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Abstract
Purpose—Membrane transporters mediate many biological effects of chemicals and play a
major role in pharmacokinetics and drug resistance. The selection of viable drug candidates
among biologically active compounds requires the assessment of their transporter interaction
profiles.

Methods—Using public sources, we have assembled and curated the largest, to our knowledge,
human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data
was used to develop thoroughly validated classification Quantitative Structure-Activity
Relationship (QSAR) models of transport and/or inhibition of several major transporters including
MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1.

Results & Conclusions—QSAR models have been developed with advanced machine learning
techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using
Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies
of 71–100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-
fold enrichment in the virtual screening of DrugBank compounds. The compendium of predictive
QSAR models developed in this study can be used for virtual profiling of drug candidates and/or
environmental agents with the optimal transporter profiles.
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INTRODUCTION
Membrane transport proteins, such as ATP-binding cassette (ABC) superfamily and solute
carrier (SLC) family members, are commonly present in all cellular organisms. Transporters
are known to affect membrane permeability of many xenobiotic and endogenous chemicals
by controlling their cellular influx or efflux (1). The importance of active transport proteins
(such as P-glycoprotein) in multidrug resistance, pharmacokinetics and drug-drug
interactions has long been recognized (2, 3). Membrane transporters are very diverse and
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ubiquitously expressed in all tissues and organs; ABC and SLC families only account for
nearly 600 transport proteins in the human genome (4, 5). The true complexity of processes
regulating permeability of small molecules across biological membranes become apparent
when one considers interdependencies between membrane transporters as well as their
interrelations with various metabolic systems (1, 6). Studying transporter interaction profiles
for large series of chemicals represents an important challenge that can be critical both for
understanding of the aforementioned complexity as well as for the optimization of ADMET
properties to enhance drug discovery.

Several large-scale efforts have been initiated to systematically organize the growing body
of the “transportome” data; examples include “TP-Search” (www.tp-search.jp) by Ozawa et
al. (7), TCDB (www.tcdb.org) by Saier et al. (4), TransporterDB
(www.membranetransport.org) described by Ren et al. (8), UCSF pharmacogenetics
database (pharmacogenetics.ucsf.edu) reported by Giacomini et al. (5) and International
Transporter Consortium (1). These databases attempt to capture rich and rapidly growing
experimental data on chemical-transporter interactions; however, for the most part, the
underlying data collections have not been curated, integrated and explored from
cheminformatics prospective in the context of linking transporter data to explicitly
represented chemical structure of tested molecules. Thus, the full potential of utilizing
published transporter data in pharmaceutical research is yet to be realized (2).

Since three-dimensional structures of human transporter proteins remain unknown, various
ligand-based modeling approaches, such as pharmacophore mapping, QSAR modeling, and
three-dimensional ligand-alignment methods (CoMFA, CoMSIA), have been explored(9–
12). To the best of our knowledge, no systematic modeling of intestinal transporters has
been reported in the literature: most modeling studies were limited to individual transporters
and mainly to the inhibition of transport. A brief overview of most recent modeling efforts is
provided in Table I, with a focus on the data set size, type of the experimental activity and
model’s external performance, if available.

In this study, we have compiled, integrated and curated all available transporter interaction
data for small molecules focusing on major human intestinal transporters shown in Figure 1.
The final curated database comprises 3,768 unique chemicals and their associated
interaction data for 12 membrane transport proteins, making this data set, to the best of our
knowledge, the largest collection of this kind in the public domain. Importantly, the entire
database was curated at two different levels: first, to ensure correct representation of
chemical structures, and second, to harmonize and assess reliability of experimental data.
Using this data, we have developed a series of externally validated Quantitative Structure-
Activity Relationship (QSAR) classification models of several individual transporters. These
models can be used both individually and in concert; in the latter case, the entire
compendium of models amounts to the QSAR-based virtual screening platform that can
afford a reliable prediction of transporter interaction profiles of chemicals. We discuss the
process of data collection and curation, QSAR model building and validation, and
opportunities for facilitating drug discovery offered by this platform.

