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Abstract
Although 18F-2-fluoro-2-deoxyglucose (FDG) uptake during positron emission tomography (PET)
predicts post-surgical outcome in patients with non-small-cell lung cancer (NSCLC), the biologic
basis for this observation is not fully understood. Here we analyzed 25 tumors from NSCLC
patients to identify tumor 18F-FDG PET uptake features associated with gene expression
signatures and survival. Fourteen quantitative PET imaging features describing FDG uptake were
correlated with gene expression for single genes and co-expressed gene clusters (metagenes). For
each FDG uptake feature, an associated metagene signature was derived and a prognostic model
was identified in an external and tested in a validation cohort of NSCLC patients. Four of 8 single
genes associated with FDG uptake (LY6E, RNF149, MCM6, FAP) were also associated with
survival. The most prognostic metagene signature was associated with a multivariate FDG uptake
feature (SUVmax, SUVvariance and SUVPCA2), each highly associated with survival in the external
(HR 5.87, confidence interval [CI] 2.49-13.8) and validation (HR 6.12, CI 1.08-34.8) cohorts,
respectively. Cell cycle, proliferation, death, and self-recognition pathways were altered in this
radiogenomic profile. Together, our findings suggest that leveraging tumor genomics with an
expanded collection of PET-FDG imaging features may enhance our understanding of FDG
uptake as an imaging biomarker beyond its association with glycolysis.
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Introduction
Non-small cell lung cancer (NSCLC) remains the number one cause of cancer related
mortality for men and women in the U.S, and its prevalence continues to increase
worldwide.(1) Despite potentially curative resection in early-stage NSCLC, survival remains
sub-optimal and recurrence rates are high.(2)

18F-2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) imaging is
currently the standard of care for pre-operative staging of disease in NSCLC, and multiple
investigations suggest that the intensity of FDG uptake in the tumor prior to surgery is a
useful biomarker for tumor aggressiveness and patient outcome post-operatively.(3-5) This
is an important finding since PET imaging is non-invasive, cost-effective, and routinely
performed for patients pre-operatively.(6-9)

FDG-PET uptake is governed by GLUT transporter uptake and metabolized to an inert
intracellular product by a key regulatory enzyme in glycolysis, Hexokinase-2 (HK2).(10)
The biologic basis for the utility of FDG as a biomarker is not fully understood, but up-
regulated glycolysis that results in increased FDG uptake has been associated with tumor
growth, metastasis and immune evasion.(11-14) Recently, a key driver that seemingly
promotes a less favorable cellular energy profile was discovered (Pyruvate kinase isoenzyme
M2 [PKM2]),(15-17) and has been implicated with other major genes involved in
oncogenesis that may help to explain a mechanistic switch to a glycolytic phenotype.(18)

To date, no studies have examined differential genome wide expression across varying FDG
uptake levels in NSCLC. We explored this relationship in a cohort of patients with NSCLC
to identify individual genes and gene expression signatures associated with prognostically
relevant FDG uptake features.

Methods
Study design

We employed a novel biocomputational approach to associate gene expression with
prognostic FDG uptake features (Figure 1) using 3 cohorts (study, external and validation
cohorts). Use of all three cohorts allowed us to: (i) associate FDG uptake features to gene
expression, (ii) generate a model of image features in terms of their gene expression (study
cohort), (iii) identify prognostic gene signatures from this model (external cohort), and
finally (iv) examine whether image features associated with prognostic gene sets were
predictive of clinical outcome (validation cohort). To build prognostic gene expression
signatures associated with FDG uptake image features, we applied our previously described
radiogenomics strategy.(19)

Study, external and validation cohorts
For the study cohort, a group of patients with surgically resected NSCLC between 2008 and
2010 from two medical centers were retrospectively identified. All patients had pre-
operative PET-CT scans analyzed for tumor FDG uptake features matched with excised
tumor specimens subjected to global gene expression analysis. Patients receiving neo-
adjuvant therapy were excluded and follow-up data was not available for the study cohort
since these cases were taken from recent operative specimens. For the external cohort we
used data from a previous study that modeled gene expression and outcome in patients with
NSCLC (GSE8894).(20) For the validation cohort we examined patients with resected,
limited stage NSCLC from 2003 to 2010 who underwent treatment naïve, pre-operative PET
imaging. Death was assessed using the National Death Index (www.cdc.gov/nchs/ndi) and
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patients not dead were assumed to be alive at the time of data extraction (June, 2011). All
work was performed with the IRB authorization of both participating centers.

