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Summary
Covariate-specific ROC curves are often used to evaluate the classification accuracy of a medical
diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates.
In many large-scale screening tests, the gold standard is subject to missingness due to high cost or
harmfulness to the patient. In this paper, we propose a semiparametric estimation of the covariate-
specific ROC curves with a partial missing gold standard. A location-scale model is constructed
for the test result to model the covariates’ effect, but the residual distributions are left unspecified.
Thus the baseline and link functions of the ROC curve both have flexible shapes. With the gold
standard missing at random (MAR) assumption, we consider weighted estimating equations for
the location-scale parameters, and weighted kernel estimating equations for the residual
distributions. Three ROC curve estimators are proposed and compared, namely, imputation-based,
inverse probability weighted and doubly robust estimators. We derive the asymptotic normality of
the estimated ROC curve, as well as the analytical form the standard error estimator. The proposed
method is motivated and applied to the data in an Alzheimer's disease research.
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1. Introduction
The receiver operating characteristic (ROC) curve is a useful tool to evaluate the
classification ability of a medical diagnostic test or biomarker. The ROC curve is a plot of
test's sensitivity versus its 1-specificity as one varies the decision threshold for test
positivity. In the ROC analysis, covariates may impact the magnitude of the diagnostic test
and/or the diagnostic accuracy. Lack of covariate adjustment may not only bias the result,
but also impair the generalizability of the study results to other different populations. Thus
the covariate-specific ROC curve is widely used to evaluate the classification accuracy
within some particular sub-population. One may consider a stratified analysis and estimate
the ROC curve for each sub-population specified by the covariates. However, regression
type analysis is often preferred so that the covariates’ effect is estimated in a parsimonious
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fashion. Zhou et al. (2002) and Pepe (2003) both give a detailed review of the existing
methods in estimating a covariate-specific ROC curve. Many methods require the true
condition status of each patient to be determined by the “gold standard”. In many large
cohort studies, however, the gold standard may not be available to everybody because it is
expensive and/or invasive. Deleting the subjects with missing gold results in biased
estimators, which is referred to as the “verification bias” (Begg and Greenes, 1983).

Using the missing data framework, we call the verification process to be missing at random
(MAR) if the probability of disease verification is only affected by the observed variables.
Under the MAR assumption, many existing methods are available for the verification bias
problem for binary tests (Begg and Greenes, 1983) and ordinal tests (Gary et al., 1984;
Zhou, 1996; Zhou, 1998; Rodenberg and Zhou, 2000). Recently, Zheng el al. (2005)
proposed to use a weighted estimating equation (WEE) approach to estimate the covariate
specific ROC curve for ordinal tests. They considered a parametric binormal form of the
ROC curve. The theory of their WEE approach originated from Lipsitz et al. (1999). The
weighted estimating equations utilize a model of missing mechanism as well as a model of
disease probability in order to estimate the parameters in the binormal ROC curve. The
advantage of their method is the robustness to some model mis-specification: either the
disease model or the verification model being correct guarantees the consistency of the ROC
curve estimator, which is called “doubly robust” property. Alonzo and Pepe (2005)
considered the continuous test result and proposed several empirical ROC curve estimators.
Their ROC curve estimators are empirical step functions, and could not incorporate the
covariates effect on ROC curves.

Although covariate-specific ROC curve estimators for continuous test have been extensively
discussed in the literature, not much work has been done on the verification bias correction
for covariate-specific ROC curves. Page and Rotnitzky (2009) is the only published paper so
far, who proposed a fully parametric model for estimating the covariate-specific ROC curve
under verification bias. However, their binormal ROC curve assumption is often too
restrictive in practice, so we wish to estimate the “baseline shape” of the ROC curve instead.
A subgroup analysis is an option when the covariates are categorized. For example, Punglia
et al. (2003) studied the ROC curve for prostate-specific antegen (PSA) measurement in
detecting prostate cancer. They reported the bias corrected ROC curve stratified by age
group and digital rectal examination results. When some of the covariates are continuous,
however, subgroup analysis may not be feasible. In this paper, we propose a new
semiparametric regression model for the covariate-specific ROC curve and the weighted
estimating equations to adjust for the verification bias, which extends the results in Alonzo
and Pepe (2005) and Page and Rotnitzky (2009).