MATERIALS AND METHODS
Experimental data curation

For each chemical, experimental data expressing its interaction with membrane transporters
were collected from multiple available public sources (see Supplementary Results), then
compared and harmonized into a single data record (see Supplementary Methods for the
detailed procedure). Inhibitors were defined based on a potency threshold set to 10μM
except for the PEPT1, OCT1, and OATP2B1 transporters, for which 100μM threshold was
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used due to lower levels of affinity of reported inhibitors. During the manual inspection, a
probability-like substrate (inhibitor) score ranging from 0 to 1 was assigned to each
compound to represent the likelihood of being a substrate (inhibitor), based on the quality
and consistency of underlying data (scoring scheme description is provided in the
Supplementary Methods). Substrate scores equal to 1 and 0 imply high-confidence substrate
and non-substrate respectively, whereas a score of 0.5 indicates ambiguous data. Only data
entries with substrate and inhibitor scores ≤0.1 or ≥0.9 were used for QSAR modeling
(capturing about 80% of all entries).

Chemical structure curation
Chemical structures were standardized using PipelinePilot ver.6.15 (Accelrys) and the
Standardizer module (ChemAxon) according to the guidelines we published recently (13).
Briefly, entries with organometallic and poorly defined chemical structures (e.g., natural
extracts, complex mixtures) were excluded. Remaining structures were standardized and
converted into canonical tautomeric forms, with neutral representation and explicit
hydrogens. In the case of stereoisomers, the one with the highest activity was retained.
Moreover, based on molecular weight (MW) distribution (mean±SD of 450±233g/mol and
median of 414g/mol, n =3768 compounds) we have excluded all outliers with MW higher
than 1130g/mol (e.g., polymers, surfactants).

Transporter data sets
For each transporter, two binary classification data sets were prepared: substrates vs. non
substrates (“substrate data sets”), and inhibitors vs. non-inhibitors (“inhibition data sets”).
Substrate data sets of OST-α/β and MCT1, and inhibition data sets of OST-α/β and MRP3
were too small to enable statistically significant model development; therefore, they were
not pursued here. Furthermore, because the number of reported non-substrates in the
substrate data sets for MRP3, MRP4, and ASBT was too small, making the datasets
extremely unbalanced, we sampled the passive diffusion data set of Hou et al.(14) to pick
putative non-substrates. To ensure that selected compounds are likely to be non-substrates,
we excluded ca. 170 molecules with some evidence of transport existing in our database.
Then we chose molecules most chemically similar to experimentally known non-substrates
from the remaining part of this dataset (472 molecules) (based on Tanimoto similarity
coefficient (Tc) and MACCS structural keys, see Table II). Finally, because ASBT, PEPT1,
MRP2 inhibition and PEPT1 substrate data sets were unbalanced (i.e., size difference
between the two classes was 2–4 fold) and since such imbalance is known to result in poor
QSAR models {Chawla, 2005 37/id}, down-sampling was required. For each of these data
sets, we down-sampled the majority class by retaining only compounds most similar (by Tc
on MACCS keys) to the minority class. All these final sets that were employed for QSAR
modeling are shown in Table II.

DrugBank library
373 unique medicinal chemicals in DrugBank3.0 (16) (www.drugbank.ca, last accessed on
01.15.2012) had 742 binary data entries (i.e., 294 “substrate” and 448 “inhibitor” flags) for
the described intestinal transporters. Our collection contained 334 of these pharmaceuticals
(~90%), and only 60 “substrate” and 63 “inhibitor” data entries were not included in it.
Subsets of these new entries were used as “hits” for virtual screening against individual
transporters, while those of the 373 drugs with no interaction data for particular transporter
were used as its decoys (i.e., presumed “non-hits”). This yielded between 2–19 hits and 111
– 191 decoys per transporter (see Supplementary Table IX).
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QSAR modeling
Molecular descriptors—Two sets of 2D chemical structural descriptors were computed
independently: 2030 Dragon descriptors (constitutional, topological, functional group
counts, atom-centered fragments, molecular properties, 2D binary and frequency
fingerprints) using Dragon ver.5.5 (Talete SRL, Milano, Italy), and 185 2D MOE descriptors
(surface areas, molecular properties) using MOE ver.2009.10 (Chemical Computing Group,
Montreal, Canada). After removal of redundant descriptors, i.e., those with low variance
(when for all but x compounds the descriptor values are constant, x < 5) and high correlation
(if pairwise linear R2>0.99, one from the pair was randomly removed), there were 286–650
Dragon and 136–148 MOE descriptors remaining for various transporter data sets; these
descriptors were range scaled from 0 to 1. Descriptor removal and scaling was done
independently for each cross-validation fold.