PET acquisition and FDG uptake feature extraction in study and validation cohorts
PET/CT images were acquired using either a LS PET/CT (slice thickness 3 to 5 mm) at
Stanford or GE Discovery VCT (slice thickness 3.75 mm) at the Veterans Administration
Palo Alto Health Care System (VAPAHCS). At Stanford, patients fasted for a minimum of
eight hours, a dose of 12-17 millicuries (mci) of FDG was administered, and patients were
scanned from the skull base to mid-thigh using multiple bed positions every 5 minutes
approximately 45 to 60 minutes after injection. Prior to injection of FDG, patients who had a
blood glucose level of >180 mg/dL were excluded. At the VAPAHCS, patients fasting for 6
hours had FDG injected to a target of 15 mci at time of scan, which ranged from 60 to 120
minutes after injection, and those patients who had a blood glucose of level of >200 mg/dL
were rescheduled. Patients were scanned from skull to mid-thigh using multiple bed
positions every 2 to 3 minutes. CT attenuated data was reconstructed using ordered subset
expectation maximization (OSEM) for both scanner sites.

FDG uptake was quantified using the maximum standard uptake value (SUVmax) by a
certified nuclear medicine physician (AQ). The region-of-interest (ROI) for each nodule was
drawn using the trans-axial image that was thought to represent the most FDG avid portion
around the entire lesion and the maximum SUV pixel within the ROI (SUVmax) was
recorded. Partial volume correction was not used for this interpretation. All DICOM images
for both study and validation cohorts were then imported into an imaging feature extraction
program, RT_Image (http://rtimage.sourceforge.net). FDG uptake metrics were calculated
after co-registration with CT images of the tumor and then by defining an automated ROI on
the PET image using a region-growing algorithm bounded by a standard threshold uptake
above background with a lower bound set at 50% of the maximum value within the ROI.
(21)

Fourteen metrics of interest related to SUV were recorded: SUV minimum, maximum,
mean, median and percentile (75 and 90) features were extracted to define the intensity of
FDG uptake in tumor; SUV standard deviation, variance, skew and kurtosis features were
extracted to measure the variation in FDG uptake across the tumor; and metabolic tumor
volume (MTV), registration points (number of voxels used to define the MTV), area and
total glycolytic volume (TGV) quantified the spatial extent of FDG uptake. TGV is
represented in this study as the product of SUVmean and metabolic volume and represents
the “integrated” metabolic uptake across the tumor.(22)

Comparison of study and validation cohorts
Basic descriptive clinical, pathologic and imaging characteristics were tabulated for study
and validation cohorts. Continuous variables with median and interquartile range or
categorical variables with percent were calculated. Differences between the study and
validation cohorts were assessed using a student's t-test for continuous variables or a Chi-
squared or Fisher's exact test (for less than five data points in a level) for categorical
variables.

Gene expression microarray data
Tumors from the study cohort were processed from a 3–5 mm cross-section after removal of
fibrotic or necrotic areas during surgical excision (CDH/JS). Tumor tissue was snap frozen
within 30 minutes and extracted to RNA using standard commercial kits. Genome wide
arrays were processed by the Stanford Functional Genomics Facility using Illumina™
Whole Genome Bead Chips (Human HT-12). Microarray data was filtered based on a
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significant detection call in at least 60% of the samples and log transformed using quantile
normalization to account for array variation. Microarray data was submitted to GEO under
accession number GSE28827.

