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Abstract
Increasing evidence suggests that altered immunity and chronic inflammation play a key role in
the etiology of many malignancies, but the underlying biological mechanisms involved remain
unclear. Systemic markers of immunity may not represent the clinically relevant, site-specific
immune response, whereas tissue-based markers may more accurately reflect the local
immunologic mechanisms by which precursor lesions develop into cancer. Tissues are often only
available in individuals with disease. Previous studies have measured tumor-infiltrating
lymphocytes to predict prognosis and survival, but it can be challenging to use tissue-based
markers to study the natural history of cancer due to limitations with regard to temporality, the
availability of appropriate comparison groups, and other epidemiologic issues. In this
commentary, we discuss several epidemiologic study design and study population considerations
to address these issues, including the strengths and limitations of using tissue-based markers to
study immune response and cancer development. We also discuss how the use of tissue-based
immune markers fits into the greater context of molecular epidemiology, which encompasses
multiple technologies and techniques, and how implementation of tissue-based immune markers
will provide an increased understanding of site-specific biological mechanisms involved in
carcinogenesis.

Introduction: Immunity and cancer
Since the introduction of Burnet and Thomas’ cancer immunosurveillance hypothesis (1),
the concept that the immune system plays a protective role in tumor development has been
vigorously debated. The central principle of the hypothesis that the immune system can
indeed prevent tumor formation was supported by clinical observations of higher incidences
of cancer in immunodepressed individuals (2). Conversely, accumulated evidence showed
that infectious and non-infectious causes of local chronic inflammation increased the risk of
developing cancer (3). Schreiber and colleagues proposed that cancer immunosurveillance
was a component of a more general process of cancer immunoediting, responsible for both
eliminating tumors and sculpting the immunogenic phenotypes of tumors that eventually
form in immunocompetent individuals (4).

One element of the immunogenic phenotype of solid tumors is the presence of immune
infiltrates, but their role in carcinogenesis is still debated. Since Schreiber’s proposal that
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immunity plays a dual role by promoting host protection against cancer and facilitating
tumor escape from immune destruction, intratumoral lymphocyte infiltrates have been
identified as major prognostic factors for several solid cancers (5). By contrast, immune
infiltrates have had limited utility in etiologic studies of solid cancers due to tissue
inaccessibility and epidemiologic issues such as temporality and the lack of availability of
appropriate comparison groups. However, recent developments in molecular pathology
promise new opportunities for tissue-based markers of immune infiltrates to enrich
molecular epidemiologic investigations aimed at defining the causes of cancer.

Important research questions in tumor immunoepidemiology
Many epidemiologic studies only collect tissue specimens at a single time point, typically
the time of diagnosis or selection into the study, which potentially limits the research
questions that can be addressed. One of the most explored research questions in individuals
with disease has been: What is the association between the presence of certain immune
infiltrates and clinical outcomes such as prognosis and survival? Such analyses have been
reported in several solid cancers, including breast (6), colorectal (7), ovarian (8), and lung
(9) cancers, and melanoma (10).

Rather than exploring the role of immune infiltrates after cancer development, another
important question is: How does the immune response, or an inappropriate immune
response, contribute to cancer development? The application of molecular epidemiologic
techniques using tissue-based immune markers to examine precursor lesions (which we
discuss later in this commentary) may provide clues for determining the contribution of
inflammation in tumor development.

Yet another distinct question in tumor immunoepidemiology includes: What is the
association between immune markers and known risk factors for cancer or tumor subtypes,
such as different histologies or anatomical locations within an organ? Such analyses can
provide clues about the etiology of these different cancer types. One recent example of this
approach is a pooled analysis of breast cancer tumor markers and epidemiological risk
factors in the Breast Cancer Association Consortium (11). This study found that estrogen
receptor (ER)-positive and progesterone receptor (PR)-positive breast tumors were
associated with known risk factors for breast cancer, but ER-negative, PR-negative, and
especially triple-negative or core basal phenotype tumors, were not associated, suggesting
that the etiology for triple-negative tumors is distinct from other breast cancer subtypes.
Following up these findings by carefully examining the immune cells present in tissue from
different histologies might help elucidate the biological mehcanisms underlying different
tumor subsets. In addition, examining different patterns of immune cells in tumor tissue and
their association with known risk factors for cancer might help identify new tumor subsets.
Careful evaluation of immune cells in tissues from different breast cancer or other tumor
subtypes could also help identify progression-related phenotypes.