Modeling workflow—We have employed several modeling techniques described below.
Models were developed following the predictive QSAR modeling workflow (17) that
includes several steps: (i) data preparation/analysis (selection of compounds and
descriptors), (ii) model training, (iii) model validation/selection (e.g., n-fold cross-
validation, Y-randomization, evaluation of model’s Applicability Domain), and (iv)
application of the selected models to the external validation set compounds.

Five-fold external validation—To ensure that statistically significant and externally
predictive classification QSAR models are generated (18), each transporter data set (see
Table II) was divided, by random selection, into five nearly equal subsets. Setting one subset
aside as external set (20%), the other four subsets (80%) were used for modeling following
the above workflow; and the procedure was repeated five times such that each subset was
employed as an external set for model validation once.

Modeling algorithms and metrics—Three modeling methods were applied
independently: Random Forest (RF) (19) as implemented in R.2.7.1, k-Nearest Neighbors
(kNN), (20) and Support Vector Machines (SVM) implemented within the internally
developed WinSVM software based on libSVM core (21). The predictive power of QSAR
models was characterized by the coverage (the fraction of compounds that received
prediction, which is dictated by the applicability domain) and by associated correct
classification rate (CCR = 0.5 sensitivity+0.5 specificity) for the covered compounds.

Robustness of QSAR models—Y-randomization (randomization of response) (22) was
applied to randomly shuffle class labels of the modeling set, which was then used to derive
“random” models, whose performance was evaluated on the external set. Model training
procedure was the same as for modeling real data (including internal variable selection steps
in case of RF and kNN methods). This randomization was repeated five times and the one-
tailed t-test p-value was calculated, which is the probability to obtain the CCR value with
the random models as high as in case of models built with real activities. If the “p-value <
0.05” condition was not satisfied, models built with the real data for this modeling set were
considered not reliable and were discarded.

Applicability Domain (AD) of QSAR Models—A similarity threshold is introduced to
avoid making classifications for compounds that differ substantially from the training set
molecules. Briefly, the similarity threshold is defined based on the distribution of Euclidean
distances between compounds in the modeling set:

(1)
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Where <d> and σ are average and standard deviation, respectively, of distances taken
between all pairs of nearest neighbors in the modeling set; z is a user-controlled parameter,
which was set to 1.0 during external prediction. A more detailed description of applicability
domain is available elsewhere (18).

RESULTS AND DISCUSSION
Figure 1 shows the localization of membrane transporters at enterocytes’ surface (1–3, 23).
Both expression levels and affinity of these transporters could be significant and should thus
be taken into account to decide which transporters to consider for intestinal drug uptake and
efflux studies.

For the transporters shown in Figure 1 we have assembled over 3,700 unique chemical
structures with reported substrate properties (i.e., Km, Kd, experimental evidence of
transport) and/or inhibition data (IC50, Ki, % inhibition at a given concentration, etc.), in
total, over 5,000 data entries (see Supplementary Results). The core of the collection (i.e.,
~33% of all compounds) was based on the historical data (before 2007) from the “TP-
search” database (7), while more recent reports were taken from ChEMBL (www.ebi.ac.uk/
chembl/) and individual publications (see Supplementary Table II). The overview of the
curated database, including its chemical composition and relative data content are shown in
Figure 2. Drugs and related compounds (i.e., “drug candidate series”) constitute roughly half
of the database, whereas the remaining portion is represented by naturally occurring
chemicals (alkaloids, food ingredients, endogenous molecules, etc.) as well as by industrial
and environmental compounds (e.g., pesticides, dyes, surfactants, reagents). The overall
sparsity of the database is 88% (on average, one compound has interaction records with 1.75
transporters, see also Supplementary Fig. 1).