Association of FDG uptake features and gene expression
Basic correlations amongst FDG uptake features and for FDG uptake features with gene
expression were performed using a Spearman-rank correlation test. Significance of
microarrays (SAM) analysis was performed to define genes significantly associated with
FDG uptake metrics. Because of the potential for false positive associations due to multiple
comparisons we used the False Discovery Rate (q-value <0.05) to assess statistical
significance.(23) In addition, because single gene associations with image features are more
prone to noise, a clustering method to reduce the dimensionality of the microarray data was
employed in addition to univariate SAM analysis.(19) We clustered the microarray data
using an iterative k-means clustering algorithm with 200 iterations and a coherence of 0.75;
these settings were determined such that the average cluster homogeneity in external data
sets was maximal,(20, 24) where cluster homogeneity was defined as the average correlation
between each member of the cluster within the cluster centroid. This clustering algorithm
resulted in 102 clusters that were then filtered based on a homogeneity of at least 0.30 in one
of two external data sets,(19, 24) to yield 56 high quality clusters, defined in this study as
metagenes, for further analysis.12

PCA analysis of FDG uptake features
We examined the principal components defining FDG uptake for the 14 features extracted to
determine which features accounted for most of the variability of FDG uptake. Each
principal component was defined as a linear combination of the 14 original features and
could be interpreted based on the weights associated with each of these features. We
restricted our analysis to the first three principal components and incorporated these new
features to the study cohort data set for further analyses.

Predicted FDG uptake features and their association with overall survival
Individual genes associated with FDG uptake in the study cohort were directly analyzed in
the external cohort for their association to clinical outcomes. In addition, a multivariate
model of FDG uptake features in the study cohort for each of the 14 features studied was
built by a linear combination of metagenes to further examine the likely underlying biology
of the features and their association with outcome in the external cohort. The accuracy of
gene signatures to predict FDG uptake features was determined by examining the absolute
difference in the predicted FDG uptake feature with the actual imaging feature value.12 Only
signatures with an accuracy of greater than 0.70 were carried forward for further analysis
and analyzed with outcome in the external dataset. We refer to these features, now defined
in terms of a gene signature, as “predicted FDG uptake features” and denote them with a
prefix “p” (i.e. pSUVmax represents the prognostic gene signature associated with SUVmax).
Kaplan-Meier (KM) curves were dichotomized at the median gene expression value and
unadjusted Cox-proportional hazards (CPH) testing was performed to assess the prognostic
significance for predicted FDG uptake features and individual genes that were highly
correlated to FDG features. We also performed Lasso CPH modeling(25) with 10 fold cross-
validation to identify a multivariate signature of multiple predicted FDG uptake features
whose gene expression signature was associated with outcome, creating the “multivariate-
SUV” model.
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Validation of prognostic FDG uptake features
We studied FDG uptake features associated with prognostic gene signatures (i.e. pFDG
features) from the external cohort in a validation cohort which consisted of 84 patients with
PET imaging and survival data. We analyzed extracted FDG uptake features, computed their
principal components, and derived the multivariate-SUV model by Lasso Cox-proportional
hazards (CPH) analysis. To describe outcomes for these features, Kaplan-Meier (KM)
curves were dichotomized at the median FDG uptake feature value and unadjusted CPH
testing was performed. Lastly, we analyzed the prognostic significance of age, tumor size
and stage for the external and validation cohorts separately, followed by multivariate
analyses with univariately-derived prognostic imaging features, to determine whether these
imaging features added statistically significant independent information to prognosis in both
cohorts.

Gene enrichment analysis of predicted FDG uptake features
We used a hyper-geometric test with multiple testing correction and FDR(26) for metagene
enrichment analysis using gene set collections from GeneSigDb (compbio.dfci.harvard.edu/
genesigdb), the NIH Database for Annotation, Visualization and Integrated Discovery
(DAVID http://david.abcc.ncifcrf.gov),(27) MSigDb (www.broadinstitute.org/gsea/Msigdb),
(28, 29) and Reactome (www.reactome.org).(30) We then framed the biologic context of
these genes signatures by mapping them to known molecular pathways (IPA™). For this
study, gene expression magnitude and direction for network visualization was derived using
the z-score from univariate SAM analysis in the external cohort with survival as the
dependent variable.

All analyses were performed using MATLAB™ (Mathworks Inc., Natick, MA), R (v.
2.11.1), SAS™ (v9.2, SAS, Cary, NC) and IPA™ (v9.0, Ingenuity, Redwood City, CA).