We consider a continuous-scale diagnostic test and propose several semiparametric
covariate-specific ROC curve estimators. A location-scale model is constructed on the
diagnostic test to model the covariates effect, but the residual distributions are left
unspecified. This location-scale framework is commonly used in regression settings as well.
The baseline and link function of the ROC curve both have flexible shapes. Pepe (1998) first
proposed and compared several regression methods to estimate the ROC curve without
missing data, and showed that the location-scale model is the most efficient. With missing
gold standard, we employ the weighted estimating equations for the location-scale
parameters, similarly as in Zheng el al. (2005) and Page and Rotnitzky (2009). The
unspecified residual distributions are estimated by the weighted kernel estimating equations,
which yields the smooth ROC curve estimators. We discuss three forms of weighting
techniques based on imputation and inverse probability weighting. The covariate-specific
ROC curve is then estimated as a function of the location-scale parameters and the residual
distribution/quantile functions. We also show the central limit theorem for the estimated
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ROC curve and derive the asymptotic variance formula. Compared to Alonzo and Pepe
(2005), our approach can incorporate covariates, and we derive analytical variance formula;
compared to Zheng el al. (2005) and Page and Rotnitzky (2009), the form of our ROC curve
is more flexible, as we do not specify the baseline shape of the curve.

The paper is organized as follows. Section 2 outlines the location-scale model framework
and other basic model assumptions. Section 3 presents the weighted estimating equations for
the finite and infinite dimensional parameters. The limit theorems are also presented.
Section 4 reports some simulation results to examine the finite sample performance of our
proposed method. Section 5 applies our method to a real data example in an Alzheimer's
disease research, followed by discussions in Section 6.

2. Location-scale model
Let Ti, Di, Vi and Xi be the continuous test result, the gold standard, the verification
indicator, and the covariates for the ith subject, respectively, where i = 1, 2, , n. Let a larger
value of T indicate more likely to be diseased; let D = 1 denote a diseased subject (case) and
0 denote a healthy subject (control); let V = 1 denote observed gold standard and 0 denote
missing gold standard. We sometimes suppress the subscript i when there is no confusion.

We assume a location-scale model for Ti:

where μ(Xi, Di; β) and σ(Xi, Di; γ) are the mean and standard deviation for Ti given the
values of the covariates and disease status, respectively, and εi(Di) is the residual. We may
also use μi and σi as an abbreviation. Let G0 and G1 be the unknown distribution functions
for εi(0) and εi(1), respectively, with mean 0 and variance 1. Our setting of the location-
scale model slightly extended the model in Section 2 of Pepe (1998), in that we allow the
two distribution functions to be different. Page and Rotnitzky (2009) also used this location-
scale model, but assumed the residual εi(Di) to follow standard normal distribution. As we
will see in the example in Section 5, the cases and controls can have quite different test
distributions, both of which are far from normal.

We could then write out the covariate-specific sensitivity and specificity at some cutoff
point c:

The ROC curve is expressed as follows:

Sometimes we call G1 and  the link function and the baseline of the ROC curve,
respectively. Allowing the link and baseline to be unspecified grants the ROC curve more
flexibility. As a comparison, Pepe (1998), and Cai and Pepe (2002) both proposed a direct
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regression method for estimating the covariate-specific ROC curve; the former assumes both

G1 and  have known parametric forms, while the latter assumes G1 to be known and

leaves  to be unspecified. Pepe (1998) also mentioned that the location-scale model tends
to be more efficient than the direct regression method. Another advantage of the location-
scale model is that its extension to missing gold standard situation is more straightforward.

3. Estimation procedures
3.1 Complete data estimating equations

In the ROC curve expression, the unknown quantities to be estimated are finite dimensional

parameters β and γ, and infinite dimensional curves  and G1. When the gold standard is
observed for each subject, the estimation of β and γ is easily obtained via the following
estimating functions:

where μi and σi are short for μ(Xi, Di; β) and σ(Xi, Di; γ) defined in the location-scale

model. Substituting the estimated  and  into μi and σi, we denote  to be the
fitted residual. For each fixed s, the two distribution functions, G1(s) and G0(s), can then be
estimated with the following kernel smoothing estimators:

where K(·) is some distribution function and h is the bandwidth. In order to obtain the 1 – t

quantile of G0, , we solve the following estimating function for every fixed t:

Although t may take infinitely many values between 0 and 1, we set finite grid points to get
good approximation for the smooth ROC curve. In the example, we choose t = 0.01, 0.02, · ·
· , 0.99 with linear extrapolation between the adjacent grid points. When the kernel

, we obtain the empirical estimators of G0 and G1. However, it is usually
desired that the ROC curve is a smooth curve rather than a step function. Therefore, we use
some continuous distribution function K(·), such as standard normal distribution Φ. The

estimated Ĝ0 and Ĝ1 have the same  as the empirical distribution function, as
long as the bandwidth is sufficiently small (Nadaraya, 1964).

3.2 Weighted estimating equations under verification bias
As the gold standard is only available for a portion of the subjects, we reweight the
estimating equations. Let ρi = Pr(Di = 1|Ti, Xi) = Pr(Di = 1|Ti, Xi, Vi = 1) be the disease
probability, and πi = Pr(Vi = 1|Ti, Xi) be the verification probability. With the MAR
assumption, the two probabilities can be estimated separately, where logistic regressions
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would be a convenient approach. We then construct the weighted estimating equations with
the estimated  and . Three types of estimating methods are considered, namely, doubly
robust (DR), inverse probability weighting (IPW) and imputation based (IB) approaches.

Let

(1)

(2)

(3)

for k = 1, 2, 3, 4, 5. We abbreviate the superscript and use Sk to denote the general weighted
estimating functions in the text below. The conditional expectation EDi|Ti,Xi can be written
as weighted summations, as Di takes the value of 0 or 1. For example,

The DR estimating functions (1) enjoy the “doubly robust” property: as long as either  or
 is consistently estimated, the DR estimator is consistent; the IPW estimating equations (2)

require that the verification probability, πi, is consistently estimated; the IB estimating
equations (3) require that the disease probability, ρi, is consistently estimated. In practice,
our understanding of the missing mechanism or the disease risk may not be accurate enough,
so the DR estimator allows two shots for the model specification, while IPW and IB
estimators rely on a single model assumption.

All these weighted estimating equations can be solved by Newton-Raphson method. With

the estimated , ,  and Ĝ1, we could estimate the covariate-specific ROC curve as
follows:

3.3 Asymptotic normality
First we examine the asymptotic behavior of the location-scale parameters. Let

 and  be the estimating functions for modelling ρ

and π, respectively. Let  be the location-scale parameters, and  be its estimated

version. Let  and . Define , ,
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, , . Let . The

asymptotic distribution of  is stated in the following theorem:

THEOREM 1: Under the standard regularity conditions stated in the Web Appendix,

where

The proof of this theorem is sketched in the Web Appendix. Note that Ω1 can be estimated
by replacing all the parameters θ, α1 and α2 with their estimates, and replacing all the
expectations in I, J1, J2, K1 and K2 with the sample mean.

Our primary interest is not to estimate the location and scale model, but to construct the
ROC curve. Before studying the asymptotic property of the estimated ROC curve, we first

take a look at the variances for Ĝ1 and . The influence functions of  and Ĝ1(s)
are stated in the following lemma.

LEMMA 1: When n → +∞, h → 0 and nh4 → 0, both  and Ĝ1(s) are asymptotic
linear for any t ∈ (0, 1) and s ∈ (–∞, +∞), :

where

,and

As the estimated ROC curve can be written as functions Ĝ1, , and , the point-wise

asymptotic variance of  is shown in the following theorem:

THEOREM 2: As the conditions for Theorem 1 and Lemma 1 hold, for any t ∈ (0, 1),
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where the expression of Ω2 is given in the Appendix.

The proof of Lemma 1 and Theorem 2 is sketched in the Web Appendix. According to the
proof of Theorems 1 and 2, both asymptotic variances consist of two sources of variability:
one from the estimating functions Sk (k = 1, · · · , 5), the other from plugging in the
estimated probabilities  and/or . However, a nice property for the DR estimator is that
the second source of variability may vanish under some special cases. In other words, the
estimated ROC curves with estimated  and  have a similar variance as the estimated
ROC curve with the true probabilities ρi and πi. This property is stated in the following
Corollary 1, which is proved in the Web Appendix:

COROLLARY 1: In the DR estimator, if  is estimated with  consistency, the variances Ω1 and
Ω2 do not contain the variability of estimating ; if  is estimated with  consistency,
Ω1 and Ω2 do not contain the variability of estimating .