Based on the assembled data, an estimate of overlap in substrate specificities between
intestinal transporters can be obtained by examining subsets of compounds with completely
defined substrate properties for the compared transporters (Fig. 3). Except for taurocholic
acid (a substrate of both ASBT and OATP2B1), the influx transporters PEPT1, ASBT, and
OATP2B1 did not share any common substrates in the database. All three major apical
efflux transporters (Fig. 3a) have a substantial number of common substrates (see
Supplementary Table IV). Interestingly, there were no explicit MDR1-specific substrates in
the database (i.e., reported as non-substrates for MRP2 and BCRP). Likewise, the basal
efflux transporters MRP1 and MRP3 have 19 common substrates, the only diverging
compounds were Glyburide, as MRP3 substrate, and dehydroepiandrosterone-3-sulfate and
glutathione, as MRP1 substrates (see Supplementary Results). A broader review describing
substrates of ABC-transporters can be found in the study by Marquez et al(2).

In Supplementary Table V, we characterize substrates by the direction of their transport
(e.g., a substrate of any of the influx transporters would be marked as “influx substrate”; see
Fig. 1). The interplay between different groups of transporters can be viewed as a significant
factor in deciding the net flux of the compound, which is particularly relevant in case of the
permeability experiments in cell monolayers (24).

Likewise, the analysis of selective inhibitors is shown in Figure 3b for the apical efflux
transporters MDR1, BCRP, and MRP2 (at 10μM potency threshold). A recent study by
Matsson et al (25) provides MDR1/BCRP/MRP2 comparison based on inhibition profiles of
122 drugs screened at 50μM threshold. Based on these 122 drugs the authors also developed
multivariate classification models for MDR1, BCRP, and MRP2 inhibition with balanced
accuracy (CCR) values in 77–83% range both for training and test sets.
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For the basal efflux transporters MRP1 and MRP3, we found 18 inhibitors of both and only
three selective inhibitors: nevirapine as MRP3-selective, and benzbromarone and
indomethacin as MRP1-selective. Among the apical influx transporters only ASBT and
OATP2B1 had some overlap in their inhibition data: the statins mevastatin, simvastatin and
lovastatin were ASBT-selective, bromosulfophthalein was OATP2B1-selective, while
latanoprost and indomethacin were inhibitors of both (see Supplementary Results).

While the interpretation of substrate selectivity is generally straightforward, the analysis of
selective inhibitors can be complicated due to multiple possible mechanisms. Inhibition may
occur by direct binding to active or allosteric sites, or by indirect depletion of required
endogenous agents (e.g., ATP, glutathione, H+). Given that, the above selectivity
comparisons testify to the general lack of known selective substrates and inhibitors
(especially for less studied transporters) that could serve as specific molecular probes in
biological studies.

As shown in Table I, there are several critical limitations for transporter modeling: limited
availability of data, especially substrates; data compatibility issues (e.g., experimental values
from different assay conditions), which limit quantitative modeling to small congeneric data
sets; and apparent lack of standards in defining inhibitors for classification modeling (i.e.,
different cell lines and various threshold concentrations used for classifying inhibitors). We
have addressed the above issues by compiling and manually curating the present intestinal
transporter database (see Methods) in line with previously published guidelines (24, 26, 27).
Moreover, to define inhibitors, we chose a 10μM threshold as our standard, as it is
physiologically more relevant than higher concentrations (1) and is often adopted for in vitro
screening (28, 29); we chose a 100μM threshold for PEPT1, a low-affinity influx
transporter, located on the apical side and exposed to high concentrations of ingested
chemicals (10). Moreover, 100μM threshold was also used for OATP2B1 and for OCT1,
because, as in case of PEPT1, these transporters have very few potent inhibitors reported.
Consequently, eleven transporters (MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1,
OCT1, MCT1) listed in Table II had sufficient data for building statistically significant
classification QSAR models. A recent work of Broccatelli et al.(27) provides another
example of constructing a large classification data set (Table I) from multiple sources, where
different endpoints and experimental conditions are employed.

The same modeling approach was applied to each data set in Table II, i.e., using two
descriptor sets (Dragon and MOE) and three modeling methods (kNN, SVM, and Random
Forest), six types of models in total were developed. Importantly, the five-external cross-
validation splits were kept the same for the proper comparison of these six types of models.
A uniform study design is essential in order to obtain standardized QSAR models for
individual transporters. We speculate that a set of standardized models employed in
consensus fashion for external prediction is expected to be more robust when predicting
entire transporter interaction profiles, and as such, ultimately, more relevant to experimental
data of higher complexity, such as permeability assays in cell monolayers, oral absorption
and pharmacokinetics.