Results
Study, external and validation cohorts

Twenty-five tumors from 25 patients with a median age of 71 years (range 50–86), who had
predominantly early-stage adenocarcinoma with lobectomy performed were identified for
the study cohort (Table 1). The median time to operation from PET acquisition was 27 days
and median tumor diameter (in the largest measured dimension) was 2.3 cm. The external
cohort consisted of 63 patients with adenocarcinoma and a median age of 60 years. For the
external cohort, eighty-one percent of patients were stage I-II with a median tumor diameter
of 3.5 cm, follow-up of 42 months and 24 (38%) deaths in follow-up (Supplement 1). The
validation cohort consisted of 84 patients that had similar patient characteristics to the study
cohort discounting gender (Table 1), SUVmedian and SUVmin, for which significant
differences existed among variables (Table 1). Median follow-up time in the validation
cohort was 38 months, during which time 21 (25%) patients died.

FDG uptake measurements
Blood glucose (mg/dL), injected dose (millicuries) and time to scan (minutes) were similar
between the study and validation cohorts except for time to scan, which was longer in the
study cohort (Table 1). ROI segmentation and feature extraction was fully automated for all
patients in the discovery cohort using RT_Image, but nine of 84 patients (11%) in the
validation group required manual override due to improper segmentation from the
RT_Image algorithm.

In the study cohort, median calculated SUVmax from RT_Image was 3.2 (range 0.98–30),
which agreed well with human observation by a certified nuclear medicine physician (AQ,
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r=0.91). FDG uptake features between study and validation cohorts were reasonably similar
in distribution but differed significantly for SUVmedian and SUVmin (Table 1). SUVmax was
highly correlated (r>0.8) with mean, median, standard deviation, variance, total glycolytic
volume and percentile metrics, moderately correlated (r>0.6) with minimum, area, volume
and points metrics, and modestly correlated with skew and kurtosis features (r=0.48 and
0.32 respectively).

PCA Analysis of FDG uptake features
The first three principal components explained 96% of the image feature variance for the
study cohort and defined new FDG uptake features. The first principal component was
dominated by traditional point estimates of FDG uptake features (SUVmax, SUVmean,
SUVmedian) and spatial metrics (SUVpoints, SUVMTV, SUVarea). The second and third
components were associated with SUVkurtosis and SUVskew, measures of the shape of FDG
uptake distribution, as well as SUVmin. These three principal components were added into a
subsequent analysis with the initial fourteen imaging features to examine their association
with survival in the external cohort.

Gene expression and FDG uptake feature associations in the study cohort
In the study cohort, 37,798 assayed genes were filtered according to a 60% call rate (i.e.
only those genes appearing in more than 60% of samples were carried forward) to yield
8,238 present genes. After applying a variance filter described in the methods section,
approximately half of these genes were included for further analysis. Eight of these 4,261
single genes were strongly associated with seven different FDG uptake features by SAM
analysis (Table 2). SUVmean was significantly associated with five genes and SUVmean and
SUVskew were the only FDG uptake features uniquely associated with single genes.

Fifty-six high-quality gene clusters (representing 2300 individual genes, per Methods) were
correlated to the FDG uptake features using SAM analysis. Eight of these meta-genes
consisting of 240 individual genes were significantly associated with seven different FDG
uptake features (FDR = 0), and SUVmax and SUVmean features were enriched in
extracellular matrix components in the study cohort (Table 2). Imaging features SUVskew,
SUVmin and SUVTGV were uniquely associated with meta-genes enriched in protein and
nucleic acid catabolism, as well as tumor suppressor pathways.

Predicted FDG uptake features and their association with survival
Predicted FDG uptake imaging features with an acceptable accuracy were carried forward to
subsequent survival analysis (Table 3). All features passed this quality control except the 3rd

PCA (SUVPCA3). Predicted pSUVmax, pSUVmean, pSUVmin, pSUVvariance and pSUVPCA2
were significantly associated with survival in the external cohort (Table 4). A multivariate
model of predicted FDG uptake features associated with survival identified pSUVmax,,
pSUVvariance, and pSUVPCA2 as the top three prognostic FDG uptake features for predicting
poor outcomes, with associated weights of 0.260, -0.281 and 0.148 respectively; we refer to
this model as the multivariate-SUV model. Compared to the univariate FDG uptake features,
the multivariate-SUV model yielded greatest prognostic value in the external cohort (HR
5.87, CI 2.59–13.8). For single genes, four of eight genes associated with FDG uptake from
the study cohort were significantly associated with survival in the external dataset (Table 4).