All of these questions fall into the emerging field of molecular pathological epidemiology.
Molecular pathological epidemiology combines traditional epidemiology and traditional
pathology research approaches to understand how exogenous and endogenous factors
contribute to cancer development, progression, and response to treatment (12). By
identifying links between exposures and biomarkers associated with cancer (e.g.,
microsatellite instability/stability, immunologic markers), molecular pathological
epidemiology can provide clues as to the molecular mechanisms underlying cancer etiology
and prognosis (12, 13).
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Why tissue-based markers?
Broadly defined, tissue-based immune markers may refer to markers of specific immune cell
populations, the expression of specific cytokines in tissues by immune cells that play a role
in immune function or signaling, cytokine receptors, or immune presentation molecules
(human leukocyte antigen, HLA). Tissue-based markers are likely to become more and more
available given the increasing use of biomarkers in clinical care and advances in biomarker
discovery and technological innovation (14). Tissue-based markers offer important
advantages for molecular epidemiologic evaluations of inflammation and immunity in the
development and progression of cancer. First, measuring immune markers in tumor and/or
surrounding tissue can provide direct evidence of inflammatory or other immune responses
in the specific location where the cancer developed. By contrast, other markers of immune
response, such as circulating cytokines, are not specific to the location of tumor
development and may reflect immune or inflammatory responses irrelevant to the cancer of
interest.

Second, tissue specimens are often collected and archived in epidemiologic studies of
cancer. Third, there are several techniques for measuring immune markers in tissue
specimens. The utilities of these techniques differ according to specimen type and research
question. Figure 1 shows some of the most common molecular assays, although novel
strategies for immune marker imaging and detection are rapidly evolving.

While there are several strengths for using tissue-based markers, a weakness is that tissue
specimens are often not collected from individuals without cancer. Thus, an appropriate
comparison, or control, group for epidemiologic studies of tumor-based markers may be
unavailable. Some alternatives may include adjacent non-tumor tissue, precursor condition
tissue, or tissues from other surgical procedures. While potentially useful, these controls are
not “normal” and may not represent the population from which the cancer cases arose. For
example, adjacent non-tumor tissue is likely to have been exposed to the same carcinogens
as tumor tissue. These carcinogens could have introduced changes such that the non-tumor
tissue is no longer representative of truly normal tissue, even though it has not been fully
transformed. With respect to immune-response in particular, the tumor itself is likely to
influence the immune cells and other immune markers in and around adjacent non-tumor
tissue. Similarly, tissue from patients with precursor conditions are already altered in some
way and do not represent purely “normal” tissues for comparison, and tissues obtained
through other surgical procedures may also have been affected by the disease process that
led to the surgery. Tissue processing time and methods are also critical. For example,
commercially available “normal” tissues often originate from autopsy subjects (15, 16) and
are likely to have remained unprocessed in the corpse for some time. Such delay could lead
to changes in immune infiltrate content and degradation of immune markers. Thus,
comparisons with autopsy specimens may reflect differences in immune markers due to
death rather than differences due to disease.

Another concern with the use of tissue-based immune markers is the lack of clarity in
determining if the pattern of immune response contributed to the development of cancer or
was a result of or a response to the cancer itself. Oftentimes in tissue-based studies,
temporality (exposure preceding outcome) is difficult to establish. However, as we describe
later, there are ways to address this concern.