The external validation results are shown in Table III. All transporter models achieved CCR
in the range of 71–98% and were significantly better than the Y-randomization models (p-
value < 0.05 by one-tailed t-test, n=5), except for several models of PEPT1 and MRP4
inhibition as well as OATP2B1 substrate. Most likely, especially for the two latter cases,
these unsatisfactory results were due to very small and diverse data sets employed for model
development (Table II). Overall, transporter models developed with Dragon descriptors
achieved similar external prediction accuracy as those based on MOE descriptors, despite
the smaller size of the MOE descriptor set. Very high external accuracy was observed for
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the ASBT and MRP3 transporters (CCR=88–98%); this is likely due to limited diversity of
their substrates, many of which are bile acid derivatives. Similarly, the MDR1 and MRP1
inhibition data sets that are less diverse than other transporters (Tc =0.80–0.82; Table II)
exhibit higher external performance (CCR=84–92%; Table III). The PEPT1 inhibition data
set is a notable exception from this trend, showing poor accuracy (CCR=56–75%) for a
dataset including compounds with comparably high degree of structural similarity
(Tanimoto coefficient, Tc =0.81; Table II). High external accuracy of MCT1 inhibition
model is likely too optimistic due to the small data set and rather congeneric set of actives
(most are thienopyrimidine analogues (30)). Direct comparison of our models with those
published previously (Table I) is difficult due to differences in the endpoint definitions, in
the size of the employed data sets and in the validation procedure. We can only remark that
most of the models listed in Table I have reported accuracy of 72–88%, which is comparable
with the performance range of our models. However, our models are based on larger
datasets, more consistent in their endpoint definitions, and were subjected to the same
validation procedure.

We have also analyzed the overall agreement between the transporter models of the same
kind (i.e., all models built for the same target property, but with different descriptors and/or
modeling techniques). Resulting consensus prediction (Table III) shows even higher
accuracy of CCR=76–100% (and CCR=70–75% for the outliers PEPT1, MRP4, and
OATP2B1 that were discussed above), but at the expense of reduced prediction coverage
(72–90%). Most of the prediction errors in the above consensus (Table III) are the cases of
so-called “activity cliffs”(31), when structurally very similar compounds belong to opposite
activity classes; when such a pair of compounds is split between modeling and external test
sets, this usually leads to misprediction. Examples of some activity cliffs in the substrate
transporter data sets are given in Supplementary Table VI. Activity cliffs can point to
unreliable experimental data (13), they can also indicate problematic areas in the chemical
space where more compounds are needed for proper representation and model training.
Therefore, the models from all the cross-validation folds have to be used to ensure that each
compound in the activity cliff has a chance to affect the prediction outcome; for the test
compounds that fall near activity cliffs, averaging across the cross-validation models will
usually result in a marginal (low-confidence) prediction.

As can be seen from the overview of the literature (Table II), while the MDR1 transporter is
historically the most studied target, some models for other transporters in this study are
realized for the first time, such as substrate classification models for BCRP and MRP1-4
transporters. Overall, most of the transporter data sets are sufficiently diverse (Table II) to
ensure broad applicability of the corresponding models (i.e., high prediction coverage as
seen in Tables 3–4). Moreover, since drugs and drug-like derivatives constitute around 70%
of the transporter database (Fig. 2), we expect that the majority of drug-like compounds
should be covered by the transporter models presented in this study.