Validation of the prognostic FDG uptake features
We validated the significance of the predicted FDG uptake features that were associated
with prognostic gene signatures on outcome in an additional 84 patient cohort with image
data and survival data (Table 4). Both SUVmax (HR 1.05, CI 1.00–1.10) and the
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multivariate-SUV model (HR 6.12, CI 1.08–34.8) were significantly associated with
survival by univariate CPH analysis and Kaplan-Meier plot (Figure 2). The prognostic
significance of SUVmean (p-value 0.08), SUVPCA2 (p-value 0.08), SUVvariance (p-value
0.16) and SUVmin (p-value 0.62) were not confirmed in the validation cohort, although the
first two features maintained a strong trend with outcome (p<0.10).

Incorporating clinical variables with prognostic FDG uptake features
In a univariate analysis, tumor size (cm) and stage (I-IV) were prognostically significant in
both the external and validation cohorts (Supplement 6). After adjusting for the clinical
variables tumor size, stage and age, pSUVmax was found to be independently significant for
predicting worse outcome in the external cohort (Supplement 6). Adjusted point estimates
for the hazard ratios associated with SUVmax in the validation cohort, as well as the
multivariate-SUV feature in the external and validation cohorts, were all greater than 1.0 but
not statistically significant (Supplement 6).

Gene network analysis
We further utilized network analysis and gene enrichment databases to inform us of
important functional relationships between imaging features and gene expression for
SUVmax and the multivariate-SUV model. SUVmax, comprising 15 metagenes and 508
individual genes, was enriched in cell cycle (CDK2NA–p16) and acetylation (histone)
pathways with network analysis showing a prominent NFΚB node (Supplement 7). Of the
1,367 genes comprising the multivariate-SUV model, 484 were duplicated between features,
leaving 883 unique genes to map for network analysis. Multiple important oncogenic
pathways including cell proliferation (STAT1, PKA, FGF), cell cycle (CCNB, CCND,
CEPBA), apoptosis (BAX, Caspase, BIRC5), endocytosis (COP–Clathrin pathways), cell
recognition (HLA-MHC) and oxidative phosphorylation (SLC25, Cytochrome C, COX)
were distinct nodes in this network (Supplement 7).

Discussion
Aberrant cell signaling, proliferation and immortality are well known hallmarks of cancer.
(31) We show here that gene expression related to prognostic FDG uptake features was
enriched in these canonical pathways. Emerging hallmarks of cancer–including cell
bioenergetics, inflammation and immune evasion may also play an important role in
defining FDG uptake as a global marker of poor prognosis in patients with resected NSCLC
according to our analysis. Finally, increasing SUVmax is well established to be associated
with poor patient outcome(3-5) and our analysis suggests that NFΚB signaling is a key
molecular correlate for this imaging biomarker. This is a provocative finding since NFΚB
signaling is activated downstream by lactate production from glycolysis and–like FDG
uptake–is increased in inflammatory and malignant diseases.(32)

By employing a computational design for this study, we examined multiple prognostic FDG
uptake imaging features with genome wide expression from NSCLC tumors. After
accounting for multiple comparisons with FDR analysis (q<0.05) we show that novel FDG
uptake features were associated with distinct genes and gene signatures, less related (ie,
correlated) features were associated with different genes and gene signatures, and in
combination features provided a more prognostic model than any one feature alone.

One previous study has investigated gene expression across varying degrees of FDG uptake
in breast cancer, as defined by SUVmax, and glycolytic genes were remarkably absent from
the most highly significant associations–as was the case in our study (Supplement 8).(33) A
follow-up to that study focusing on cell bio-energetics found that glycolytic pathways are
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up-regulated in the context of other major tumor pathways but are not the most highly
enriched pathways.(34) Interestingly, this follow-up study focused on another important
driver of oncogenesis, c-MYC, and related it to FDG uptake. In contrast, our study's
prognostic multivariate-SUV feature was associated with other major drivers of
oncogenesis, although we also found MYC related pathways were enriched during ontology
analysis (Supplements 3 and 4).