Examples of tissue-based immune markers
Immune cells and the cellular factors produced from them, both immunosuppressive and
inflammatory cytokines, play dual roles in promoting or discouraging cancer development.
Their role may be determined by the tumor microenvironment and the events that lead to the
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initial propagation of carcinogenesis. Of the plethora of cells, cytokines, or other soluble
factors involved, tumor-associated macrophages (TAMs) or myeloid-derived suppressive
cells (MDSCs) and secreted cytokines interleukin (IL)-6, tumor necrosis factor (TNF), and
IL-1β (reviewed in (17)) may be the key players in promoting tumor development. Within
the microenvironment, TAMs are a heterogeneous cell population, which may include type
1 (M1) and type 2 (M2) macrophages. M1 macrophages infiltrate early in tumor
development in response to inflammatory mediators, signals such as those from bacteria,
and cellular factors such as granulocyte macrophage colony-stimulating factor and
interferon (IFN)-γ. Upon arrival, M1 macrophages upregulate the transcription of IL-12p35,
IL-12p40, IL-23, and TNF- α, and they release pro-inflammatory cytokines and
chemokines, such as chemokine (C-X-C motif) ligand (CXCL)19 and CXCL10 to attract
and encourage Th1, Th17, and natural killer (NK) cell development and differentiation
(18-20). M1 macrophages may be pro-inflammatory, promoting cell growth and recruitment
through the production of IL-6, TNF-α, IL-23, and IL-12 (21). By contrast, more advanced
tumors may have infiltrating M2 macrophages, which express cytokines and chemokines
such as chemokine (C-C motif) ligand (CCL)17, CCL22, and CCL24 to encourage the
development and recruitment of regulatory T cells (Tregs), and these macrophages may also
release factors to encourage Th2 differentiation and recruitment as well as angiogenesis (18,
19). M2 macrophages promote tumor development and immunoregulation by producing
transforming growth factor (TGF)-β and IL-10 (18, 22).

MDSCs are a heterogeneous population of immature myeloid cells that exert suppressive
functions, regulating T cell responses through nitric oxide, reactive oxygen species, and
TGF-β secretion and promote Tregs and an anti-inflammatory response (23, 24). Tregs,
often characterized by CD4+ T cells that express CD25 and the master transcription factor
forkhead box P3 (Foxp3), play a role in promoting tumor growth by inhibiting the immune
response against cancer (25, 26). Similar to Tregs, Th17 cells, which are IL-17-producing
CD4+ cells, in the tumor microenvironment may antagonize the differentiation and function
of Th1 cells. Th17 cells likely counter the tumor-suppressive immune response and may be
involved in the promotion of tumor growth (27). By contrast, IFN-γ-producing CD4+ Th1
cells and CD8+ T cells inhibit and kill tumor cells, impeding tumor growth (8), although the
extent to which these cells are able to contribute to anti-cancer immunity is unknown,
particularly with the presence of the immunosuppressive condition within the tumor.

Tissue-based immune markers must be interpreted as part of a biological mechanism within
the microenvironment. Single markers measured in isolation are not as useful in elucidating
that mechanism. Systematic characterization of multiple tissue-based immune markers in
epidemiologic studies will help us understand the interactions and mutual regulation of these
complex immune networks within the tumor microenvironment.

Tools for studying tissue-based immune markers
Immunity and inflammation at the cancer site can be evaluated using various molecular
techniques depending on the type of tissue that is available and the assessments desired
(Table 1 lists some examples described here). The type, density, and location of immune
cells can be assessed in fresh and ethanol- or formalin-fixed tumor tissues. Previous studies
[e.g., (7, 8, 28-33)] have semi-quantitatively evaluated the numbers and proportion of
various immune cell subsets, including CD4 T-helper cells, CD8 cytotoxic T cells, dendritic
cells, NK cells, macrophages, Tregs, neutrophils, etc. In addition, assessment of immune
function through the measurement of cytokines or cytotoxicity mediators such as perforin
(30) and granzymes (29) may also be assessed in fresh and fixed tissues.
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Immunohistochemistry (IHC), one of the most commonly used techniques for studying
tissue-based immune markers, is a well-established tool in diagnostic pathology (34) that
can be readily applied to assessing the presence of immune cells in tumor tissues. Together
with immunofluorescence (IF), IHC allows the visualization of immune cells in structurally-
intact tissue, in which architectural compartments such as tumor vs. stroma may be
important to distinguish. Several histochemical and immunohistochemical stains, such as
myeloperoxidase for neutrophils (35) and CD4 for T-helper cells (36), have been widely
used in the clinic. Because markers must be robust to differences in tissue collection and
processing procedures, the clinical use of these markers suggests that they may be reliably
used in epidemiologic studies. However, because multiple antibodies may be available for
the immunohistochemical staining of any particular tissue-based marker, each IHC stain and
analysis system must be validated for the particular marker and tissue type of interest
(37-39). Some markers of interest may be produced by both immune and non-immune cells
(e.g., CD68 is expressed on fibroblasts as well as macrophages (40)). While the staining
intensity is likely to differ between cell types, immune infiltrates must be identified in the
context of the tissue architecture.

