrees of PC input synchrony, up to 60% of CN spikes were precisely timed
within a 1 ms window when the same synaptic conductance pattern was applied multiple
times. While a candidate function for such precision in the CN output awaits a better
understanding of postsynaptic processing of CN inputs by its target brain areas such as the
red nucleus or the motor thalamus, these findings demonstrate that the cerebellum could in
principle partake in pulse packet communication schemes. In our dynamic clamp studies
synchronicity was controlled by precisely aligned PC input spike times; however, in
principle any mechanism that leads to pronounced fast depolarizing transients in input
conductance to a CN neuron will create a precise trigger time for an individual spike.

A limitation of dynamic clamping is given by the application of all synaptic currents at the
soma of the recorded cell, which clearly does not correspond to the distributed dendritic
input patterns in vivo. Computer simulations of the detailed compartmental model (Steuber,
et al., 2011) were used in a bootstrapping fashion to examine the potential effects of
focalizing all input at the soma as in dynamic clamping (Lin & Jaeger, 2011). The same
conductances as applied in the original dynamic clamp study (Gauck & Jaeger, 2000) were
applied to the model, with the addition of a band-limited white noise current delivered to the
soma, which faithfully reproduced the voltage noise and spike time variability seen in CN
slice recordings. The model did indeed very closely replicate the spike patterns induced by
dynamic clamp input to CN neurons in slices when all synapses were applied to the soma,
thus further validating the accuracy of the model. Then in a second step the same pattern of
synaptic inputs was distributed over all dendrites to examine the consequences of distributed
input currents. Somewhat surprisingly, the differences in output spike patterns were very
small, leading to almost identical output rates and spike precision indices, which validates
the results obtained with dynamic clamping for more natural distributed input patterns. This
finding can be understood by considering the relatively electrotonically compact structure of
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CN neurons with sparsely branched dendrites that do not exceed one length constant in
general.

5. Short-term depression as a mechanism to decode input irregularity
In addition to being modulated by the rate and synchrony of PC inhibition, the CN neuron
spike rate can also be affected by the degree of irregularity of the PC input spike trains.
Several experimental results suggest that the regularity of PC spiking is important for
cerebellar information processing and motor control. For example, the extent and duration of
regular patterns in PC spike trains can be increased by sensory stimulation (Shin et al.,
2007). Moreover, irregular PC activity has been associated with cerebellar pathologies. In
tottering mice, a natural mutation in the Cacna1a gene that encodes the α1A subunit of P/Q-
type calcium channels leads to an increased irregularity of PC spiking (Hoebeek, et al.,
2005; Walter, Alvina, Womack, Chevez, & Khodakhah, 2006). Although the amplitude
modulation of the PC spike rate during optokinetic stimulation in these mutant mice is
indistinguishable from that in healthy wild-type mice, they suffer from impaired motor
behavior and abnormal optokinetic reflexes (OKRs). The motor deficits can be rescued by
the application of regular electrical stimulation patterns, which suggests a causal link
between the irregular PC activity and the impaired motor control (Hoebeek, et al., 2005).

The effect of irregular PC input on the spike output of CN neurons has been investigated in a
recent modeling study conducted in the group of one of the authors (Luthman, et al., 2011).
Luthman and colleagues modified the multi-compartmental CN model from Steuber et al.
(2011) by including short-term depression (STD) at PC – CN neuron synapses (Pedroarena
& Schwarz, 2003; Shin, et al., 2007; Telgkamp & Raman, 2002), and presented their model
with artificial inhibitory input trains with varying degrees of regularity and with spike trains
recorded in vivo from tottering and wild-type mice. Their simulations predict that an
increased irregularity of the inhibitory PC input results in an increased output spike rate in
the CN neuron. The mechanism of this encoding of input irregularity as output spike rate
depends on the number of PC converging onto a single CN neuron. When the CN neuron
receives input from several unsynchronized PCs, the irregularity driven spike rate
acceleration is mediated by STD and based on a reduction of inhibitory synaptic
conductance in response to irregular input, which implements low-pass filtering of high-
frequency components of the input spike trains. Only for an unrealistic convergence ratio of
one, or for completely synchronized inhibitory input, the input irregularity based output rate
acceleration is independent of STD. Interestingly, the spike rates of CN neurons in
anaesthetized tottering mice are also increased compared to their wild-type littermates
(Hoebeek, Khosrovani, Witter, & De Zeeuw, 2008), although these data should be
confirmed by recordings from awake behaving animals. Altogether, these results suggest
that the impaired motor control in tottering mice may be caused by an increased CN neuron
spike rate that results from the disrupted regularity in the PC activity, and that this causal
link depends on STD at the PC – CN neuron synapses.