4. Simulation studies
We conducted extensive simulation studies and only report the primary results in this
section. More results are shown in the Web Appendix. The first simulation compared the
performance of the proposed DR, IPW and IB estimators with the estimator in Page and
Rotnitzky (2009). The second simulation compares the smooth ROC curve with the
empirical estimator in Alonzo and Pepe (2005), when the covariates are not associated with
the test result. The impact of different bandwidth selections is also investigated. Simulation
three investigate the model misspecification.

4.1 Simulation one: comparison to the parametric estimator
In this simulation, we compare our proposed methods to the doubly robust estimator in Page
and Rotnitzky (2009), denoted by PR estimator. Two covariates X1 and X2 are generated
from Bernoulli(0.5) and Uniform(–1, 1), respectively. The true disease status, D, is
generated from the conditional distribution, D| X1, X2 ~ Bernoulli(ρ), where logit(ρ) = –
0.25+0.5X1+0.8X2. The test result is generated from T = μ(D, X)+σ(D, X)×ε(D), where μ =
1+0.4D+0.2X1+0.7X2+X1D+0.5X2D and σ = 0.8D+1.2(1 – D). Two scenarios for the
residual distribution are simulated: (A) ε(D) ~ N(0, 1), (B) (4.5 + 3ε(0)) ~ χ2(4.5) and (8 +
4ε(1)) ~ χ2(8). Apparently, the test distribution is symmetric in scenario A and skewed in
scenario B. The verification indicator is generated from the conditional distribution, V|T,
X1, X2 ~ Bernoulli(π), where logit(π) = 1 + 0.5T + 0.4X1 + 0.6X2. This simulation setup
results in about 50% missingness of the gold standard.

We set the sample size to be 1000. From the data generation, we can see that the disease
probability ρ = Pr(D = 1|T, X1, X2) is jointly determined by D|X1, X2 and T|D, X1, X2, i.e.,

. This is a complex function of T, X1 and X2, and a
linear logistic regression may not estimate the true disease probability well enough.
Therefore we also include quadratic terms of T and X2, as well as pairwise interactions
between T, X1 and X2. Indeed, under our data generation procedure in scenario A, the
quadratic form is exactly the correct model. With χ2 residual, this disease model still closely
approximates the true disease probability. We use the correct verification model to estimate
π. The bandwidth is chosen to be 0.05. We see in simulation study two that the bandwidth
has little effect on the performance of our estimators, as long as they are kept small. The
results of 500 simulations are reported in Tables 1 and 2. Note that the PR estimator for the
location-scale parameters are exactly the same as the DR estimator. We can see from Table
1 that the estimated location and scale parameters always have low bias and close-to-
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nominal coverage rate. The scale parameters are not as well estimated as the location
parameters, which we would expect for most regression analysis.

Table 2 only reports the ROC curve at three 1-specificity levels: 0.1, 0.2 and 0.4 because of
two reasons: first, the left end of the ROC curve may be more interesting as those
correspond to thresholds with good specificities; second, in our simulation, the ROC curve
may be too close to 1 when 1-specificity is greater than 0.4. It is shown that with the normal
residual, the bias of the estimated covariate-specific ROC curve is generally small for all the
four methods and the coverage rate is close to 95%. However, if the residual distribution is
χ2, the binormal assumption does not hold for the PR estimator. Therefore, the PR estimator
is seriously biased and the coverage is much lower than 95%, while the proposed estimators
still work well. We notice that if the the true sensitivity is close to 1, the estimated standard
errors are not accurate. This is because the data is sparse in estimating the tail probability of
the residual distribution.

As for the comparison between the three proposed approaches, the IB estimator has the
smallest standard error in general; the DR estimator gains robustness at the cost to
efficiency; the IPW estimator is the least efficient among the three, as the estimating
functions only use the complete cases. More simulations and discussions on the efficiency
issues are given in the Web Appendix. In practice, when the risk factors of disease are well
understood, we would recommend the IB estimator; otherwise, the DR estimator is
preferable because of its robustness.