Recent advances in high-throughput methods also increase the appeal of tissue-based studies
for molecular epidemiologic investigations. Tissue microarray (TMA) technology can be
used to assay hundreds of tissues arrayed on a single microscope slide. Tissue-based
immune markers may be assessed by IHC or IF using TMAs of fixed tissues and other
biological specimens (41). Moreover, the advent of automated image analysis using
quantitative scoring algorithms has reduced the need for manual interpretation by molecular
pathologists, which limits inter- and intra-observer variation (38, 42, 43).

Polymerase chain reaction (PCR) or quantitative PCR (qPCR, also real-time qPCR) can be
used to amplify the sequences of immune-related genes to detect polymorphisms or
mutations in DNA extracted from tissues. Reverse transcriptase-PCR (RT-PCR) can be used
to assess immune function by measuring the expression of cytokine genes or other immune
markers, such as indoleamine 2,3-dioxygenase (IDO) (44) and foxp3 (45, 46), from mRNA
extracted from tissues. Studying the mRNA levels of these as well as other cytokines or
immune-related markers such as IL-10 (47), CD28 (48), granzyme B (49), and programmed
death (PD)-1 (50) may provide insight into the signals that induce immunity rather than
tolerance, or robust cytotoxicity rather than immune exhaustion. Although mRNA cannot
fully capture immune function as a whole, it can provide clues that can be used to explore
the underlying biological mechanism with additional immune markers/approaches. DNA
and RNA can be extracted from fresh, frozen, or fixed tissues, although tissue processing
procedures may influence the integrity of the genetic material and also destroy the tumor
architecture. Microdissection prior to DNA or RNA extraction can help clarify the location
from which the immune signal arose (tumor vs. stroma).

Flow cytometry may be used to assess the function of tumor-infiltrating lymphocytes,
particularly cells like MDSCs or Tregs that require multiple markers for accurate
identification. In addition, proliferation assays or assays that assess the cytotoxicity of
immune subsets provide a more direct assessment of immune function. However, along with
flow cytometry, these functional assays require cells isolated from fresh or frozen tissues,
which are less commonly available in epidemiologic studies. These assays are also unable to
distinguish the tissue compartment source.

For all of these approaches, it is critically important to use reliable, validated methods and
careful laboratory technique. For example, IHC staining and analysis require study-by-study
validation (37-39), as described above. PCR is notoriously prone to contamination and
requires rigorous precautions to avoid spurious results (51, 52). The results from biological
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assays may differ depending on the platform used, underscoring the importance of thorough
biomarker validation (53).

Study populations and study design
One of the first considerations of study design is the choice of the most appropriate
population for evaluating the question of interest. Importantly, studies in the general
population allow for conclusions regarding interventions that may affect public health, such
as cancer screening. However, in-depth studies of biological mechanisms might require
studies in special populations at high risk for certain outcomes of interest (e.g., referral clinic
patients).

Several study designs can be applied in different populations (54). Tissue-based immune
markers may be assessed and correlated with various stages of pre-cancer and cancer using
the cross-sectional design, where markers are measured at a single time point, but inference
regarding temporality is limited. Depending on the cancer of interest, some case-control
studies may have tissue specimens available from control subjects, particularly if precursor
conditions are associated with the cancer. However, study participants and their samples
need to be selected in such a way as to ensure the representativeness of the participants and
their samples and to minimize bias in the selection of the comparison groups. In addition,
information needs to be collected on potential confounding variables and used in the
analyses, where appropriate. Attention to these issues is needed to address the validity and
generalizability of the results.