Models like these may deepen the utility, and our understanding, of FDG uptake as a
biomarker and may provide additional insight at the genomic level for a tumor phenotype
defined by heterogeneous FDG uptake at the imaging level. The Warburg Effect was
initially described over 80 years ago and postulates that tumors undergo glycolysis
preferentially despite adequate intracellular oxygen tension.(35, 36) Although Warburg
believed this was a result of mitochondrial dysfunction, we now know that tumor glycolysis
can proceed with functional cellular mitochondria and in fact may be an adaptive response
for tumor survival.(10, 11, 37) Furthermore, studies have recently linked glycolysis in
cancer to more widespread dysregulation of cell bioenergetics,(38-40) suggesting that FDG
uptake may be a surrogate for more than glycolysis alone and perhaps a lens through which
one can view global tumor bioenergetics.

This study has limitations. To identify the prognostic significance of FDG features and their
associated gene signatures, the ideal cohort would typically consist of hundreds of patients
with: (i) genomic profiling of their resected tumor, (ii) PET imaging of the tumor prior to
resection and (iii) long term follow-up. Because such large cohorts are not yet commonly
available, we present and implemented a novel technique that integrates the 3 data types
(namely, gene expression, imaging and survival data) from 3 different cohorts.

We did not apply a correction of FDG-PET signal that may sometimes be required for
tumors that approach the resolution of the PET scanner (~1.5–2.0 cm)–known as partial
volume effect correction–to our data.(41, 42) While some studies have shown this can have
a significant effect on traditionally employed metrics of uptake, such as SUVmax and
SUVmean,(43) the effect of correcting for more novel features, such as SUVMTV and
SUVskew, is unresolved to date.(44) In addition to the above intra-scan variation, inter-scan
variation between PET scanners exists, can add to imprecision for feature quantification, and
should be accounted for in future multi-center studies.(45)

Although our sample was predominantly adenocarcinoma, there was some heterogeneity in
histology, which is well known to effect both FDG uptake and gene expression.(46, 47) We
may not have exploited the full gamut of prognostic imaging features we derived using
RT_Image since we were interested in examining only those FDG uptake features that were
associated with prognostic gene signatures. Lastly, the added significance of prognostic
imaging features and their associated gene profiles compared to traditional clinical variables
of prognosis was marginal, possibly due to the sample size and heterogeneity of the cohorts
examined. Yet, our results indicate that larger studies are warranted to evaluate the
prognostic significance of a broader characterization of FDG uptake features and to assess
the relationship of FDG uptake to molecular processes beyond glycolysis.

Conclusion
Utilizing gene leveraging techniques can harness the power of the public domain for
expediting studies of radiogenomic biomarkers. A computational approach to understanding
gene expression correlates of aggressive NSCLC as defined by prognostic 18F-FDG uptake
features may offer new insights into tumor biology. Our methods require further study in
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other human cancers and larger, homogeneous cohorts of NSCLC patients with standardized
gene expression, imaging and clinical data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design
A) 25 patients with NSCLC and PET imaging prior to resection had genome wide
expression performed on cryopreserved tissues (study cohort). FDG uptake features were
extracted and predicted in terms of a gene signature. B) Predicted FDG uptake features
(prefixed by “p” in this study) were examined in a second (external) cohort with NSCLC
outcome data and gene expression. C) Validation of the predicted FDG uptake features that
were identified as prognostic in the external cohort was performed in a third (validation)
cohort with PET imaging and outcome data to determine if the true FDG uptake features
remained significantly associated with overall survival.
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Figure 2. Overall survival for prognostically significant FDG uptake features
Survival analysis demonstrating that SUVmax and the multivariate-SUV model were
prognostically significant in external and validation cohorts respectively. In the external
cohort, the predicted image features (denoted by the prefix “p”) were assessed. Worse vs.
better survival is illustrated by the red vs. green curves. The y-axis represents percent alive
and the x-axis is months to event. Note that the x-axis is different for the two cohorts since
duration of follow-up time was unique for each cohort. Supplement 5 provides additional
plots for prognostic single genes associated with FDG uptake.
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Table 1

Characteristics of study and validation cohorts
a

Study (n=25) Validation (n=84)