We also try smaller sample size (n = 200) or lower verification proportion (30%), which
suggests that the proposed estimators still perform well with higher than 90% CI coverage
rates. These results are similar to Tables 1 and 2, and are omitted here.

4.2 Simulation two: empirical vs. smooth ROC curve
When the covariates are not related to the test results, our proposed estimators should be
close to that in Alonzo and Pepe (2005), which we refer to as the AP method. The only
difference is that we use the kernel smoothing method to estimate the test distribution while
they use empirical estimators. In this simulation study, we compare our proposed estimators
with the AP method in terms of the mean squared error of the estimated ROC curve. The
data generation is similar to scenario A of simulation one, but the mean test result is
generated by μ = 1 + 0.8D, which is not affected by the covariates. We only compared the
DR estimator here.

Table 3 shows that our proposed estimator generally has comparable RMSE as the AP
estimator. When the bandwidth is very small, two methods lead to almost identical results. It
is also shown that the proposed estimator is not sensitive to the bandwidth selection: for all
the bandwidth from 0.01 to 0.2, the bias is small and the RMSE remains at the same
magnitude.

4.3 Simulation three: model misspecification
In this subsection, we conduct further simulations to examine the model misspecification.
First we consider the misspecification of the disease and verification models. Aside from the
DR, IPW and IB estimators in simulation one, we consider five additional estimators: DR-V
(correct disease model and incorrect verification model), DR-D (correct verification model
and incorrect disease model), DR-DV (incorrect disease and verification models), IPW-V
(incorrect verification model), and IB-D (incorrect disease model) estimators. The
misspecified verification model ignores the test result, while the misspecified disease model
ignores the interactions and quadratic terms. The data generation settings are the same as
Scenario A in simulation one.
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The simulation results are shown in Figure 1, which plots the ROC curve estimators with
covariates (0, 0). The results for other covariates levels look similar in general, so we omit
the redundant figures. As we expect, the averaging DR, IPW and IB estimators line up with
the true ROC curve pretty well. When either the disease model or the verification model is
incorrect, DR-D and DR-V estimators are still unbiased, but IB-D and IPW-V estimators
both have serious bias. DR-DV estimator is also biased, but the magnitude of bias seems to
be a bit smaller. For the CI coverage, all the estimators except DR-DV, IPW-V and IB-D
have around 95% coverage rate for the whole range of t. The average standard error is close
to the standard deviation of the estimates, suggesting that the asymptotic variance estimator
captures the true variability very well.

Furthermore, we check the misspecification of the location-scale model. The data is

generated from a transformation model: take  as the test result
instead, where T is the same as in simulation study one. The verification model uses S as a
covariate correspondingly. The results for ROC(0;0)(t) are shown in Figure 2. As the
location-scale assumption does not hold any more, it is not surprising that all the three
proposed estimators are seriously biased.

From the above three sets of simulation studies, we conclude that (1) our proposed methods
perform reasonably well in finite sample settings; (2) the PR estimator is seriously biased as
the test results do not follow normal distribution; (3) the proposed methods are not sensitive
to the bandwidth selection; (4) the DR estimator is more preferable than the IPW and IB
estimators as it protects misspecification of either the disease model or the verification
model; (5) our proposed method is sensitive to the location-scale model assumption.

5. Example: NACC data
Our proposed method is illustrated using the data collected by National Alzheimer's
Coordinating Center (NACC). We included a total of 17,403 deceased patients for our
analysis. The test under evaluation is the Mini Mental State Examination (MMSE), which is
a brief 30-point questionnaire test used to screen for cognitive impairment. The MMSE
score can range from 0 to 30, with lower score indicating more severe impairment. The gold
standard ascertainment of AD, based on brain autopsy, is only available for about 31% of
the cohort. The missingness may be due to the patients’ or their family's decision. We
believe that their decision of disease verification may be associated with the demographic
characteristics (such as age, gender, race, etc.), but is unlikely to be correlated with their true
AD status. So the ignorable missingness assumption seems to be reasonable here. Other
covariates extracted from the database are age (continuous variable indicating age at the
MMSE test), gender (binary variable with 1 indicating male), race (binary variable with 1
indicating white people), marital status (binary variable with 1 indicating married); clinical
diagnosis of AD (binary variable with 1 indicating clinical diagnosed with AD), stroke
(binary variable with 1 indicating having stroke before), Parkinson's disease (binary variable
with 1 indicating presence of the disease), and depression (binary variable with 1 indicating
presence of the disease). Figure 3 displays the distribution of the MMSE score for all the
patients and for stratified verification and disease status. The distribution of the test result
seems to be irregular, so it is hard to assume any parametric distribution. The test
distributions for the cases and controls are very different too.