Randomized clinical trials or cancer prevention trials can be useful resources for studying
tissue-based immune markers and the development of cancer, but collection, processing, and
storage costs may limit tissue availability in large-scale trials with thousands of participants.
Cancer prevention trials, such as screening trials or intervention trials that collect biopsies of
precursor lesions, may be useful for assessing tissue-based immune markers in cancer
precursors. In addition, cross-sectional studies or randomized trials are sometimes converted
to cohort studies after the trial period ends and thus provide longer follow-up that ensures
more cancer events. The cohort study design is particularly valuable because exposure can
be measured prior to the development of the outcome, allowing the establishment of
temporality. For tissue-based studies, this prospective assessment may only be possible for
cancers with precursor conditions that are not typically treated but followed over time [e.g.,
monoclonal gammopathy of undetermined significance as a precursor to multiple myeloma
(55)].

Efficiency for studying tissue-base immune markers: Prospective vs.
cross-sectional design

Prospective data from cohorts or trials are often preferable because temporality may
potentially be evaluated. For tissue-based studies, however, cross-sectional designs in high-
risk populations may be more feasible and efficient. A comparison of two National Cancer
Institute (NCI) studies of cervical cancer, the Guanacaste Project and the Study to
Understand Cervical Cancer Early Endpoints and Determinants (SUCCEED), provides an
excellent example. The Guanacaste Project is a cohort study that began following
approximately 10,000 women in 1993 (56). After 18 years of follow-up, this study collected
biospecimens from only 140 women with histologically confirmed cervical pre-cancer
[cervical intraepithelial neoplasia grade 3 (CIN3)] and 45 with cancer (incident or prevalent)
(57). In stark comparison, SUCCEED used a cross-sectional design to recruit women
referred to one colposcopy clinic over the course of four years (58) and collected tissues
from over 300 CIN3 cases and over 100 invasive cervical cancer cases (59). Although
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prospective data are highly valuable and information from the general population is
important for making public health inferences, sometimes it can be efficient to start with a
cross-sectional study, particularly for studies of immune markers that require tissue
specimens.

Sample size considerations
Four quantities are needed to calculate sample sizes: 1) the expected difference (e.g., mean
difference) or association (e.g., odds ratio), 2) an estimate of the variability in the
measurements (e.g., standard deviation, standard error, or 95% confidence interval), 3) the
desired statistical power (e.g., 0.8 or 0.9), and 4) the number of comparisons and whether the
comparisons are agnostic (i.e., no a priori hypotheses, and typically numerous) or based on
biologically plausible, a priori hypotheses (typically involving a more limited number of
comparisons). These basic considerations are important for all studies of biomarkers,
immune or otherwise. As an example for immune markers, most IHC studies of cervical
immune infiltrates report results as mean or median cell densities (the number of positively-
stained cells per mm2). Table 2 provides example sample size calculations comparing means
from two independent samples using published data from Kobayashi et al. (30).

As shown in Table 2, both the effect size and the number of comparisons made are
important considerations when calculating sample size. However, note that when the
standard deviation is large compared to the mean, as in the case of the Kobayashi study, a
test for a difference in means may not be the best approach. If the data are not normally
distributed, the Wilcoxon-Mann-Whitney test for a difference in medians may be more
appropriate (60). Other hypotheses about differences in the distribution of immune markers
between groups can also be considered, such as mixture models where one group might have
a higher proportion with values above or below a biologically important threshold. For
example, mixture models have been used to demonstrate that the overall breast cancer
population consists of two separate groups, patients with early-onset breast cancer and
patients with late-onset breast cancer (61), and that early-onset versus late-onset breast
cancer vary by race (62). Such findings indicate biologic heterogeneity in the overall breast
cancer population that may offer clues as to the underlying etiology for these tumor subtypes
(61, 62). Similarly, tumor heterogeneity in immune profiles may also exist (6). Useful
testing approaches include the standard χ2 test of homogeneity if a priori cut-points are
available or the Kolmogorov-Smirnov test otherwise, although these approaches require
larger samples sizes than testing for a shift in mean or median.