Age (years) 68 (63–72) 71 (64–77)

Male gender 18 (72)
38 (45)

e

Ethnicity
b

        Caucasian 17 (60) 50 (60)

        Asian 3 (12) 19 (22)

        Other 5 (20) 15 (18)

Tumor diameter (cm)
b 2.3 (1.7–2.9) 2.5 (1.9–3.8)

Procedure

        Wedge Resection 1 (4) 12 (14)

        Lobectomy 24 (96) 61 (72)

        Other 0 (0) 11 (13)

Stage

        I-II 24 (96) 84 (100)

        III-IV 1 (4) 0 (0)

Histology

        Adenocarcinoma 20 (80) 60 (71)

        Squamous 4 (16) 20 (24)

        Other 1 (4) 4 (5)

PET to resection time (days) 27 (9–45) 28 (13–47)

Glucose level prior to PET (mg/dL)
106 (100–108)

f 100 (95–108)

Time to scan (minutes) 60 (60–71)
60 (60–60) 

e

Injected dose (millicuries) 14.5 (12.9–15.8) 14.8 (13.5–16.4)

FDG uptake imaging features

        Intensity metrics

                SUVmax 3.2 (2.6–7.4) 5.9 (3.3–12.1)

                SUVmedian 1.8 (1.5–2.3)
2.6 (1.8–4.2)

e

                SUVmean 1.9 (1.7–2.8) 2.9 (1.9–4.8)

                SUV75% 3.4 (1.9–3.4) 3.2 (1.6–5.2)

                SUV90% 2.5 (2.2–4.7) 4.3 (2.5–8.1)

                SUVmin 1.4 (1.2–1.6)
1.8 (1.4–2.4)

e

        Distribution metrics

                SUVkurtosis -0.06 (-0.53–0.61) -0.14 (-0.60–0.51)

                SUVskew 0.87 (0.66–1.2) 0.83 (0.61–1.1)

                SUVsigma 0.48 (0.27–1.3) 0.96 (0.47–2.2)

                SUVvariance 0.23 (0.07–1.7) 0.92 (0.22–4.6)

        Spatial metrics
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Study (n=25) Validation (n=84)

                SUVMTV (cm3) 3.8 (2.0–13) 6.7 (3.5–25)

                SUVarea (cm2) 11.6 (4.8–41) 16.6 (8.1–59)

                SUVpoints
c 67 (26–249) 97 (46–342)

                SUVTGV (cm3)
d 13 (4.0–30) 22 (8.0–91)

MTV=metabolic tumor volume; TGV=total glycolytic volume.

a
Continuous variables are shown with median and interquartile range and categorical variables with number and percent.

b
Kurtosis represents “peakedness” of FDG uptake, skew the deviation from a normal distribution, and sigma and variance the breadth of uptake

distribution

c
Number of voxels used to generate MTV

d
Equivalent to the product of SUVmean and SUVMTV

e
p<0.05 between study and validationcohorts for these variables

f
for 10 of 25 patients where data was available.
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Table 2

Genes and metagenes associated with FDG uptake features in study cohort
a

Gene Functional Annotation SUV-associated FDG Uptake Feature

BIRC2 Baculoviral IAP repeat containing 2 SUVmean

FAP Fibroblast activation protein, alpha SUVmean, SUVmedian, SUVTGV

FURIN Paired basic amino acid cleaving enzyme SUVmean, SUV75th percentile

LOC648470 Caspase 4, apoptosis-related cysteine peptidase SUVmean, SUVmedian

LY6E Lymphocyte antigen 6 complex, locus E SUVskew

MCM6 Minichromosome maintenance complex component 6 SUVskew

RNF149 Ring finger protein 149 SUVmean

OBFC1 Oligonucleotide-binding fold containing 1 SUVarea, SUVMTV

Metagene
b Genes (n) Functional Annotation

c SUV-associated FDG Uptake Feature

Metagene 10 52 Focal and cell adhesion SUVmean, SUVmedian, SUVTGV

Metagene 18 36 Protein catabolism SUVmax, SUVvariance

Metagene 26 18 Nucleic acid processing SUVskew

Metagene 30 19 Metalloproteinase genes, collagen SUVmean, SUVmedian, SUVmax

Metagene 70 34 Targets of TP53, RB1 SUVminimum

Metagene 78 19 Protein processing SUVTGV

Metagene 86 34 Embryogenesis, apoptosis SUVmax, SUVTGV

Metagene 100 25 Extracellular matrix, hypoxia and apoptosis SUVmax, SUVTGV

TGV=Total Glycolytic Volume; MTV=Metabolic Tumor Volume.