We transformed the MMSE score using (30 – T)/5 so that a diseased subject tends to have
larger test result, and transform the age using (age – 70)/10 so that the reported coefficients
are in the appropriate magnitude. All the aforementioned covariates, as well as the MMSE
score are included in the verification model. The disease model also includes the quadratic
term of the test score, as well as the interaction between the test and the covariates. For
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modelling the MMSE score, the location model has the main effects of D and X, as well as
their interactions, while the scale model only has the main effect of D with log link. The
estimated coefficients of the location and scale model are given in Table 4 using DR, IPW
and IB approaches. The results from the three methods generally coincide with each other.
The DR estimator identifies main effects of race, clinical AD, and true disease status to be
significant, indicating that these variables affects the magnitude of the test score. The race ×
D interaction is significant, while gender, clinical AD and depression have marginally
insignificant interactions with D.

We take the bandwidth to be 0.02 in estimating the ROC curve. Hence the covariatespecific
ROC curve could be plotted for every covariate level. For example, Figure 4 shows the DR
estimates of the two specific ROC curves: one for 70 years old non-white female with other
covariates being 0, the other for 60 years old white male with depression and other
covariates being 0. The 95% CI's are also plotted. The results show that the classification
ability of the MMSE test could be very different according to the covariates stratification.
Although the test result can only take integer values from 0 to 30, the estimated ROC curve
is smooth as the kernel estimating equations are used for the distributions. The empirical
version of the ROC curve is more coarse, which could have at most 31 jumps.

In Figure 5, we plot the DR and PR estimators of the area under ROC curve (AUC) as a
function of age, with other binary covariates fixed. The solid line is for a white married male
with clinical AD diagnosis and no other diseases; the dashed line is for a white not-married
female with clinical AD diagnosis and no other diseases. These two covariates groups are
the most prevalent in the NACC data set. We can see that the AUC is increasing by age with
almost linear trend. We also find some discrepancy between DR and PR estimators,
especially for older patients.

In screening for dementia or mild cognitive impairment (MCI), previous literatures suggest
that the AUC for MMSE score is usually above 0.7 (Kim, et al., 2005; Isella, et al., 2006;
McDowell, et al., 1997). However, we found that the MMSE score is not as promising in
detecting AD, especially in younger patients. This motivates for further study of new
biomarkers or combined biomarkers to improve early diagnosis of Alzheimer's disease. On
the other hand, given the simplicity and low cost of the MMSE test, it is still of great use in
screening for cognitive impairment in practice.

6. Discussion
In this paper, we have proposed to estimate the covariate-specific ROC curve
semiparametrically when the gold standard is subject to missingness. The form of the ROC
curve is flexible as both the link and the baseline functions are unknown and estimated from
data. Three approaches are proposed to adjust for the verification bias: DR, IPW and IB
estimators, which use different weights in the estimating equations. The disease probability
and the verification probability are the key components in constructing the weighted
estimating equations. The DR estimator only requires that either disease or verification
model is correctly specified to have a consistent ROC curve estimator. The doubly robust
property allows two shots to assume the correct model, and is favorable in practice.
Otherwise, if the disease probability could be modelled correctly, the IB estimator is the
most efficient. The IPW estimator is the least efficient among the three estimators. Our
estimating procedures are based on the location-scale model framework, where the link and
baseline functions of the ROC curve are just a distribution function and a quantile function.
The location-scale parameters as well as the unspecified residual distributions are estimated,
which determine the estimated ROC curve together.
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Although we are focusing on the MAR verification process in this paper, the extension to
nonignorable missingness (NI) is straightforward. Under the NI assumption, the observed
data likelihood involves both πi and ρi, that usually need to be estimated together. We can
adopt the likelihood-based estimation of the nonignorable selection model in Liu and Zhou
(2010). Or as in Rotnitzky et al. (2006) and Fluss et al. (2009), we specify the odds ratio of
verification given disease, and then estimate πi and ρi separately. With the estimated disease
and verification probabilities, our proposed weighted estimating functions still work with
slight modifications: for DR and IB approach, we replace ρi with ρi0 ≡ Pr(Di = 1|Vi = 0, Ti,
Xi). The resultant asymptotic variances take the similar form as the MAR case.