Although concerns over multiple comparisons are more important for the discovery of new
markers rather than for the validation of previously identified markers, many published
studies include fewer than 25 subjects per group and examine multiple immune markers.
Therefore, reproducibility across studies is lacking due to inadequate sample sizes and
multiple comparisons; as the number of comparisons increases, the number of false positives
also increases. Another important point is that these sample size calculations assume no
measurement error, but in actuality, some degree of measurement error is nearly always
present. Traditional sample size calculations represent the best case scenario; reality may
require larger sample sizes.

Potential confounders
Studies of immune response must also consider potential confounders. For example, age
may be associated with both immunity and cancer. In our previous example of immune
markers in precursor lesions, precursors typically occur in individuals at a younger age than
cancer, and immunity declines with age (63). Thus, age should be accounted for carefully.
Immunity also differs for men and women (64), so it is important to consider sex for non-
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sex-specific cancers. Race/ethnicity has been associated with a number of immune markers,
such as immunoglobulin A and γ-globulin levels, CD8 cell counts, and antibodies against
infections (65-70). Alcohol or substance use can also affect immune function (71). Many
other factors might also influence interpretation of immune responses (e.g., recent
immunization, contraceptive use) (72). Each cancer and research question must be
considered carefully to adequately address potential confounders.

Tissue-based immune markers and the natural history of cancer
An important goal is to establish how immune response contributes to the development of
cancer. Immune markers that are present at the time of cancer diagnosis may reflect the
immune function that contributed to the development of cancer or may be the result of the
cancer itself. Therefore, disease effects may be best addressed in subjects with precursor
conditions. Comparisons of tissue-based immune markers from low-grade precursor
conditions to cancer, as well as the range of stages among cancer cases, can provide
evidence that immune responses are relevant for cancer development.

Of course, cancers for which screening of precursor lesions is relatively non-invasive and
for which biopsies may be collected from preneoplastic lesions are most conducive to this
approach. Cervical cancer is a prime example because the natural history and histological
changes that precede cancer are well described, yet many questions remain regarding the
factors that drive progression from human papillomavirus (HPV) infection to cancer. When
women become infected with HPV, the necessary cause of cervical cancer, they may
develop mild histologic abnormalities like CIN grade 1 (73). Most women clear their HPV
infections, suggesting that the immune system usually successfully prevents HPV from
causing cancer. However, in a small proportion of women, HPV infection persists. These
women are at risk for developing cervical pre-cancer and cancer (74), and inflammation
from other exposures, such as other sexually transmitted infections, may contribute to the
progression from persistent HPV infection to cancer. Studies of changes in tissue-based
immune markers from across the spectrum of cervical cancer precursors and HPV infection
may elucidate the role of immune responses in cervical carcinogenesis.

Another example of a cancer model with precursor conditions is esophageal cancer. In this
model, histologic precursor lesions (mild, moderate, and severe dysplasia, and carcinoma in
situ) can be observed and biopsied during cross-sectional endoscopic screening of high-risk
populations (75). Prospective follow-up of these subjects provides insight into the
association between increasing grades of dysplasia and the increasing risk of developing
esophageal squamous cell carcinoma (76, 77). Examining immune infiltrates in tissues
archived from baseline biopsies and the association with risk of esophageal squamous cell
carcinoma may improve understanding of the role of immune function in effecting the
progression to cancer.