a
False discovery rate=0 by SAM, per methods

b
See Supplement 2 for a full list of genes comprising each metagene

c
See Supplements 3 and 4 for a full list of enrichment features associated with metagenes.
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Table 3

Accuracy of gene signatures that predict FDG uptake features in study cohort
a

Predicted FDG uptake feature Accuracy
b Meta-genes (n) Genes (n)

pSUVmax 0.774 15 508

pSUVmean 0.765 13 428

pSUVmedian 0.748 13 428

pSUVmin 0.762 18 612

pSUV90% 0.765 16 552

PSUV75% 0.777 14 458

pSUVsigma 0.765 16 555

pSUVvariance 0.804 12 387

pSUVskew 0.784 14 516

pSUVkurtosis 0.725 18 589

pSUVarea 0.866 11 300

pSUVpoints 0.875 10 270

pSUVMTV 0.871 10 270

pSUVTGV 0.854 11 315

pSUVPCA1 0.793 13 458

pSUVPCA2 0.765 16 473

a
Predicted features are denoted with a prefix “p” and are based on a linear combination of genes from the study cohort (see Methods)

b
Accuracy defined as 1- Σ25 |pFDGfeaturex-FDGfeaturex|/Δrange.12
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Table 4

Prognostic significance of genes, metagenes and associated FDG uptake features in external and validation

cohorts
a

Univariate Survival Analysis

Gene Function of Gene HR (95% CI) External
Cohort

SUV-associated FDG
Uptake Feature

HR (95% CI) Validation
Cohort

FAP Fibroblast proliferation and activation 1.45 (1.00-2.09) SUVmean 1.13 (0.99–1.30)

SUVmedian 1.15 (0.98–1.34)

SUVTGV 1.00 (1.00–1.00)
f

RNF149 Unknown 2.20 (1.42-3.39) SUVmean 1.13 (0.99–1.30)

LY6E Immune recognition and cell trafficking 1.46 (1.04-2.05) SUVskew 1.69 (0.69–4.11)

MCM6 Genome replication/cell proliferation 1.49 (1.06-2.11) SUVskew 1.69 (0.69–4.11)

Predicted FDG Uptake
Feature Functional Enrichment

b,c HR (95% CI)
External Cohort

SUV-associated FDG
Uptake Feature

HR (95% CI)
Validation Cohort

pSUVmax
d Cell cycle and extracellular matrix

(ECM)
1.56 (1.07–2.28) SUVmax 1.05 (1.00–1.10)

pSUVmean
d Cell cycle and immune response 1.55 (1.03–2.33) SUVmean 1.13 (0.99–1.30)

pSUVvariance
d Cell cycle and ECM 0.69 (0.49–0.97) SUVvariance 1.06 (0.99–1.41)

pSUVmin
d Cell signaling and ECM 1.60 (1.03–2.46) SUVmin 1.12 (0.73–1.78)

pSUVPCA2
d Antigen presentation and processing 1.49 (1.02–2.19) SUVPCA2 1.24 (0.97–1.59)

Multivariate-pSUV
d,e Cell/antigen processing, immune

response, ECM
5.87 (2.59–13.8)

Multivariate-SUV
e 6.12 (1.08–34.8)

HR=Hazard Ratio; CI=Confidence Interval

a
For overall survival, external cohort n=63 and validation cohort n=84. See Supplement 6 for analyses with clinical variables and imaging features

b
See Supplement 2 for a full list of genes associated with metagenes

c
See Supplements 3 and 4 for enrichment analysis of gene lists using DAVID and GSEA bioinformatics tools

d
“p” denotes predicted features defined by gene expression and examined in the external cohort

e
Multivariate expression coefficients for SUVmax, SUVvariance and SUVPCA2 were 0.260, -0.281 and 0.148 respectively

f
p=0.001
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