An alternative method might be a transformation model, i.e., we assume that h(T ) follows
the distribution F (usually specified up to some parameters), where the smooth
transformation h is left unspecified. The direct ROC curve estimation method in Cai and
Pepe (2002) is in fact a special case of the transformation model. They assume that h is the
distribution function of the test result for the controls. The direct estimation has the
advantage of easy interpretation of model parameters, i.e., the effects of covariates on the
ROC curve. The indirect estimation is relatively easy in modelling the location and scale of
the test result. Pepe (1998) pointed out that the indirect estimation yields more efficient
estimators than the direct estimation. Indeed, our proposed estimating equations for the
location-scale parameters are just the gaussian score equations. Therefore, when the test
distribution is close to normal, the location-scale model would be the most efficient. For
highly skew data, the performance of direct and indirect ROC curve estimation is
worthwhile for further exploration.

It follows from Nadaraya (1964) that the bias of the kernel CDF estimator is negligible
relative to its variance, as long as the bandwidth is kept small enough. This property
guarantees the  consistency of the estimated case and control distributions, and hence the

 consistency of the estimated ROC curve. Another advantage of kernel smoothing is that
it gives smooth ROC curve estimates as often desired.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The true and estimated ROC curve, empirical standard deviation, average standard error, and
the CI coverage rate for the estimated ROC curves using DR, DR-D, DR-V, DR-DV, IPW,
IPW-V, IB and IB-D estimators.
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Figure 2.
The true and estimated ROC curve and the CI coverage rate for the DR, IPW and IB
estimators under transformation model.
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Figure 3.
MMSE distribution by AD status and verification.
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Figure 4.
The covariate-specific ROC curves.
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Figure 5.
DR and PR estimators for the covariate-specific AUC as a function of age: the solid line is
for a white married male with clinical AD diagnosis and no other diseases; the dashed line is
for a white not-married female with clinical AD diagnosis and no other diseases.
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Table 4

The estimated location and scale parameters with the associated standard errors for the NACC data.

DR IPW IB

Intercept 1.394 (0.125) 1.452 (0.199) 1.408 (0.131)

Age -0.064 (0.039) -0.114 (0.051) -0.054 (0.032)

Gender -0.049 (0.079) 0.046 (0.096) -0.028 (0.074)

Race -0.303 (0.131) -0.525 (0.203) -0.304 (0.128)

Marital status 0.083 (0.086) 0.219 (0.102) 0.031 (0.076)

Clinical AD 1.120 (0.077) 1.160 (0.097) 1.128 (0.070)

Stroke 0.129 (0.095) 0.100 (0.125) 0.129 (0.083)

Parkinson's 0.186 (0.138) 0.228 (0.153) 0.292 (0.124)

Depression -0.007 (0.108) 0.144 (0.156) -0.006 (0.083)

D 0.984 (0.167) 1.090 (0.250) 0.982 (0.170)

D × Age 0.049 (0.052) 0.085 (0.063) 0.035 (0.041)

D × Gender -0.146 (0.099) -0.065 (0.119) -0.180 (0.090)

D × Race -0.322 (0.158) -0.339 (0.240) -0.330 (0.152)

D × Marital status 0.039 (0.108) -0.090 (0.127) 0.110 (0.094)

D × Clinical AD -0.150 (0.106) -0.154 (0.127) -0.166 (0.095)

D × Stroke -0.124 (0.120) -0.082 (0.156) -0.115 (0.105)

D × Parkinson s 0.074 (0.172) 0.012 (0.190) -0.058 (0.155)

D × Depression -0.225 (0.135) -0.119 (0.180) -0.153 (0.102)

Intercept 0.301 (0.024) 0.391 (0.028) 0.310 (0.022)

D 0.120 (0.027) 0.149 (0.031) 0.109 (0.025)
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