An integrative approach
Although tissue-based measures are not without limitations, they contribute to our
understanding of the role of immune factors in the development of cancer, especially by
combining them with other studies of immune markers that have different strengths and
limitations. In particular, genetic studies of polymorphisms in immune pathways provide
information on the association between inherited differences in immune-related pathways
and cancer risk. For example, polymorphisms in the IL1β and the TNFα genes, which
encode key pro-inflammatory cytokines, as well as in the toll-like receptor genes have been
implicated in gastric cancer risk [reviewed in (78, 79)]. A recent pooled analysis from the
International Lymphoma Epidemiology Consortium identified polymorphisms in TNF and
IL-10, an anti-inflammatory cytokine gene, associated with non-Hodgkin lymphoma (80).
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Polymorphisms in multiple immune genes, including IL-10, have been associated with
gallbladder cancer (81). Genetic variation in HLA regions has been associated with
increased or decreased risk of both non-Hodgkin lymphoma (82) and cervical cancer
[reviewed in (83)], and there are many other examples.

A major advantage of evaluating inherited genes is that there is no potential for disease
effects because germline DNA is clearly present prior to the development of cancer. Another
major advantage is that germline DNA is extracted from blood and is easily available from
both cases and controls. A disadvantage is that this type of genetic evaluation does not
provide information about the functionality of the identified genes.

Functionality may be evaluated by examining gene expression using reverse-transcription
PCR-based gene expression analysis, which can provide information about the transcription
of immune-related genes. This approach is valuable because it can be applied in both tissue
and blood, if the samples are collected to preserve RNA. Thus, it can provide information
about immune responses in the local tumor and non-tumor environment, and also
systemically. For example, analyses from a population-based case control study of lung
cancer found that immune-related gene expression in non-tumor tissue could differentiate
smokers and non-smokers, suggesting that smoking affects immune-related gene expression
(84), and cases and controls could be distinguished by differential T-cell receptor gene
expression in peripheral whole blood, providing additional evidence of immune involvement
in lung carcinogenesis (85). Such analyses of local and systemic gene expression can
provide a more comprehensive assessment of immune changes in the patient as a whole.

Although gene expression can provide some information about the functionality of immune-
related pathways, it does not provide information about the end product of that pathway:
proteins. Measurement of circulating immune markers such as cytokines can provide
information about immune-related proteins. As demonstrated by a recent evaluation in the
Prostate, Lung, Colorectal, and Ovarian Cancer Trial, immune markers can be measured
reliably with multiplexed technology in both serum and plasma (86). However, systemic
levels of immune-related proteins may or may not reflect the immune response occurring in
the tissue where the cancer arose. Directly examining these proteins through IHC in the
tissue can thus provide important local-level information that compliments other approaches
to measuring immune response.

By combining these biological measures, it is possible to take advantage of their strengths
while addressing their limitations. Such an integrative approach can provide a more
complete picture of how the immune response contributes to carcinogenesis.

Conclusions
In summary, tissue-based studies can be used to examine associations between immune
markers and cancer outcomes, evaluate and possibly discover new tumor subtypes, and
identify clues to the biological mechanisms that contribute to the development of cancer. For
each of these approaches, it is important to consider the characteristics of the study
population, choose the most suitable study design, use proper techniques to select study
participants and their biological samples, employ validated, reliable assays, and
appropriately assess confounding. Using the principles and tools of molecular epidemiology,
we can improve our understanding of immune factors and how they relate to cancer
development and progression.
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(CXCL) chemokine (C-X-C motif) ligand
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Figure 1.
Common techniques for measuring tissue-based immune markers. This schematic depicts
example molecular tools that can be used depending on the type of tissue available and
assessments desired. Fresh tissue can be dissociated into single cells for flow cytometry,
which can be used to assess the type and function of tumor-infiltrating lymphocytes. DNA
can be extracted from fresh or fixed tissue for polymerase chain reaction (PCR) or
quantitative PCR (qPCR) to detect polymorphisms or mutations in immune-related genes;
mRNA can be extracted from tissue for reverse-transcriptase-PCR (RT-PCR) to assess the
expression of cytokine genes and other immune markers. Immunohistochemistry (IHC) and
immunofluorescence (IF) are commonly used techniques to assess the presence of immune
cell populations in fixed tissues; tissue microarray (TMA) technology is a high-throughput
method for assessing hundreds of tissues on a single microscope slide.
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