Certain insights into the structural composition of compounds that makes them more
susceptible to be substrates or inhibitors of particular transporters can be obtained from the
analysis of important descriptors in the respective models. As a representative case of such
analysis, descriptors most frequently used in kNN models (with z-score > 2.0 for normalized
frequency, see Supplementary Methods) are summarized in Supplementary Table VII.
Because important descriptors may still substantially correlate to a different degree for
different data sets, we have further mapped these descriptors (both MOE and Dragon), based
on our understanding, onto several broader structural features as shown in Figure 4. For
example, nCrq and C-004 Dragon descriptors that represent quaternary carbon have high
relevance to ASBT transporter, as they mostly reflect the steroid scaffold of bile acids.
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Although several prior studies (9, 10, 32) investigated structural constraints for individual
transporters, a systematic comparison of such constraints across multiple transporters has
not been undertaken. Here we attempt to address this question by constructing the profiles of
important structural clues (Fig. 4), which provide a useful summary of structural and
physicochemical property requirements for different transporters. Our observations reflect
some of the earlier established facts, such as hydrophobicity of MDR1 binding pocket and
importance of conjugation groups for MRP transporters. In case of BCRP substrates, the
presence of nitrogen as well as other potential hydrogen-bond donors (such as hydroxyls and
carboxyls, Fig. 4) highlights the importance of hydrogen-bonding interactions (9). Net
charge (Fig. 4, calculated at pH=7.4) well corresponds to characterized endogenous
substrates of respective transporters (e.g., organic cations for OCT1, bile acids for ASBT),
while in case of MCT1 many non-substrates are polycarboxylates that have greater negative
charge than monocarboxylic substrates.

To additionally evaluate performance of the derived transporter models we have tested them
on those compounds of DrugBank3.0 database (16) that had relevant transporter data, but
were not used in deriving the corresponding transporter models (see Methods). Briefly, each
model was applied to its own corresponding virtual screening set, whose compounds were
ranked by predicted values (see Supplementary Fig. 2). These rank lists were then
concatenated to create two “total” lists: one for substrates and another for inhibitors. The
overall distribution of hits in these lists was then estimated by the ROC curve (see Fig. 5).
Notably, substrates are better retrieved than inhibitors both overall (AUCs of 0.70±0.02 vs.
0.65±0.02), and in the top few percent of the screened lists: 20- vs. 9-fold in the top 0.5%
and 12- vs. 5-fold in the top 1%, respectively (see Supplementary Table VIII). This is likely
due to absence of potency data for DrugBank compounds labeled as “inhibitors”, which,
consequently, may or may not correspond to the potency thresholds of the inhibition models
developed in this study. Nevertheless, the overall high performance demonstrated on the
DrugBank collection indicates that these transporter models can be useful as a virtual
screening panel for practical applications. It would be especially interesting to apply them in
search for new molecular probes (inhibitors or substrates) with desired selectivity profiles.

CONCLUSION
We envision several promising directions for the integrative modeling of intestinal
transporters. One future approach could be based on developing “unilateral” substrate
models, representing all transporters working in the same direction, such as apical efflux,
apical influx, or basal efflux (see Fig. 1). However, proper scaling of the active transport
contribution to overall intestinal permeability (in comparison to passive diffusion
component) will require knowledge of transporters’ differential expression and accurate
prediction of binding affinities for each transporter-compound pair. Another interesting
approach to consider is multi-task learning, a joint model training of related transporters,
which could afford acceptable models for the underrepresented transporters. Considering the
complexity of in vivo drug transporter interactions, it is likely that the significant role of a
particular transporter may not be easily unraveled without simultaneous consideration of its
partners and competitors. Therefore, prediction profiles from key individual transporter
models could be employed as new inputs in the modeling of higher-order endpoints, such as
cells monolayer permeability, intestinal absorption, and oral bioavailability.

This study describes the largest published collection of extensively curated data on
interactions of small molecules with human intestinal transporters up-to-date. The database
comprises many pharmaceutically important classes of chemicals (Fig. 2) and has an
important and independent value for all researchers interested in drug transporters.
Combinatorial QSAR modeling (i.e., different descriptor sets combined with different
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machine learning methods) in this study resulted in the externally predictive panel of
transporter models (MDR1, BCRP, MRP1-4, PEPT1, ABST, OATP2B1, OCT1 and MCT1),
which were either entirely novel or based on larger data sets than any previous studies (cf.
Tables 1 and 2). Substrates vs. non-substrates classification QSAR models for the ten
transporters (Table III) had external 5-fold prediction accuracy of 63–98% with 76–90%
prediction set coverage. Inhibitors vs. non-inhibitors classification models for eight
transporters (except poorly performing MRP4 and PEPT1) showed 76–100% accuracy and
80–90% coverage. The consensus of the QSAR models built for the same target property led
to further improvement in the prediction accuracy (Table III) to 75–98% at 76–84%
coverage for the substrate models and to 70–100% at 72–90% coverage for the inhibition
models. Moreover, these transporter models were successful in retrieving substrate and
inhibitor hits during virtual screening of DrugBank compounds (Supplementary Tables
VIII–IX).