Other computational function of STD at this synapse should be an interesting subject for
future research. STD at other synapses has been implicated in many different computations
such as gain modulation (Rothman, Cathala, Steuber, & Silver, 2009), coincidence detection
(Tsodyks & Markram, 1997), the generation of phase shifts (Chance, Nelson, & Abbott,
1998; Fortune & Rose, 2000; Varela, et al., 1997) balancing inhibitory and excitatory inputs
(Galarreta & Hestrin, 1998) and the detection of relative rather than absolute changes in
input rate (Abbott, Varela, Kamal, & Nelson, 1997).
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6. Conclusions
The present review has summarized a number of modeling studies that have explored a
range of rate codes and temporal codes that could be used by CN neurons to transmit
information from the cerebellar cortex to the rest of the brain. These modeling studies have
employed different approaches, using models at different levels of complexity and with
different amounts of biological detail. In general, the choice of model should be determined
by the research question that is being addressed, and by the available physiological data
(Herz, Gollisch, Machens, & Jaeger, 2006). In the absence of reliable data on ion channel
kinetics, and if the spike generation is not affected by complex interactions between ion
channels, it is often appropriate to use simple spiking models such as integrate-and fire
models, with the added advantage that these models are much less computationally intensive
and in their simplest form amenable to mathematical analysis. If the goal is to study how
spike patterns are modulated by complex interactions between different voltage and calcium
gated conductances, or if such interactions are expected to affect the spike output and
therefore influence neuronal information processing, it is necessary to use conductance-
based models with Hodgkin-Huxley or Markov models of ion channels. Thus, modeling
studies that have investigated the generation of rebound responses in CN neurons have used
conductance-based models. Moreover, multi-compartmental conductance based models are
required to understand many phenomena such as differences in responses to dendritic and
somatic input, and push-pull interactions between soma and dendrites. If a morphological
reconstruction of a neuron is available, it is usually better to use a morphologically realistic
model, as such a model can have realistic local input resistances, and therefore realistic local
ion channel conductance densities. However, sometimes limited computational resources
require the use of reduced models for network simulations.

At present, there are several important unresolved questions regarding information
transmission through and processing by the CN that require additional experimental and
computational studies. More anatomical work is needed to characterize the afferent, efferent
and, in particular, intrinsic circuitry of the CN (Uusisaari & De Schutter, 2011; Uusisaari &
Knopfel, 2012). More electrophysiological data will be required to elucidate the effect of
different input pathways to CN neurons, and how these inputs interact. For example, very
little is currently known about responses of CN neurons to input from climbing fiber
collaterals. Moreover, although some progress has been made, the differences between
different types of CN neurons will need to be characterized in much more detail (Uusisaari
& De Schutter, 2011; Uusisaari & Knopfel, 2012), and computer simulations will be
required to understand the interaction of different types of neurons in the CN network.
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Figure 1.
Cerebellar circuit diagram. The left panel shows a sagittal section of the rat cerebellum at
the level of the lateral nucleus (diagram adapted from Paxinos and Watson, The Rat Brain in
Stereotaxic Coordinates, Academic Press, 2006). The right panel shows a simplified circuit
diagram of the cerebellum, highlighting the central position of the cerebellar nuclei (CN) in
processing cerebellar cortical Purkinje cell inhibition before the final output leaves the
cerebellum.
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Figure 2.
Rebound response in CN neurons (adapted from Steuber et. al., 2011). Top panel: Response
of a CN neuron in a brain slice recording to a 1.5 s current injection of −150 pA. Two clear
components of the strong rebound response can be discriminated: a fast spike burst, and a
prolonged period of spike rate acceleration. Bottom Panel: The computer model can
reproduce these rebound components through the activation of T-type calcium current for
the fast rebound burst and persistent sodium current for the slow rebound period. These
currents are de-inactivated during the period of hyperpolarization, and the depth and
duration of hyperpolarization determine the intensity of each rebound component (see
Steuber et al, 2011 for details).
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