In summary, we have developed the largest publicly available human intestinal transporter
database and an associated panel of individual transporter models forming a unique virtual
transportome. This panel of models that we plan to update and enlarge when additional data
becomes available can be employed as a useful tool for predicting compound interaction
profiles with major intestinal transporters. The knowledge of such profiles should be helpful
for selecting viable drug candidates from libraries of bioactive compounds. Furthermore,
these profiles could serve as valuable inputs for modeling higher-order ADMET effects
mediated by complex transporter interactions. All data and models discussed in this study
will be publicly released via Chembench web portal established at UNC
(cheembench.mml.unc.edu).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ABC transporters ATP binding cassette family of transporters

ADMET Absorption, distribution, metabolism, excretion, toxicity

ASBT Apical sodium-dependent bile acid transporter

AUC Area under curve

BCRP Breast cancer resistance protein

CCR Correct classification rate

kNN k nearest neighbors

MCT1 Monocarboxylate transporter 1

MDR1 Multidrug resistance protein 1
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MRP1-4 Multidrug resistance-associated proteins 1-4

MW Molecular weight

OATP2B1 Organic anion transporting polypeptide 2B1

OCT1 Organic cation transporter 1

OST-α/β Organic solute transporter alpha/beta

PEPT1 Peptide transporter 1

QSAR Quantitative structure-activity relationships

RF Random forest

ROC Receiver operating characteristic

SAR Structure-activity relationship

SLC transporters Solute carrier family of transporters

SVM Support vector machines

Tc Tanimoto (similarity) coefficient

VS Virtual screening
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Figure 1.
Localization of major intestinal transporters on enterocytes. Rectangles with arrows
represent efflux (black) and influx (white) transporters.
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Figure 2.
Relative data content by database entries per transporter (a) and chemical classes in the
database (b).
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Figure 3.
Overlap in known substrates (a) and inhibitors (b) of efflux transporters on the apical side.
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Figure 4.
Structural profiles of intestinal transporters for substrate (a) and inhibition (b) datasets.
Green color represents descriptors with higher values in the active class, red – in the inactive
class. Two datasets, MCT1 (in a) and MRP3 (in b), have too few compounds (31 and 36,
respectively) and were not used for modeling.
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Figure 5.
Cumulative (a) and early (b) enrichment of hits in the virtual screening of DrugBank
compounds, green curve represents retrieval of substrate hits, magenta–inhibitor hits, gray –
expected performance by random guess.
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Table I

Representative computational models for intestinal transporters.

Transporter Model description Performance a Train/test set sizes Refs.

MDR1

Classification of substrates
78% 206/23 (33)

75% 163/40 (34)

Classification of inhibitors at 15μM 85% 772/418 (27)

Classification of inhibitors (no cut-off) 87% 268/30 (33)

BCRP
Classification of inhibitors at 50μM 80% 80/43 (35)

Inhibition, IC50 R2=0.63 28/13 (28)

MRP2

Binding affinity, Ki R2=0.82 20/5 (36)

Classification of inhibitors (no cut-off) 74–77% 257/61 (37)

Classification of inhibitors at 80μM 72% 79/39 (38)

PEPT1
Binding affinity, Ki

R2=0.72 76/38 (39)

Q2=0.83 98/1 b (11)

Classification of inhibitors at 1mM 87% 138/46 (40)

ASBT
Inhibition, Ki Q2=0.89 32/1 b (41)

Classification of inhibitors at 100μM 54–88% 38/19–30 (42)

MRP1
Inhibitition, IC50 Q2=0.68 60/20 (43)

Classification of inhibitors at 0.25μM 88% 82/0 c (44)

OCT1 Classification of inhibitors at 100μM 82–88% 95/96 (45)

a
External validation performance (test set): for classification models CCR (%) is shown, R2 - coefficient of determination, Q2 – predictive squared

correlation coefficient;

b
leave-one-out (LOO) validation;

c
only training set results are available.
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